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We present a novel analysis of the fundamental Löb induction principle from guarded recursion. Taking

advantage of recent work in modal type theory and univalent foundations, we derive Löb induction from a

simpler and more conceptual set of primitives. We then capitalize on these insights to present Gatsby, the
first guarded type theory capturing the rich modal structure of the topos of trees alongside Löb induction

without immediately precluding canonicity or normalization. We show that Gatsby can recover many prior

approaches to guarded recursion and use its additional power to improve on prior examples. We crucially rely

on homotopical insights and Gatsby constitutes a new application of univalent foundations to the theory of

programming languages.

1 Introduction
Recursive definitions have long been both a hallmark of the theory of programming languages and

a sore point for type theory. Topics as varied as the denotational semantics of 𝜆-calculus or logical

relations for higher-order mutable references all prominently feature complex recursive definitions

at their heart. Those techniques which construct solutions for such recursive equations (domain

theory, step-indexing, etc.) are among the most used within programming language theory.

On the other hand, recursive definitions in type theory introduce two serious complications. First,

and most notably, they are simply unsound in general. A type theory that includes an unrestricted

fixed-point operator is easily seen to be unsoundwith fix(𝑥 .𝑥) : ⊥. This problem is usually addressed

by restricting the fixed-point operator to apply only to types and operations where we can guarantee

the existence of a fixed-point. A typical such example is present in proof assistants like Coq or Agda,

where only structural recursion is permitted. This discipline is sufficient to accommodate inductive

arguments and similar, but insufficient for the equations arising in programming languages which

often fail to even induce a monotone operator. A successful line of work (guarded domain theory)
has focused on replacing recursive equations with guarded recursive equations and applying the

results to programming languages [2, 7, 8, 31].

1.1 Guarded type theory
Guarded domain theory extends type theory with a new connective ▶ (pronounced later) where
intuitively ▶𝐴 classifies computations which will eventually produce an element of𝐴 but only after

work has been done. Crucially, while there is a natural map next : 𝐴→ ▶𝐴 there is no natural map

in the reverse direction. It is therefore sound to add a restricted version of fix, Löb induction:

loeb : (▶𝐴→ 𝐴) → 𝐴

Even after making such a restriction, however, a second problem emerges: decidability. Modern

type theories strive to maintain a decidable type-checking in order to facilitate an implementa-

tion and even adding the more restrictive operator loeb with the computation rule loeb(𝑓 ) =
𝑓 (next(loeb(𝑓 ))) is sufficient to render type-checking undecidable. This problem, along with other

complications with integrating ▶ into dependent type theory, has motivated over a decade of

proposals for guarded type theory.

Thesis 1. We can summarize the aspirations for an ideal guarded type theory as the following goals:
(1) Include ▶ along with e.g., the always comonad 2 such that 2▶𝐴 ≃ 𝐴

(2) Include loeb with a propositional equality stating it unfolds.
(3) Ensure that closed elements of Nat compute to numerals.
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(4) Ensure that type-checking is decidable.1

Example 1.1. We illustrate how these requirements may be used simultaneously. We use 1 and

2 to define the type of guarded streams alongside a propositional equality GStr = Nat × ▶GStr.
Using 2 again, we then construct e.g., fibs the guarded stream of Fibonacci numbers. With the

always comonad from 1, we can pass under 𝑛 copies of ▶ to extract the 𝑛th element of fibs. Finally,
3 ensures that this natural number computes to a genuine numeral while 4 implies that the entire

program could be implemented in a proof assistant.

Despite the considerable effort expended on guarded recursion, no guarded type theory is known

to satisfy Thesis 1. In this paper, we contribute a new approach to Goal 2 and use this insight to

construct a new type theory which we conjecture satisfies all four of these requirements.

Historically, even the first of these goals was a serious challenge since the integration of multiple

interacting modalities proved to be difficult. For instance, much of the work on guarded recursion

uses the global sections or always comonad 2, which cannot be included as an operation U→ U
in type theory [35]. Early attempts to incorporate both ▶ and 2 simultaneously precluded the final

two desiderata without even considering Löb induction [11, 13].

Recently, Gratzer et al. [18] proposedMTT as a convenient framework for dependent type theories

supporting arbitrarily many modalities, including all those necessary for guarded recursion. Later

work [15] has further shown thatMTT enjoys both decidable type-checking and canonicity, ensuring
that this general framework can be instantiated to automatically yield a type theory satisfying

Goals 1, 3 and 4. Unfortunately, balancing these requirements with Goal 2 has proven to be another

substantial challenge.

Two flavors of MTT have been proposed which include Löb induction [17, 18]. Both involve

adding loeb as an axiom but thereafter diverge: either adding an axiom ensuring that it unfolds

up to propositional equality or simply adding a definitional equality to this effect. Adding only

propositional unfolding will preclude validating Goal 3 in the resulting type theory. Gratzer and

Birkedal [17] showed, however, that adding definitional unfolding will address Goal 3 at the cost of

refuting Goal 4. Indeed, the “no-go” theorem of op. cit. caused type theorists to weaken the second

aspiration of guarded type theory from “include loeb with a definitional unfolding equation” to the

2 we listed above.

In this work, we deviate from both of these approaches. We do not start by axiomatizing Löb

induction and attempting to balance its computation rule with decidability. Instead, we enrich our

modal framework to obtain Gatsby and derive Löb induction from these more basic principles.

1.2 Guarded accessible type theory: Gatsby
Following prior work, we also buildGatsby atopMTT. To do so, we must choose a mode theory—a 2-

category—specifying the collection of modalities we wish to use. Roughly, each object𝑚 represents

a different type theory which are connected by a modality ⟨𝜇 | −⟩ for each morphism 𝜇 inM.

Finally, the 2-cells in a mode theory introduce transformations between modalities. However,

instantiating MTT on its own is insufficient. We prove that it is impossible to derive Löb induction

just from modalities:

Theorem 2.6 (No-go). For anyM and 𝜇 ∈ M, there is no term (⟨𝜇 | Void⟩ → Void) → Void in
cubical MTT instantiated withM.

This is because nothing in MTT prevents modalities from being trivial: there is always a model

of the system which realizes each modality by the identity. To rule out such degenerate models, we

1
This requirement is tantamount to requiring a normalization algorithm.
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Fig. 1. MGatsby: the mode theory for Gatsby

then isolate a simple reasoning principle, similar to existing rules in cubical type theory, which

enriches the entire system enough to rule out trivial models and thereby derive Löb induction.

1.2.1 From modalities to Löb induction. While no mode theory is sufficient on its own, we must

first choose a particular mode theory with which to instantiate MTT. In our case, we have two

modes 𝑡 and 𝑠 . The first 𝑡 represents the guarded type theory and will intuitively model the topos

of trees PSh (𝜔). The second 𝑠 is meant to represent ordinary non-guarded type theory and will

attempt to model sets. These modes are then linked by a collection of modalities, and the modalities

are equipped with a partial order. We give the entire mode theory in Fig. 1. Many aspects of this

mode theory were already explored by Gratzer et al. [18]. For instance, ℓ and 𝑒 correspond to ▶ and

its left adjoint ◀. The composites 𝛿 ◦ 𝜖0 and 𝛿 ◦ 𝛾 correspond to the possibly and always modalities

3 and 2, though we have chosen to break them into adjunctions.

The crucial novelty to our system is in the final modality: ⊤. Ironically, this modality represents

the simplest possible modality, the one which sends every type toUnit. However, while Theorem 2.6

shows that it is impossible to realize loeb just from modalities, if we force ⟨⊤ | 𝐴⟩ ≃ Unit, this
impacts the behavior of the other modalities enough to make loeb induction derivable.

Concretely, we isolate a particular proposition acc at mode 𝑡 and show that under the assumption

of acc both Löb induction and its unfolding principle are derivable. While this proposition is true in

our intended model, it is not derivable in Gatsby. Indeed, the aforementioned result of Gratzer and

Birkedal [17] shows that it must not be if Gatsby is to enjoy decidable type-checking. However,

this is where the more sophisticated modal framework and special behavior of ⊤ comes into play.

While acc is not provable, ⟨𝜇 | acc⟩ holds for a large class of modalities 𝜇.

One can then write a program which assumes acc and thereby has access to Löb induction and

guarded reasoning. Once the program is completed, a user can apply ⟨𝜇 | −⟩ to the entire closed

term and discharge the acc assumption to actually compute a result. In this manner, the choice of 𝜇

plays the role of type-based “fuel”, allowing a user to extract arbitrary but finite prefixes from a

guarded type without requiring the type-checker to compare infinite types.

1.2.2 Working with accessible types. While theoretically sufficient, the prospect of carrying acc
through every computation is unpleasant. Moreover, in a theory like Gatsby with modalities, real

problems could possibly emerge. For instance, we may pass under 2 and lose access to the acc
assumption we desired. Both problems can be resolved simultaneously by restricting to types which

are accessible, i.e., where 𝐴 is equivalent to acc→ 𝐴. Intuitively, these are types for which there is

a canonical and best way to discharge an acc assumption and so it can be done automatically.

When working with an accessible type, there is no need to carry around a proof of acc as it
can always be obtained from the goal itself. We show that that the subuniverse of accessible types

supports a model of guarded type theory closed under all the connectives of type theory, including
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all modal operators and the universe. Remarkably, even types like booleans, natural numbers,

and 2𝐴 are automatically accessible. The result is that essentially any standard guarded recursive

algorithm will need to mention only accessible types, freeing the user from any obligation to think

about acc when programming. Formally, we have the following result:

Theorem 3.13 (Completeness). Any programwritten inMLTTwith ▶,2, and loebwith propositional
unfolding can be encoded in Gatsby.

Informally, our strategy is complete with respect to the standard formulation of guarded recursion.

1.3 Closely related approaches
While comparison to related work is carried out in Section 7, two approaches are sufficiently close to

warrant earlier mention: stratified guarded type theory [17] and clocked cubical type theory [3, 21].

Stratified guarded type theory (GuTT) [17] balances the tensions of Thesis 1 by proposing two

separate but related type theories: one satisfying Goals 1, 2 and 4 and one satisfying Goals 1 to 3.

Gatsby sharpens this idea by careful unifying these theories through a more sophisticated modal

analysis of Löb induction. In particular, by discarding GuTT’s Löb induction axioms, we are able to

recover GuTT’s type-based notion of fuel through the class of modalities for which ⟨𝜇 | acc⟩. We

then use this to derive Löb induction. Gatsby also offers a richer class of modalities than GuTT and

in particular seamlessly includes 2 which proved difficult for GuTT.
Clocked cubical type theory (CloTT□) [21] also attempts to satisfy Thesis 1 but through very

different means. Firstly, rather than including multiple interacting modalities, CloTT□ includes
only ▶ but then indexes it by a clock 𝜅 which can be quantified over. The presence of clocks allows

CloTT□ to add Löb induction as an axiom which unfolds only in specific circumstances; roughly

after the particular clock 𝜅 has been bound to prevent any further occurrences of ▶𝜅 . Like Gatsby,
CloTT□ conjecturally satisfies canonicity and decidable type-checking and, like Gatsby, it therefore
provisionally satisfies Goals 1 to 4.

2
However, the approach is very different.

CloTT□’s indexed ▶ modality offers a richer framework for guarded programming. However,

clock quantification does not replicate all uses of 2 and forces a more complex semantics [24].

Moreover, clock quantification necessitates considering clock-irrelevant types, precluding a well-
adapted theory of universes for guarded programming. On the other hand, while Gatsby enjoys a

simpler semantics, richer modalities, and better-behaved universes, programming with modalities

can be less intuitive than with clocks and clocks are required for nested guarded types. The biggest

difference is in the approach Gatsby and CloTT□ take for Löb induction. While CloTT□ adds in Löb

induction as an axiom and restricts its computation to decide type-checking, Gatsby derives Löb
induction from modalities. In addition to the intrinsic interest of this decomposition, this approach

arguably makes it easier to extend Gatsby with additional reasoning principles. Despite these

differences, Gatsby has crucially benefited from the work behind CloTT□: the CloTT□ approach
to clock-irrelevant types motivates our exploration of accessible types and the cubical variant of

MTT [1] which Gatsby extends is inspired by CloTT□.

1.4 Contributions
We present guarded accessible type theory or Gatsby: a modal type theory built on MTT extended

with a new primitive computational modality ⊤. From this purely modal extension, we derive Löb

induction and offer a complete solution to the problems of the original guarded dependent type

theory proposed by Birkedal et al. [7].

2
The non-cubical variant of CloTT□ [3] is known to enjoy normalization and satisfies Goals 1, 3 and 4. However, it does not

include any means of proving loeb(𝑓 ) = 𝑓 (next(loeb𝑓 ) ) and therefore does not satisfy Goal 2.
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• We show that Gatsby satisfies Goals 1 and 2 above and offer evidence for Goals 3 and 4.

• We show that more standard presentations of guarded recursion can be compiled faithfully

into Gatsby.
• We demonstrate that Gatsby is usable by providing a pair of case-studies extending an

example given by Birkedal et al. [7] and Clouston et al. [13].

Gatsby is the first guarded type theory to support computational Löb induction alongside the rich

modal structure of PSh (𝜔) (▶,◀,2,3) without immediately precluding decidable type-checking.

Moreover, the good behavior of universes and propositions in univalent foundations is critical to

Gatsby, making it a novel application of homotopy type theory to programming languages.

While we have carried out our reconstruction of Löb induction by extending (cubical) MTT, the
methodology is not tied to any particular of modal type theory. We therefore see this reconstruction

of Löb induction as a contribution independent of cubicalMTT. Throughout this paper, however,
we work with Gatsby both for concreteness and to evaluate the efficacy of our approach.

Organization. In Section 2 we introduce cubical MTT, the foundation of Gatsby. Section 3

introduces Gatsby itself and tours through its most essential features. Section 5 uses Gatsby to

improve upon a logical-relations argument from Birkedal et al. [7]. Finally, Section 6 discusses the

semantics of Gatsby and proves its soundness.

2 Cubical MTT and guarded recursion
Gatsby depends on a computational account of univalence and a well-behaved theory of modalities.

In this section we recall some of the details of a system which contains both: Cubical MTT [1].

CubicalMTT is a variant on ordinaryMTT in which every mode contains a copy of cubical type

theory, as opposed to the ordinary copy of intensional Martin-Löf type theory. Fortunately, the

details of cubical type theory are not essential to understanding Gatsby. The same cannot be said

of the theory of modalities used by Gatsby where details do matter.

Accordingly, we will give a brief overview of MTT only, as the reader will be able to follow all

the constructions of Sections 3 to 5 simply by assuming that Gatsby is built atop ordinaryMTT
extended with univalence; the only import of the cubical implementation of univalence is that it is

computational.
3
We recall further details of cubical MTT in Section 6 where they are relevant.

For a comprehensive review of MTT we refer the reader to Gratzer [16, Chapter 6] or Gratzer

et al. [19]. For cubical type theory and computational univalence, we suggest Cohen et al. [14].

A glossary for homotopy type theory. We will take advantage of a variety of standard notations

and definitions from homotopy type theory. The standard reference for these is the HoTT Book [41].

For convenience, we recall that if 𝑝 : 𝑥 = 𝑦 then transport𝐵 𝑝 : 𝐵 𝑥 → 𝐵𝑦. In the special case

where 𝐵 = id, then we write 𝑝∗ for the induced map. If 𝑓 : 𝐴→ 𝐵 and 𝑝 : 𝑎0 = 𝑎1, we write ap𝑓 𝑝
for the induced path 𝑓 𝑎0 = 𝑓 𝑎1. We shall have frequent occasion to use the univalent version of

propositions: homotopy proposition or hprop. An hprop is a type 𝐴 equipped with a (necessarily

unique) function (𝑎0, 𝑎1 : 𝐴) → 𝑎0 = 𝑎1. We write hProp𝑖 for the subtype of the universeU𝑖 spanned

by hprops. We write ∥𝐴∥ for the unique homotopy proposition equipped with a map 𝜂 : 𝐴→ ∥𝐴∥
such that 𝜂∗ : 𝑃 ∥𝐴∥ → 𝑃𝐴 is an equivalence for all propositions 𝑃 .

Finally, for convenience, we shall generally omit subscripts around universes and avoid discussing

size issues. So we shall write U : U and leave it to the reader to insert the subscripts U𝑖 : U𝑖+1. This
also applies to hProp𝑖 for which we will simply write hProp.

3
We conjecture that an alternative account of computational univalence—e.g., the work by Shulman, Altenkirch, and

Kaposi [36]—could be adapted for a similar purpose.



6 Daniel Gratzer

2.1 A summary of multimodal type theory
To a first approximation, MTT is a machine which accepts as input an abstract specification of

modalities (a mode theory [23]) and produces a modal type theory as output satisfying canonicity

and normalization [15]. While generally, a mode theory is allowed to be a strict 2-category, for our

purposes it suffices to consider a 1-category enriched in partial orders. That is, a mode theory is a

categoryM where every hom-set homM (𝑥,𝑦) is a partial order such that composition is monotone.

Suppose MTT is instantiated with some mode theoryM. The objects ofM are called modes
(ranged over by𝑚,𝑛, 𝑜) and the morphisms are modalities (ranged over by 𝜇, 𝜈, 𝜉). In MTT, each
mode𝑚 yields a separate copy of type theory with its attendant set of judgments (⊢ Γ cx @ 𝑚,

Γ ⊢ 𝐴 type @ 𝑚, etc.). Each type theory is then extended with several operations to reflect the

modalities which link the modes:

(Cx) Γ,Δ F . . . | Γ.(𝜇 | 𝐴) | Γ.{𝜇}
(Ty) 𝐴, 𝐵 F . . . | 𝐴[𝛾] | ⟨𝜇 | 𝐴⟩
(Tm) 𝑀, 𝑁 F . . . | 𝑀 [𝛾] | mod𝜇 (𝑀) | let𝜈 mod𝜇 (−) ← 𝑀 in 𝑁

(Sb) 𝛿,𝛾 F . . . | ↑ | 𝛾 .𝑀 | 𝛾 .{𝜇} | Γ.{𝜇 ≤ 𝜈}

The idea behind MTT is that each modality 𝜇 : 𝑛 𝑚 induces (1) a type former ⟨𝜇 | −⟩ sending
mode 𝑛 types to mode 𝑚 types along with (2) a context former −.{𝜇} sending 𝑚 contexts to

𝑛 contexts. We add equations ensuring that Γ.{id} = Γ and Γ.{𝜈}.{𝜇} = Γ.{𝜈𝜇}. We note that

MTT feature explicit substitutions [25]. Such substitutions 𝛾 should be thought of as simultaneous

substitutions and 𝐴[𝛾] (𝑀 [𝛾]) represents the application of this substitution to a type 𝐴 (a term𝑀).

Roughly, −.{𝜇} is the left adjoint to ⟨𝜇 | −⟩; modalities in MTT are (weak) dependent right
adjoints [5]. Hence, an element Γ ⊢ 𝑀 : ⟨𝜇 | 𝐴⟩ is roughly equivalent to an element Γ.{𝜇} ⊢ 𝑁 : 𝐴.

Converting 𝑁 to𝑀 is the role of the introduction rule:

Γ.{𝜇} ⊢ 𝐴 type @ 𝑛

Γ ⊢ ⟨𝜇 | 𝐴⟩ type @ 𝑚

Γ.{𝜇} ⊢ 𝑀 : 𝐴 @ 𝑛

Γ ⊢ mod𝜇 (𝑀) : ⟨𝜇 | 𝐴⟩ @ 𝑚

The passage from 𝑀 to 𝑁 is more fraught. The elimination principle ought to give such an

inverse. Directly adding such an operation, however, disrupts the substitution property of the type

theory. We instead add a “pattern-matching” elimination rule similar to the elimination principle

used for booleans or natural numbers.

It is here that the modified form of context Γ.(𝜇 | 𝐴) is used, so we postpone the elimination rule

and first explain how this novel form of context extension works. Roughly, Γ.(𝜇 | 𝐴) is a context
with a variable of type 𝐴 annotated with 𝜇. While morally the same as an element of ⟨𝜇 | 𝐴⟩, the
force of the annotation is the following rule used to pull a variable out from behind {𝜇}:

Γ.{𝜇} ⊢ 𝐴 type @ 𝑛

Γ.(𝜇 | 𝐴).{𝜇} ⊢ var : 𝐴[↑ .{𝜇}] @ 𝑚

This is almost the standard variable rule for a type theory built using explicit substitution and

de Bruijn indices, but with a few key differences. Most importantly, because the last variable in

the context is 𝜇-annotated, we can only access it when the context is restricted by {𝜇} (intuitively,
{𝜇} cancels the 𝜇 annotation). Moreover, since 𝐴 is a dependent type, we must mind the context

in which it is well-formed: Γ.{𝜇}. Since the conclusion of the variable rule is Γ.(𝜇 | 𝐴) .{𝜇}, we
must construct an explicit substitution Γ.(𝜇 | 𝐴).{𝜇} Γ.{𝜇} to shift 𝐴 from its original context

to that of the conclusion. This is the role of ↑ .{𝜇}: ↑ is the weakening substitution and −.{𝜇} is
a substitution former which sends a simultaneous substitution Γ ⊢ 𝛿 : Δ to Γ.{𝜇} ⊢ 𝛿.{𝜇} : Δ.{𝜇}.
The general rule for accessing the 𝑛th variable in a context is then a derived from built from var
and the weakening substitution.
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We now return to the original question of the elimination rule for ⟨𝜇 | 𝐴⟩. Intuitively, this rule
ensures that it suffices to assume every element of ⟨𝜇 | 𝐴⟩ is of the form mod𝜇 (−):

𝜈 : 𝑚 𝑜 Γ.{𝜈} ⊢ 𝑀 : ⟨𝜇 | 𝐴⟩ @ 𝑚

Γ.(𝜈 | ⟨𝜇 | 𝐴⟩) ⊢ 𝐵 type @ 𝑜 Γ.(𝜈 ◦ 𝜇 | 𝐴) ⊢ 𝑁 : 𝐵 [id.mod𝜇 (var)] @ 𝑜

Γ ⊢ let𝜈 mod𝜇 (−) ← 𝑀 in 𝑁 : 𝐵 [id.𝑀] @ 𝑜

let𝜈 mod𝜇 (−) ← mod𝜇 (𝑀) in 𝑁 = 𝑁 [id.𝑀]

We will take occasional advantage of a convenience feature of MTT. It is common to accept

an element of ⟨𝜇 | 𝐴⟩ as an argument and immediately pattern-match on it. This is simplified by

modal functions:

Γ.{𝜇} ⊢ 𝐴 type @ 𝑛 Γ.(𝜇 | 𝐴) ⊢ 𝑀 : 𝐵 @ 𝑚

Γ ⊢ 𝜆𝑀 : (𝜇 | 𝐴) → 𝐵 @ 𝑚

Γ.{𝜇} ⊢ 𝑁 : 𝐴 @ 𝑛 Γ ⊢ 𝑀 : (𝜇 | 𝐴) → 𝐵 @ 𝑚

Γ ⊢ 𝑀 (𝑁 ) : 𝐵 [id.𝑁 ] @ 𝑚

Only one new feature remains to be discussed in the type theory. This is the explicit substitution

Γ.{𝜇 ≤ 𝑛𝑢} which integrates the mode theories partial order into the type theory:

⊢ Γ cx 𝜇 ≤ 𝜈

Γ.{𝜈} ⊢ Γ.{𝜇 ≤ 𝜈} : Γ.{𝜇} @ 𝑚

In practice, this substitution is used to use a 𝜇-annotated variable beneath {𝜈}. In particular,

using this variable rule, we can justify the following principle:

Γ.{𝜇} ⊢ 𝐴 type @ 𝑛 𝜇 ≤ 𝜈

Γ.(𝜇 | 𝐴).{𝜈} ⊢ var[Γ.{𝜇 ≤ 𝜈}] : 𝐴[↑ .{𝜇} ◦ Γ.{𝜇 ≤ 𝜈}] @ 𝑚

Thus far we have favored precision while introducing MTT and therefore used de Bruijn indices

and explicit substitutions. This is particular important when specifying modal type theories, as

substitution is often subtle and non-standard. However, the above rule shows that it can become

quite cumbersome to insist on using de Bruijn indices and so hereafter we switch to named variables

and more standard informal type theory.

When writing MTT terms “informally”, we will write 𝑥 :𝜇 𝐴 to indicate the variable 𝑥 exists

in the context with annotation 𝜇 and type 𝐴. If 𝜇 = id, we suppress it to recover the traditional

notation. We therefore are able to suppress weakening substitutions as well as Γ.{𝜇 ≤ 𝜈} when
writing terms e.g., the above rule would simply become Γ, 𝑥 :𝜇 𝐴, {𝜈} ⊢ 𝑥 : 𝐴. We refer the reader

to Gratzer [16, Section 6.1] for a detailed discussion of this point.

Notation 2.1. We use (𝑥 :𝜇 𝐴) → 𝐵(𝑥) for the informal version of (𝜇 | 𝐴) → 𝐵.

2.2 Instantiating MTT withMGatsby

We now turn fromMTT in general to its instantiation with the specific mode theory required for

Gatsby as detailed in Fig. 1. The mode theory is a combination of mode theories previously used to

adapt MTT to study guarded recursion [16–18].

Unlike many presentations of guarded recursion, it contains multiple modes. The types at mode

𝑡 are intended to behave like objects from PSh (𝜔) and can exhibit guarded behavior, while 𝑠 is
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intended to capture Set. Each modality 𝜇 is intended to capture a particular right adjoint 𝐹𝜇 on or

between these categories:

𝐹ℓ (𝑋 ) = ▶𝑋 𝐹𝑒 (𝑋 ) = ◀𝑋 𝐹𝛿 (𝑆) = 𝜆𝑛. 𝑆 𝐹𝛾 (𝑋 ) = lim
𝜔

𝑋 𝐹𝜖0
(𝑋 ) = 𝑋 (0)

𝐹⊤ (𝑋 ) = {★}
See Birkedal et al. [7] for the definitions of ◀ and ▶ on PSh (𝜔). Inspired by the above, we will

write ▶𝐴 ≜ ⟨ℓ | 𝐴⟩, ◀𝐴 ≜ ⟨𝑒 | 𝐴⟩, 2𝐴 ≜ ⟨𝛿 ◦ 𝛾 | 𝐴⟩, and 3𝐴 ≜ ⟨𝛿 ◦ 𝜖0 | 𝐴⟩.

Remark 2.2. For the sake of simplicity, we have chosen to ignore the complications imposed by

modeling cubicalMTT and interpreting univalence above. In Section 6 we shall return to this point

and show that the preceding sketch can be turned into a valid construction by replacing sets with

cubical sets and presheaves with cubical presheaves. For the next two sections we shall ignore

univalence when providing semantic intuitions and simply note that all arguments can be adapted

to cubical sets with minimal changes.

Several modal combinators are definable for any modality in MTT and, when appropriately

instantiated, these yield familiar operations in guarded recursion. In particular, we shall have use

for the following general MTT combinators:

⊛ : ⟨𝜇 | 𝐴→ 𝐵⟩ → ⟨𝜇 | 𝐴⟩ → ⟨𝜇 | 𝐵⟩ distr : ⟨𝜇 | 𝐴 × 𝐵⟩ ≃ ⟨𝜇 | 𝐴⟩ × ⟨𝜇 | 𝐵⟩

triv : ⟨id | 𝐴⟩ ≃ 𝐴 comp : ⟨𝜈 | ⟨𝜇 | 𝐴⟩⟩ ≃ ⟨𝜈 ◦ 𝜇 | 𝐴⟩ coe𝜇≤𝜈 : ⟨𝜇 | 𝐴⟩ → ⟨𝜈 | 𝐴⟩
For instance, the standard map next : 𝐴→ ▶𝐴 is defined as coeid≤ℓ ◦ triv−1

and the equivalence

now : 2▶𝐴 ≃ 2𝐴 is realized by comp. We record these and more in an omni-bus theorem:

Theorem 2.3.
(1) ▶ is a well-pointed applicative functor,
(2) 2 is an idempotent comonad and 2▶ ≃ 2 ≃ 2◀,
(3) the following pairs are adjoint: ◀ ⊣ ▶, 3 ⊣ 2, ⟨𝛿 | −⟩ ⊣ ⟨𝛾 | −⟩, and ⟨𝜖0 | −⟩ ⊣ ⟨𝛿 | −⟩.

We emphasize that certain modalities, ◀ and ⟨𝛿 | −⟩, are left adjoint modalities. These modalities

enjoy particularly good behavior inMTT in the form of a variety of crisp induction principles [16, 35].
For instance, ⟨𝛿 | Nat⟩ is equivalent to Nat and we may therefore perform induction on an element

of the former as if it were the latter. This is not the case for every modality ⟨𝜇 | −⟩. However,
inductive types are preserved by left adjoint modalities, and we capitalize on this fact several times.

Finally, we note two specific consequences of working with cubicalMTT rather than ordinary

MTT. First, as already mentioned, each mode supports the univalence axiom. Second, each modality

preserves identity types:

Theorem 2.4. The map mod𝜇 (𝑎) = mod𝜇 (𝑏) → ⟨𝜇 | 𝑎 = 𝑏⟩ sending refl to mod𝜇 (refl) is an
equivalence. We denote the inverse map 𝜄 : ⟨𝜇 | 𝑎 = 𝑏⟩ → mod𝜇 (𝑎) = mod𝜇 (𝑏).

Corollary 2.5. The map ⟨𝜇 | 𝐴→ 𝐵⟩ → (⟨𝜇 | 𝐴⟩ → ⟨𝜇 | 𝐵⟩) restricts to a map ⟨𝜇 | 𝐴 ≃ 𝐵⟩ →
(⟨𝜇 | 𝐴⟩ ≃ ⟨𝜇 | 𝐵⟩).

2.3 A no-go theorem for Löb induction
Thus far we have avoided any mention of Löb induction. Indeed, as an instantiation of cubicalMTT,
our theory thus far cannot possibly validate Löb induction without additional axioms. We now give

a proof of this no-go theorem which implies that no choice of mode theory makes Löb induction

derivable in an instantiation of MTT without additional axioms.
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Theorem 2.6 (No-go). For anyM and 𝜇 ∈ M, there is no term (⟨𝜇 | Void⟩ → Void) → Void in
cubical MTT instantiated withM.

Proof. MTT with mode theoryM has a model where each mode is interpreted by ordinary

(cubical) type theory and each modality is realized by the identity. If (⟨𝜇 | Void⟩ → Void) → Void
was derivable in (cubical) MTT, then interpreting this term into this model would yield an element

of (JVoidK→ JVoidK) → JVoidK in (cubical) type theory for each 𝐴 inMTT. Since JVoidK = Void
(the empty type), we would have𝑀 : (Void→ Void) → Void and so𝑀 (id) : Void; this contradicts
the soundness of cubical type theory. □

3 Introducing Gatsby
In Section 2 we introduced (cubical)MTT and discussed its instantiation toMGatsby. As it stands,

this instantiation must be extended with a new rule in order to validate Löb induction (Theorem 2.6).

We now present this new rule (Rule 1) and show that it forces ⟨⊤ | 𝐴⟩ = Unit. We term the system

extended with it Gatsby.
A priori, constraining⊤ in this manner is entirely unrelated to Löb induction. We prove, however,

that the interactions between ⊤ and other modalities in the system give us the ability to define Löb
induction on a large class of types. We carry out this derivation in stages; we define a homotopy

proposition which entails Löb induction (Theorem 3.5) and then show that this homotopy proposi-

tion holds in certain circumstances (Theorem 3.7). In Sections 3.3 and 3.4, we then show how to

parlay this new reasoning principle into a workable guarded type theory.

3.1 The new rule
As shown in Theorem 2.6, the key obstruction to deriving Löb induction is that we cannot guarantee

that ▶ (or indeed any of our modalities) is not actually the identity. In order to rule this out, we

shall add a new rule forcing one modality, ⊤, to be not the identity. To do this, note that ⟨⊤ | 𝐴⟩
is intended to encode Unit and so its left adjoint action Γ.{⊤} corresponds to extending Γ by the

empty type. In particular, Γ.{⊤} will be interpreted by the empty set. With this in mind, we add

the following rule:

Γ ⊢ 𝑟 : 1.{⊤} @ 𝑠

Γ ⊢ J
(1)

In the above, J ranges over any judgment. Intuitively, if there exist a substitution from Γ to 1 .{⊤},
then Γ will be interpreted by the empty set as well and so the principle of explosion ought to let us

conclude any judgment we wish in this context.

Remark 3.1. This rule is similar to the rule in cubical type theory stating that Γ ⊢ J holds if Γ
proves the false cofibration [14].

While we phrased this rule in an algebraic way by asking for a substitution from the context

to 1 .{⊤}, we can prove that it is decidable whether such a substitution exists (see Theorem 8.1).

Such a metatheorem is crucial for showing that Gatsby admits a normalization algorithm. Indeed,

similar rules yield undecidable type theories because of the absence of such a result.

Lemma 3.2. Rule 1 implies ⟨⊤ | 𝐴⟩ = Unit.

Proof. First, we note that ⟨⊤ | 𝐴⟩ is inhabited. Indeed, to construct an element of ⟨⊤ | 𝐴⟩, it
suffices to construct an element of 𝐴 in a context restricted by {⊤} but Rule 1 ensures this is true
regardless of𝐴. By univalence, it then suffices to argue that all elements in ⟨⊤ | 𝐴⟩ are equal. While

one can argue directly, this is an immediate consequence of Theorem 2.4 and the argument above

after replacing 𝐴 by 𝑎0 =𝐴 𝑎1. □
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In light of this result, we say that ⟨⊤ | −⟩ is a computational modality [20]. On its own, constrain-

ing ⟨⊤ | 𝐴⟩ to be Unit is not a useful change. After all, if we only cared about constraining ⟨⊤ | 𝐴⟩
we could simply discard the modal apparatus and take this equivalence to be an equality. The force

of this extension comes through the interactions between ⊤ and other modalities. In particular,

𝜖0 ◦ ℓ = ⊤ ◦ 𝜖0 together with Lemma 3.2 implies the following:

⟨𝜖0 | ▶𝐴⟩ = Unit

While this is obviously true in the model (the first stage of ▶𝑋 is {★} by definition), it is only

after forcing ⟨⊤ | 𝐴⟩ = Unit that we can derive this result purely within the theory. Having some

circumstances under which ▶𝐴 trivializes opens up a new avenue to encoding Löb induction.

3.2 The accessible proposition
Contrary to prior guarded type theories, we will not endeavor to make Löb induction directly

available on each type at mode 𝑡 . We will instead split things up into two steps:

(1) Define an (h-)proposition acc which implies Löb induction.

(2) Prove that ⟨𝜇 | acc⟩ holds for a large class of modalities 𝜇.

This two-step approach offers a way to include Löb induction in Gatsby without directly postu-

lating it. Instead, when working with guarded recursion we will assume acc holds, such that the

type of the end result will be acc→ 𝐴. In order to actually run such a program, we then choose an

appropriate modality 𝜇 and switch to considering ⟨𝜇 | acc→ 𝐴⟩. The general principles of MTT
modalities together with our proof of ⟨𝜇 | acc⟩ then enables us to conclude ⟨𝜇 | 𝐴⟩. By choosing 𝜇

appropriately, we are then able to extract arbitrary finite approximations of 𝐴 and compute with

Löb induction without ever directly postulating it. While the first step can be carried out in ordinary

MTT, showing that ⟨𝜇 | acc⟩ is true for any modality requires Gatsby’s computational ⊤ modality.

The proposition acc is defined using the truncation modality ∥−∥ from homotopy type theory:

Definition 3.3. We define acc =


∑

𝑛:Nat ▶
𝑛Void




at mode 𝑡 .

Remark 3.4. Note that acc is globally true when 𝑡 is interpreted into PSh (𝜔) where it is realized
by ∃𝑛. ▶𝑛⊥. In this model, ▶𝑛⊥ has a more recognizable form as the representable presheaf y(𝑛).
From this viewpoint, acc is equivalent to the join of all y(𝑛) which is 1 by construction. However,

while it holds in the intended model, it is not derivable within Gatsby. For instance, one could
interpret mode 𝑡 using Sh(𝜔2) where acc is not globally true; it circumscribes the open embedding

of PSh (𝜔) into Sh(𝜔2).

We now set out to prove that assuming acc is sufficient to derive Löb induction. Intuitively, as

acc states that there exists some 𝑛 such that ▶𝑛Void holds, we ought to be able to define loeb(𝑓 ) : 𝐴

where 𝑓 : ▶𝐴 → 𝐴 by induction on 𝑛; if 𝑛 = 0 then we use the now modality-free assumption

of Void and otherwise we apply 𝑓 to an element of ▶𝐴 which we obtain through our induction

hypothesis. Unfortunately, this naïve proof strategy does not work: the propositional truncation

used to define acc means that we cannot directly scrutinize 𝑛 when constructing an element of 𝐴.

However, we may strengthen our goal slightly to work around this issue.

Instead of constructing loeb(𝑓 ) : 𝐴, we could instead construct an element loeb(𝑓 ) : 𝐴 together

with a proof that loeb(𝑓 ) is a guarded fixed-point i.e., 𝑓 (next(loeb 𝑓 )) = loeb 𝑓 . Indeed, while there
are potentially many distinct elements of 𝐴, we prove that 𝑓 has at most one guarded fixed-point.

We will therefore prove that the type of guarded fixed-points of 𝑓 is contractible (inhabited and

all inhabitants are equal). This type is a hprop and so it is valid to scrutinize an element of acc
when proving it. We emphasize that this strategy relies heavily on the good behavior of homotopy

propositions in univalent foundations.
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Theorem 3.5. In mode 𝑡 , for any 𝐴 : U and 𝑓 : ▶𝐴 → 𝐴 there exists a term gfix : acc →
isContr(GFix𝐴 𝑓 ) where GFix𝐴 𝑓 is the type of guarded fixed-points

∑
𝑎:𝐴 𝑓 (next𝑎) = 𝑎.

Proof. We take advantage of the fact that isContr is a proposition to ignore the truncation on

acc and actually scrutinize the underlying natural number. We define gfix as follows:

gfix ∥(0, 𝑝)∥ = absurd 𝑝
gfix ∥(1 + 𝑛,modℓ (𝑝))∥ 𝑓 = ?0 : isContr(GFix 𝑓 )

where
𝐶 :ℓ isContr(GFix 𝑓 )
𝐶 = gfix ∥(𝑛, 𝑝)∥ 𝑓

To fill this hole, we start with a preliminary observation: given any element of ▶GFix 𝑓 , we may

promote it to an element of GFix 𝑓 .

promote : (𝑟ℓ :ℓ GFix 𝑓 ) →
∑

𝑟 :GFix 𝑓 ▶(𝑟 = 𝑟ℓ )
promote (𝑎, 𝑝) = let 𝑟 = (𝑓 (modℓ (𝑎)), ap𝑓 (𝜄 (modℓ (𝑝)))) in
(𝑟,modℓ ( {ℓ} ⊢ ?1 : 𝑟 = (𝑎, 𝑝) ))

To fill ?1 , it suffices to fill the following:

{ℓ} ⊢ ?2 : 𝑓 (next(𝑎)) = 𝑎

{ℓ} ⊢ ?3 : ap𝑓 (𝜄 (next𝑝)) = ?2 • 𝑝 • ap𝑓 ◦next (?2
−1)

The choice for ?2 is clear enough: 𝑝−1
. Plugging this in, it suffices to construct a term of the

following type:

{ℓ} ⊢ ap𝑓 (𝜄 (next𝑝)) = ap𝑓 ◦next (𝑝)
This follows immediately from the definition of 𝜄.

Next, we note that 𝜋1 (promote 𝑟 ) = 𝑟 . We again have two holes to fill if we let 𝑟 = (𝑎, 𝑝):
?4 : 𝑓 (next(𝑎)) = 𝑎

?5 : ap𝑓 (𝜄 (next𝑝)) = ?2 • 𝑝 • ap𝑓 ◦next (?2
−1)

A similar argument fills these two holes with ?4 = 𝑝−1
.

We now return to ?1 . It suffices to implement the following:

?6 : GFix 𝑓 ?7 : (𝑟 : GFix 𝑓 ) → ?6 = 𝑟

We fill ?6 = promote(𝜋1𝐶). For the second hole, we use our remark that 𝑟 = promote 𝑟 together
with 𝜋2𝐶 , transitivity, and 𝜄. □

We can derive Löb induction from gfix:

loeb : (𝐴 : U) → ((ℓ | 𝐴) → 𝐴) → acc→ 𝐴

loeb𝐴 𝑓 𝑧 = 𝜋1 (𝜋1 (gfix𝐴 (𝜆𝑥. let modℓ (𝑥ℓ ) ← 𝑥 in 𝑓 𝑥ℓ ) 𝑧))

unfold : (𝐴 : U) (𝑓 : (ℓ | 𝐴) → 𝐴) → acc→ 𝑓 (next(loeb 𝑓 )) = loeb 𝑓
unfold𝐴 𝑓 𝑧 = 𝜋2 (𝜋1 (gfix𝐴 (𝜆𝑥 . let modℓ (𝑥ℓ ) ← 𝑥 in 𝑓 𝑥ℓ ) 𝑧))

Remark 3.6. We note that we have required loeb accept a modal function (ℓ | 𝐴) → 𝐴 rather

than ▶𝐴 → 𝐴. This is a useful convenience as it allows us to shorten the otherwise ubiquitous

loeb(𝜆𝑥. let modℓ (−) ← 𝑥 in 𝑥ℓ . . .) to simply loeb(𝜆𝑥. . . . ). The types ▶𝐴→ 𝐴 and (ℓ | 𝐴) → 𝐴

are equivalent, however, so this is only a matter of convenience.
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While this is certainly interesting, if we can never discharge the acc assumption from gfix, this
brings us no closer to ever being able to actually use these combinators. While we cannot prove

acc holds on its own, we can show that ⟨𝜖0 ◦ 𝑒𝑛 | acc⟩ holds. We break this statement apart into

two results:

Theorem 3.7. The following hold in modes 𝑡 and 𝑠 respectively:

• ◀acc = acc
• ⟨𝜖0 | acc⟩ = Unit

Proof. For the first point, we note that ◀ is a left adjoint and therefore commutes with both

propositional truncation and natural numbers [16, Lemmas 6.4.16 and 6.4.15]. By propositional

univalence, it therefore suffices to show that acc implies the following:

∑
𝑚:Nat ◀▶

𝑚Void




Scrutinizing our assumption of acc, we know that there exists some 𝑘 such that ▶𝑘Void; we then
choose𝑚 = 𝑘 + 1 to obtain the goal.

For the second claim, we switch toworking inmode 𝑠 . As all modalities inGatsby preserve identity
types and the unit, they preserve homotopy levels and, in particular, h-props. It therefore suffices to

show that ⟨𝜖0 | acc⟩ holds at all and we shall accomplish this by arguing that

〈
𝜖0 |

∑
𝑛:Nat ▶

𝑛Void
〉

holds. Commuting this modality with the dependent sum, it suffices to argue that ⟨𝜖0 | ▶Void⟩ holds.
However, we have shown in the prior subsection that ⟨𝜖0 | ▶Void⟩ = ⟨⊤ | ⟨𝜖0 | Void⟩⟩ = Unit. □

Corollary 3.8. For 𝑛 : Nat we have ⟨𝜖0 | ◀𝑛acc⟩ = Unit.

In particular, if we confine ourselves to just working in mode 𝑡 , we will not be able to (dis)prove

acc and so loeb cannot be run. However, if we write a closed program e.g. 𝑀 : acc → ▶𝑛Nat,
we can place the entire program under ⟨𝜖0 | ◀𝑛−⟩ and discharge the acc assumption to obtain a

program of type ⟨𝜖0 | ◀𝑛▶𝑛Nat⟩ ≃ Nat. Intuitively, the choice of 𝑛 allows us to internally recover

a type-based “fuel” discipline for running guarded programs. We explore this process in the next

two sections.

3.3 The universe of accessible types
The previous subsection outlined an approach for guarded recursion in Gatsby: hypothesize acc
when constructing a program and discharge it for closed terms using modalities. However, this

simple strategy has two major drawbacks. First, it is hardly convenient to manually thread the

acc assumption through every program we write. Second, it may not even be possible to do so!

Working in a modal type theory, some connectives restrict access to the context and so we may

write a program which assumes acc in the beginning and yet find ourselves unable to rely on this

assumption midway through the program having descended beneath 2 or ▶.
The solution to both of these problems is the same: rather than manually passing around acc,

we should consistently work with the acc-null types. That is, types 𝐴 such that the canonical map

𝐴 → (acc→ 𝐴) is an equivalence. Informally, these are the types that “do not care” if a finite

number of steps remain. By restricting attention to these types, we free ourselves of the requirement

to pass acc around manually; whenever we require a witness for acc we can simply “pull it out” of

the goal 𝐴 by replacing it with acc→ 𝐴.

This has another startling consequence: if we limit ourselves to working with accessible types,

we never need to mention or explicitly discharge acc. Each accessible type knows how to remove

the acc and we shall see that this allows the process to fade into the background.
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Definition 3.9. We say a type is accessible if it is acc-null. The universe of accessible types Uacc is

therefore written as follows:

Uacc =
∑

𝐴:U isEquiv(const : 𝐴→ (acc→ 𝐴))
This is a subuniverse of U; the map Uacc → U is an embedding.

If we restrict gfix, loeb, and unfold to applications where 𝐴 belongs to Uacc rather than U, we
may dispense with the acc hypothesis e.g., loeb : (𝐴 : Uacc) → ((ℓ | 𝐴) → 𝐴) → 𝐴. This leads us

to ask what structure Uacc possess and which types are accessible.

The universe of accessible types is a reflective subuniverse [34]. We therefore conclude a number

of results about Uacc from op. cit.

Proposition 3.10 (Rijke et al. [34]).
(1) Uacc is spanned by �-modal types where �𝐴 = acc→ 𝐴.
(2) Uacc is closed under dependent products and sums, the unit type, and identity types.
(3) Uacc and hPropacc are accessible types.
(4) � is a lex idempotent monad (in fact, an open modality

4).
Moreover, Uacc is a model of HoTT and � a morphism of models.

We will not reproduce the entire proof for reasons of space, but we will show the argument for

why Uacc is accessible. We highlight this because it relies crucially upon univalence and is one

place where working with cubical MTT over ordinaryMTT is vital.

Proof. We claim that 𝜂 : Uacc → �Uacc is an equivalence. By another result of Rijke et al. [34,

Lemma 1.20], it is sufficient to construct a left inverse to 𝜂. That is, we must define 𝑟 : �Uacc → Uacc
such that for all 𝐴 : Uacc, 𝑟 (𝜂 𝐴) = 𝐴. We define 𝑟 as follows:

𝑟 𝐴̃ = (𝑧 : acc) → 𝐴̃ 𝑧

To show that this is a left inverse, we must show that if 𝐴 : Uacc then 𝐴 = acc→ 𝐴. By univalence,

it suffices to show that there is an equivalence 𝐴 ≃ acc→ 𝐴. We conclude by noting that const is
such an equivalence because 𝐴 : Uacc. □

We note that it is crucial that acc be in hProp for Proposition 3.10 to hold: if we did not truncate

acc, we would not know that Uacc is itself acc-modal and we would lose access to a hierarchy of

acc-modal universes of acc-modal types.

The universe of accessible typesUacc enjoys a number of additional closure properties, specifically

due to the behavior of acc. In particular, acc is closed under both 2 and ▶, and we can prove these

facts purely within Gatsby without additional assumptions.

Theorem 3.11.
(1) If 𝐴 :ℓ Uacc then ▶𝐴 is accessible.
(2) If 𝐴 :𝛿 U then ⟨𝛿 | 𝐴⟩ is accessible.

In particular, 2𝐴 : Uacc for all 𝐴 and ▶ induces a map ▶Uacc → Uacc.

Proof. We begin with the first statement. Suppose that 𝐴 :ℓ Uacc. We note that ▶ is a right

adjoint modality and employ the transposition equivalence proven by Gratzer [16, Lemma 6.4.2]:

acc→ ▶𝐴 ≃ ▶(◀acc→ 𝐴)
4
There is an unfortunate terminological clash here; Rijke et al. [34] use the term modality to refer to lex idempotent monads

while Gratzer et al. [18] use it to refer to ⟨𝜇 | −⟩. For us, modality is meant in the latter sense.
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By Theorem 3.7, ◀acc = acc and we therefore continue:

▶(◀acc→ 𝐴) ≃ ▶(acc→ 𝐴) ≃ ▶𝐴

The last step follows from Corollary 2.5 applied to modℓ (𝜋2𝐴) : ▶(𝐴 ≃ (acc→ 𝐴)). This proves
that ▶𝐴 ≃ (acc→ ▶𝐴) and computation shows that the induced equivalence is the constant map.

The second statement is similar, since ⟨𝛿 | −⟩ is right adjoint to 𝜖0 and we have already shown

that ⟨𝜖0 | acc⟩ = Unit (Corollary 3.8):

acc→ ⟨𝛿 | 𝐴⟩ ≃ ⟨𝛿 | ⟨𝜖0 | acc⟩ → 𝐴⟩ ≃ ⟨𝛿 | 𝐴⟩

Computation shows that the inverse to this chain of equivalences is the constant map. □

Corollary 3.12. Both Nat and Bool are accessible and if 𝐴, 𝐵 : Uacc then 𝐴 + 𝐵 is also accessible.

Proof. As 𝛿 is a left adjoint, ⟨𝛿 | Nat⟩ = Nat and ⟨𝛿 | Bool⟩ = Bool. The second statement

follows by noting that Σ and Bool suffices to define + and Uacc is closed under both. □

This corollary, which is a direct consequence of Lemma 3.2, is essential for ensuring that Uacc
is usable. Absent this result, Uacc would still be closed under a large collection of operations but

contain no non-trivial base types. However, since essentially all connectives and base types do land

in Uacc, we are able to perform all standard operations in mode 𝑡 and stay within Uacc, without ever

mentioning non-accessible types.

For instance, we may construct the type of guarded streams featured in the introduction without

explicitly threading acc through the construction. We simply replace U with Uacc to ensure that we

are applying Löb induction to an accessible type:

GStr = loeb(𝜆𝑆.Nat × ▶𝑆)

Here we have taken advantage of the fact thatUacc is closed under bothNat and×. The propositional
unfolding associated with Löb induction also ensures that GStr = Nat × ▶GStr.

In fact, we can codify this procedure more generally:

Theorem 3.13 (Completeness). Any programwritten inMLTTwith ▶,2, and loebwith propositional
unfolding can be encoded in Gatsby.

Proof. We must construct a model of such a type theory in Gatsby. We do so by interpret-

ing types as accessible types—thereby interpreting Löb induction. We then use Proposition 3.10,

Theorem 3.11, and Corollary 3.12 to interpret all connectives. □

3.3.1 Inaccessible types. Care is required whenworkingwith types such as propositional truncation
∥−∥ which do not preserve accessibility. For instance, acc itself is not accessible in all models

(if it were, then acc would simply be true) but acc is the propositional truncation of the type∑
𝑛:Nat ▶

𝑛Void which is always accessible. Consequently, ∥−∥ does not induce a map Uacc → Uacc.

If we wish to use ∥𝐴∥ in a guarded program, it would be necessary to explicitly replace it by the

accessible type ∥𝐴∥′ = acc→ ∥𝐴∥. This cannot cause issues within the program itself: mapping out

of ∥𝐴∥′ to an accessible type is the same as mapping out of ∥𝐴∥. However, after the construction
is completed and one wishes to inspect the results as an ordinary type, it is necessary to record

that the replacement has taken place. In such situations we must use Corollary 3.8 ourselves. After

obtaining a closed term 𝑀 : acc → ∥𝐴∥, we must choose some natural number 𝑛 and consider

mod𝜖0◦𝑒𝑛 (𝑀) ⊛ ★ : ⟨𝜖0 ◦ 𝑒𝑛 | ∥𝐴∥⟩. Choosing different numbers 𝑛 enables us to extract different

finite approximations of ∥𝐴∥. This may be important if e.g.,𝐴 = ▶𝑘𝐴0 so that the first stages of ∥𝐴∥
are trivial. This corresponds to the idea of type-based fuel introduced by Gratzer and Birkedal [17].
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Thus, it is possible, if more complex, to apply guarded reasoning handle types which are not

accessible. Fortunately, the standard operations of type theory and guarded recursion (2, ▶) do
land in Uacc so this occurs infrequently.

3.4 First examples in Gatsby
We begin by working through some elementary constructions in guarded type theory in order to

give a flavor of working within the system. We begin by filling in the details of Example 1.1:

GStr : Uacc → Uacc
GStr𝐴 = loeb(𝜆𝑆. 𝐴 × ▶𝑆)

GStrEq : (𝐴 : Uacc) → GStr𝐴 = 𝐴 × ▶GStr𝐴
GStrEq𝐴 = unfold(𝜆𝑆. 𝐴 × ▶𝑆)
We demonstrate how one might carry out small but complete guarded program which first (1)

calculates an infinite stream of Fibonacci numbers and then (2) extracts the third number. We begin

by defining the stream of numbers using Löb induction:

fibs : GStrNat
fibs = go 0 1

where
go : Nat→ Nat→ GStr
go = loeb(𝜆𝑓 . 𝜆𝑚,𝑛. (GStrEqNat)−1

∗ (𝑚,modℓ (𝑓 𝑛 (𝑚 + 𝑛))))
Notice that in this example, (GStrEq𝐴)−1

∗ —coercing backwards along the equation GStr𝐴 =

𝐴 × ▶GStr𝐴—plays the role of cons. We record this: cons𝐴 = (GStrEq𝐴)−1

∗ : 𝐴 × ▶GStr𝐴 →
GStr𝐴. Deconstructing a stream uses the inverse coercion i.e., hd = 𝜋1 ◦ (GStrEq𝐴)∗ and tl =
𝜋2 ◦ (GStrEq𝐴)∗ : GStr𝐴→ ▶GStr𝐴.
To extract the third element, we must bring 2 into play. In particular, in order to obtain an

element of type Nat rather than ▶2Nat, we will use the equivalence 2▶𝐴 ≃ 2𝐴. We note that both

GStrNat and fibs are closed terms and we may form the following:

fibs′ : 2(GStrNat)
fibs′ = mod𝛿◦𝛾 (fibs)
We then use now : 2▶𝐴 ≃ 2𝐴 and extract : 2𝐴→ 𝐴 to pull out the third element:

third : Nat
third = let mod𝛿◦𝛾 (𝑠) ← fibs′ in extract(now(now(go 𝑠)))

where
go : (𝛿 ◦ 𝛾 | GStrNat) → 2▶▶Nat
go 𝑠 = mod𝛿◦𝛾 (next(next hd) ⊛ (next tl ⊛ tl 𝑠))

We note that under the assumption of canonicity for Gatsby (Section 8.1), we can compute third
and obtain a closed natural number. Thus, in particular, purely through careful use of modalities, we

are able to derive Löb induction and use it to compute a closed result. Even without the assumption

of canonicity, we are able to use unfold to prove that third = 1.

To cultivate intuition, let us consider a pair of counterfactuals. Suppose that we hadworkedwithin

a theory without Rule 1, what would have changed in the above example? The main difference

would be in the behavior of Nat: without Rule 1, Nat would not land in Uacc. We could replace it

with acc→ Nat and the rest of the calculation would proceed along the same lines. However, the

final result would have type acc→ Nat. Without Theorem 3.7, there would be no way to discharge

that hypothesis. Next, suppose instead that we considered a type theory without univalence but

with a good theory of propositions, such as extensional type theory. In this case, we would not be
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able to show Uacc to be accessible. More ad-hoc replacements are possible, for instance acc→ U,
but these alternatives will (1) not form a cumulative hierarchy and (2) not admit an embedding into

U without additional axioms. This hinders the construction of elements of GStr.

4 Case study with coinductive types
In this section, we show how Gatsby can capitalize on guarded recursion to prove statements

purely about types in mode 𝑠 . That is, users of Gatsby can state theorems purely within in ordinary

cubical type theory and prove them with arguments which use guarded recursion. Concretely, we

show how Löb induction in mode 𝑡 can be used to obtain coinductive types in mode 𝑠 .

For simplicity, we will limit our view to the type of coinductive streams, but this proof-technique

scales to produce terminal coalgebras (coinductive types) for a wide array of functors. For the

remainder of this section, let us (1) work within mode 𝑠 and (2) fix 𝐴 : U. Our goal shall be to
construct the type of coinductive streams of elements of 𝐴.

We begin by crystallizing the requirements for such a type.

Definition 4.1. An 𝐴-stream coalgebra is a pair of 𝑋 : U along with 𝜃𝑋 : 𝑋 → 𝐴 × 𝑋 . A homomor-

phism of stream algebras (𝑋, 𝜃𝑋 ) → (𝑌, 𝜃𝑌 ) is a function 𝑓 : 𝑋 → 𝑌 such that 𝐴 × 𝑓 ◦ 𝜃𝑋 = 𝜃𝑌 ◦ 𝑓 .

Definition 4.2. The type of coinductive streams of elements of 𝐴 is coalgebra (𝑆, 𝜃𝑆 ) such that

(𝑆, 𝜃𝑆 ) is the terminal object in the category of 𝐴-stream coalgebras.

We note that, roughly, 𝜃𝑆 encodes the destructor of the stream while the property that it is the

terminal coalgebra encodes coinduction. We can already have enough machinery in place to give

the definition of the (putative) type of streams using the already defined type of guarded streams:

Str : U
Str = ⟨𝛾 | GStr ⟨𝛿 | 𝐴⟩⟩

𝜃 : Str→ 𝐴 × Str
𝜃 𝑠 = let mod𝛾 (𝑠) ← 𝑠 in (mod𝛾 (hd 𝑠), now(mod𝛾 (tl 𝑠)))
It therefore remains only to show that (Str, 𝜃 ) is the terminal stream coalgebra. To this end,

let us fix an arbitrary coalgebra (𝑋, 𝜃𝑋 ) such that it suffices to show that there is a unique

homomorphism (𝑋, 𝜃𝑋 ) → (Str, 𝜃 ). Let us begin by observing that to produce a map from

𝑋 → Str = ⟨𝛾 | GStr ⟨𝛿 | 𝐴⟩⟩, it suffices to construct an element of ⟨𝛾 | ⟨𝛿 | 𝑋 ⟩ → GStr⟩. Fur-
thermore, such an element 𝑓 :𝛾 ⟨𝛿 | 𝑋 ⟩ → GStr transposes to a coalgebra homomorphism if and

only if it satisfies the following equation:

⟨𝛾 | (⟨𝛿 | 𝐴⟩ × (next ◦ 𝑓 )) ◦ distr ◦ (mod𝛿 (𝜃𝑋 ) ⊛ −) = 𝑓 ⟩ (2)

Lemma 4.3. There is a unique element of ⟨𝛾 | ⟨𝛿 | 𝑋 ⟩ → GStr⟩ satisfying Eq. (2).

Proof. For this proof, let us work in mode 𝑡 once more. We wish to show that there is a unique

element of the following type:∑
𝑓 :⟨𝛿 |𝑋 ⟩→GStr 𝑓 = 𝜆𝑥 . let mod𝛿 ((𝑎, 𝑥)) ← mod𝛿 (𝜃𝑋 ) ⊛ 𝑥 in (𝑎, next(𝑓 𝑥))

Inspecting this equation, however, we notice that this actually precisely a guarded definition of

𝑓 : an operator 𝐹 : ▶(⟨𝛿 | 𝑋 ⟩ → GStr) → ⟨𝛿 | 𝑋 ⟩ → GStr such that 𝑓 = 𝐹 (next(𝑓 )). Moreover,

since GStr is accessible, there is a unique solution to this problem and this is precisely our required

unique homomorphism. □

Stitching this result together, we conclude the following:

Theorem 4.4. (Str, 𝜃 ) is the type of coinductive streams of elements of 𝐴.
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While this is certainly a toy example, we emphasize that we were able to use accessibility and Löb

induction to prove a theorem within mode 𝑠 without any of these details leaking. In other words, a

user of e.g., cubical Agda [43] extended to support Gatsby could use Theorem 4.4 without having

to know or understand the details of Löb induction. Moreover, even though GStr was defined using
Löb induction on Uacc and therefore involved various constructions on this subuniverse (some

involving univalence!) none of those precluded seamlessly using GStr to define a type in mode 𝑠 .

5 Case study with logical relations
In this section, we present a case-study of Gatsby by using it to construct a (synthetically) step-

indexed logical relation for an ML-like language 𝜆ref,∀ with general references (pointers to complex

structures) and parametric polymorphism. We then use it to deduce semantic type-safety. This

𝜆ref,∀ language and the logical relation is based on the account given by Birkedal et al. [7, Section

3] but our more advanced type theory allows us to improve upon their results in two respects:

(1) We do not need to worry about local contractibility of domain equations because we have

access to a universe and solve the domain equation as an ordinary fixed point [6].

(2) We have no need to carry out a challenging external argument after constructing the

logical relation because Gatsby is multimodal. Accordingly, we work internally to Gatsby
throughout the entire proof.

We have chosen this example to “complete the story” started by Birkedal et al. [7], but quite

a few other applications of guarded type theory to denotational semantics and logical relations

exist [10, 11, 27, 28, 30, 33, 39, 40, 42]. Many of these applications can also be simplified in light of

Gatsby’s richer modal apparatus.

For reasons of space, we have included only selected details of this case study. In particular,

where there is little difference from working in Gatsby versus the framework of Birkedal et al. [7],

we have avoided duplicating their work.

Convention 5.1. In order to construct a logical relation for parametric polymorphism, we require

an impredicative universe of propositions. Accordingly, in this section we assume propositional

resizing i.e., that the maps hProp𝑖 → hProp𝑖+1 are equivalences.

5.1 Static and dynamic semantics of 𝜆ref,∀
We begin by defining 𝜆ref,∀ , the language under consideration. We specify this language in mode

𝑠 , i.e., with no guarded recursion whatever. As we shall argue in Section 6, this ensures that our

definition of 𝜆ref,∀ adequately represents the standard definition that one might formalize in Coq

or similar.

We define the syntax of (untyped) terms and types as inductive types. We then define term and

type contexts (TCxt, Cxt) and heaps (Heap) on top of these. The typing judgments as well as the

operational semantics are realized by inductively-defined propositions:

isCx : TCxt→ Cxt→ hProp
isTy : TCxt→ Ty→ hProp
hasTy : (Ξ : TCxt) → Cxtwf Ξ→ Tm→ Tywf Ξ→ hProp
isVal : Tm→ hProp
(↦→) : Tm × Heap→ Tm × Heap→ hProp

We sketch all of these definitions in Fig. 2, using informal BNF grammars to specify the syntax

of terms and types and inference rules for the judgments. We leave implicit many details as they

are orthogonal to our case study and refer the reader to Birkedal et al. [7]. We have also assumed

the existence of various standard operations on lists, such as snoc, lookup, etc. We do note that we
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𝜏 : Ty ::= tvar(𝑖) | Ref(𝜏) | forall(𝜏) | 𝜏 × 𝜏 | . . .
𝑒 : Tm ::= var(𝑖) | !𝑒 | new(𝑒) | set(𝑒, 𝑒) | Λ𝑒 | 𝑒 [𝜏] | . . .

TCxt = Nat Cxt = List Ty Cxtwf Ξ =
∑

Γ:Cxt isCxtΞ Γ Tywf Ξ =
∑

𝜏 :Ty isTyΞ𝜏

Val =
∑

𝑒 :Tm isVal 𝑒 Heap = List Val

isTm(Ξ, Γ, 𝑒, 𝜏)
isTm(Ξ, Γ, new(𝑒), Ref(𝜏))

isTm(Ξ, Γ, 𝑒, Ref(𝜏))
isTm(Ξ, Γ, !𝑒, 𝜏)

isTm(Ξ, Γ, 𝑒1, Ref(𝜏)) isTm(Ξ, Γ, 𝑒2, 𝜏)
isTm(Ξ, Γ, set(𝑒1, 𝑒2), 𝜏)

(new(𝑣), ℎ) ↦→ (loc(lenℎ), snoc(ℎ, 𝑣))
(!loc(ℓ), ℎ) ↦→ (lookup(ℎ, ℓ), ℎ) (ℓ < lenℎ)

(set(loc(ℓ), 𝑣), ℎ) ↦→ (𝑣, replace(ℎ, ℓ, 𝑣)) (ℓ < lenℎ)

Fig. 2. Selected rules of 𝜆ref,∀

formalize heaps as a list of values and that allocation is deterministic. Moreover, primitive locations

loc(ℓ) are never well-typed; they arise only in intermediate stages of execution for programs and

are never written by a user.

We will write ↦→∗ for the reflexive transitive closure of ↦→. As in Birkedal et al. [7], we have

opted to present the operational semantics with deterministic allocation as this simplifies a number

of technical details. We shall write Good : Tm × Heap→ hProp for the following:

canStep(𝑒, ℎ) = ∃𝑒′, ℎ′ . (𝑒, ℎ) ↦→ (𝑒′, ℎ′)
Good 𝑒 ℎ = ∀(𝑒′, ℎ′). ((𝑒, ℎ) ↦→∗ (𝑒′, ℎ′)) → isVal 𝑒′ ∨ canStep(𝑒′, ℎ′)
In other words, a configuration consisting of an expression and a heap is good if one can execute

the pair for an arbitrary number of steps and the resulting expression and heap has either resulted

in a value or can be run further. Our goal for the remainder of this section is to prove the following

version of type-safety.

Theorem 5.2 (Safety of 𝜆ref,∀). If isTm 0 nil 𝑒 𝜏 then Good 𝑒 nil

We note that the presence of loc(ℓ) makes this theorem more difficult to prove. We could extend

the type system to account for the occurrences of loc(ℓ) that arise in intermediate stages, but we

will explore a more robust proof methodology.

5.2 A unary logical relation interpretation
In order to prove Theorem 5.2, we will construct a model of 𝜆ref,∀ which interprets 𝜆ref,∀ types as
elements of a construction in mode 𝑡 . Morally, the construction is a Kripke logical relation, but the

presence of higher-order references necessitates a rich and highly-recursive type of worlds. It is for

this reason that we must pass to mode 𝑡 , where Löb induction is available; we shall use it to define

the semantic universe of types alongside the worlds indexing them.

P𝐴 = 𝐴→ hPropacc
W : Uacc (⊑) : W→W→ hPropacc
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(W, ⊑) = loeb(𝜆𝐴, ≤ . (X(𝐴, ≤),R(𝐴, ≤)))
where
X (𝐴, ≤) = Nat ⇀fin ((▶𝐴, ≤†) →mon (P⟨𝛿 | Val⟩, ⊆))
R (𝐴, ≤)𝑤1𝑤2 = ∀ℓ .𝑤1 (ℓ)↓ → 𝑤1ℓ = 𝑤2ℓ

T : Uacc
T = W→mon P⟨𝛿 | Val⟩

Notation 5.3. We follow Gratzer [16] in writing foo† to lift a function or relation foo to apply to a

sequence of modal arguments similar to idiom brackets for applicative functors [26].

A few words of discussion are in order. First,→mon refers to the subtype of monotone maps

where P⟨𝛿 | Val⟩ is ordered by subset inclusion. To use W in the domain of→mon, we must define

W simultaneously with its ordering relation ⊑. For this reason, we use Löb induction to compute

an element of

∑
𝐴:Uacc

𝐴→ 𝐴→ hPropacc rather than merely Uacc. Second,⇀fin refers to finitely-

supported partial maps. We note that this procedure is simpler than its cousin in Birkedal et al. [7]:

we have access to a universe and therefore have no need to use an external construction.

The remaining details of the unary logical relation proceed along similar lines to Birkedal et al.

[7], though we are able to simplify several definitions by continuing to exploit the internal language.

We define a path WEq witnessing the unfolding of W to its definition using unfold. Next, we note
that since ⟨𝛿 | −⟩ is a left adjoint, we have a crisp induction principle available and we use this to

define a map J−K− : ⟨𝛿 | Tywf Ξ⟩ →
(∑

𝑛≤Ξ T
)
→ T for each Ξ : ⟨𝛿 | TCxt⟩ = ⟨𝛿 | Nat⟩ = Nat. This

map sends a type with Ξ free variables to a map from Ξ semantic types to a single semantic type.

The details of J−K− are not vital, but the following auxiliary definitions will be important later:

sat𝑤 ℎ =

dom(ℎ) ⊆ dom(𝑤) ∧ ∀ℓ ∈ dom(𝑤).WEq∗𝑤 ℓ 𝑤 (lookup† ℎ ℓ)

comp : T→W→ P⟨𝛿 | Exp⟩
comp𝜙 𝑤 𝑒 =

(isVal† 𝑒 ∧ 𝜙 𝑤 𝑒)
∨ ∀ℎ : ⟨𝛿 | Heap⟩. sat𝑤 ℎ →
∃𝑒′ℎ′𝑤 ′ . (𝑒, ℎ) ↦→† (𝑒′, ℎ′) ∧𝑤 ⊑ 𝑤 ′ ∧ sat𝑤 ′ ℎ′ ∧ ▶comp𝜙 𝑒′𝑤 ′

Informally, comp lifts 𝜙 to a predicate on expressions which evaluates the expression and, if it

ever reaches a value, insists the result satisfies 𝜙 .5 The following is proven as in Birkedal et al. [7].

Lemma 5.4 (Fundamental lemma). If isTm† 0 nil 𝑒 𝜏 holds inmode 𝑡 then so does comp J𝜏K (WEq∗∅) 𝑒 .

5.3 Adequacy
At this point, we substantially deviate from Birkedal et al. [7]. It remains to argue that Lemma 5.4

implies Theorem 5.2. In op. cit., the authors were forced to unfold various definitions externally and

argue that Lemma 5.4 externally implied the desired type-safety result. Our richer modal apparatus

allows us to proceed internally. First, we note that Lemma 5.4 can be placed under ⟨𝛾 | −⟩ (it is
closed). Fixing 𝑒 and 𝜏 in mode 𝑠 , general properties of modalities yield the following implication:

⟨𝛾 | isTm† 0 nilmod𝛿 (𝑒)mod𝛿 (𝜏)⟩
→ ⟨𝛾 | comp Jmod𝛿 (𝜏)K (WEq∗∅)mod𝛿 (𝑒)⟩

5
We note that we did not need to define comp using Löb induction, though we certainly could have. Its definition is positive,

however, and so Tarski’s fixed-point theorem applies. The unicity of guarded fixed points, morover, ensures both approaches

agree.
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Inspecting the definitions, we note that the domain of this function is equal to isTm 0 nil 𝑒 𝜏 .
It therefore remains only to show that the codomain implies Good 𝑒 nil. In fact, in our case we

do not need to worry about the actual properties of the value 𝑒 runs to, so we will consider

⟨𝛾 | comp (𝜆_.Unit) (WEq∗∅)mod𝛿 (𝑒)⟩ instead.
We prove the following helper lemma in mode 𝑡 .

Lemma 5.5. If comp (𝜆_.Unit)𝑤 𝑒 , fix an ℎ : ⟨𝛿 | Heap⟩ such that sat𝑤 ℎ and, moreover, if
(𝑒, ℎ) (↦→𝑛)† (𝑒′, ℎ′) then ▶𝑛 (isVal† 𝑒′ ∨ canStep† (𝑒′, ℎ′)).

Proof. We proceed by induction on 𝑛—which we can due to crisp induction. The base case

where (𝑒, ℎ) = (𝑒′, ℎ′) is trivial. For the inductive step, we may apply the induction hypothesis to

reduce to the case that (𝑒, ℎ) ↦→ (𝑒′, ℎ′). Noting that 𝑒 must not be a value, we deduce that the

following holds:

∃𝑒1ℎ1𝑤
′ . (𝑒, ℎ) ↦→† (𝑒1, ℎ1) ∧𝑤 ⊑ 𝑤 ′ ∧ sat𝑤 ′ ℎ1 ∧ ▶comp𝜙 𝑒1𝑤

′

As our operational semantics are deterministic, we replace 𝑒1, ℎ1 with 𝑒
′, ℎ′ and simplify the above:

∃𝑤 ′ ⊒ 𝑤. sat𝑤 ′ ℎ′ ∧ ▶comp𝜙 𝑒′𝑤 ′

The goal then follows by unfolding the definition of comp. □

We may now return to mode 𝑠 to complete the theorem.

Theorem 5.2 (Safety of 𝜆ref,∀). If isTm 0 nil 𝑒 𝜏 then Good 𝑒 nil

Proof. Fix 𝑒′, ℎ′, 𝑛 such that (𝑒, ℎ) ↦→𝑛 (𝑒′, ℎ′).Wemust show that either isVal 𝑒′ or canStep(𝑒′, ℎ′).
By Lemma 5.4, we know that ⟨𝛾 | comp (𝜆_.Unit)𝑤 mod𝛿 (𝑒)⟩ holds. Using Lemma 5.5, we therefore

obtain the following:

⟨𝛾 | ▶𝑛 (isVal† 𝑒′ ∨ canStep† (𝑒′, ℎ′))⟩

Using the equation 𝛾 ◦ ℓ = 𝛾 , we may replace this:

⟨𝛾 | (isVal† 𝑒′ ∨ canStep† (𝑒′, ℎ′))⟩

⟨𝛾 | −⟩ does not commute with disjunctions. However, ⟨𝛿 | −⟩ does commute with disjunctions

as it is a left adjoint. We then replace the type under ⟨𝛾 | −⟩ with ⟨𝛿 | isVal 𝑒′ ∨ canStep(𝑒′, ℎ′)⟩.
We conclude using the equation 𝛾 ◦ 𝛿 = id. □

We note that such a proof is impossible without ⟨𝛾 | −⟩ or something equivalent to it; without

such a feature we would have no means to remove the ▶𝑛 appearing in Lemma 5.5.

6 Semantics of Gatsby
Thus far we have shown that Gatsby is usable but we not yet shown it to be sound. In this section,

we prove this, among other results, by developing the model theory of Gatsby. This is seemingly

daunting: constructing models of cubical type theory is already a challenging task. Fortunately

Gatsby is built atop cubical MTT, which already has a well-developed denotational semantics [1].

At a high level, we wish to interpret mode 𝑡 as PSh (𝜔) and 𝑠 as Set, but this will not serve if we
wish to interpret univalence. Instead, we must replace Set with the category of cubical sets cSet.
Beyond this change, we are able to interpret the modalities as right adjoints between these two

categories without change. We thereby obtain a pseudofunctor 𝐹 :MGatsby → Cat which sends
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𝐹 (𝑠) = cSet and 𝐹 (𝑡) = PShcSet (𝜔) (cubical presheaves on 𝜔). We show the definitions of 𝐹 on the

generating 1-cells below:

𝐹 (ℓ)𝑋 𝑛 = if 𝑛 = 0 then 1 else 𝑋 (𝑛 − 1) 𝐹 (𝑒)𝑋 = 𝑋 (𝑛 + 1) 𝐹 (𝛾)𝑋 = lim
𝜔

𝑋

𝐹 (𝜖0)𝑋 = 𝑋 (0) 𝐹 (𝛿) 𝑆 𝑛 = 𝑆 𝐹 (⊤) 𝑆 = 1

In general, cubical presheaves PShcSet (C) (presheaves valued in cubical sets) support a model

of cubical type theory [22]. The following result of Aagaard et al. [1] shows that these models of

cubical type theory can be combined into a model of cubical MTT:

Proposition 6.1 (Theorem 4.15 [1]). Fix a strict 2-functor 𝑓 :M Cat and for each 𝜇 : 𝑛 𝑚,
write 𝐹 ∗ (𝜇) ⊣ 𝐹∗ (𝜇) for the adjunction between PShcSet (𝑓 (𝑛)) and PShcSet (𝑓 (𝑚)) induced by pre-
composition and right Kan extension. There is a model of cubicalMTT with mode theoryM which
interprets ⟨𝜇 | −⟩ as 𝐹∗ (𝜇) and where all monomorphisms are cofibrations.6

Ideally, we would instantiate this theorem by takingM =MGatsby and define 𝑓 in such a way

that 𝐹 is induced by right Kan extending 𝑓 . Unfortunately, we cannot simply take this theorem

off-the-shelf: not every functor described by 𝐹 can be interpreted using right Kan extension. In

particular, 𝜖0 and ⊤ do not arise in this way. Fortunately, 𝐹 (𝜖0) and 𝐹 (⊤) “almost” arise from right

Kan extension: their left adjoints preserve connected limits which suffices. We can therefore replay

the proof of Proposition 6.1 from Aagaard et al. [1] nearly verbatim to obtain the following:

Lemma 6.2. There exists a model of cubicalMTT with mode theoryMGatsby which interprets ⟨𝜇 | −⟩
using 𝐹 (𝜇) and where all monomorphisms are cofibrations.

Proof Sketch. Unlike the rest of the paper, in this proof we will presuppose familiarity with

the contents of Aagaard et al. [1]. We shall explain only the necessary adjustments to adapt

Proposition 6.1 to prove Theorem 6.3 and refer the reader to Aagaard et al. [1] for all other details.

To begin with, we explicitly construct the strict 2-functor 𝐹 :MGatsby
coop → Cat given by taking

left adjoints of 𝐹 :

𝐹 (ℓ)𝑋 𝑛 = 𝑋 (𝑛 + 1) 𝐹 (𝑒)𝑋 𝑛 = 𝑋 (pred(𝑛)) 𝐹 (𝛾) 𝑆 𝑛 = 𝑆 𝐹 (𝛿)𝑋 = 𝑋 (0)

𝐹 (𝜖0) 𝑆 = if 𝑛 = 0 then 𝑆 else 0 𝐹 (⊤) 𝑆 = 0

We next note that in our model, we shall force all monomorphisms to be cofibrations and,

accordingly, the cofibration classifier in both PShcSet (𝜔) and cSet is given by the ordinary subobject

classifier. We further note that the interval object in both cases is given by the representable

presheaves y( [1]) where [1] is the generating object of the cube category □ where cSet = PSh (□).
The heart of the model is to specify how these cofibrations and the interval object interact with

modalities. Concretely, for each modality 𝜇 and semantic context Γ we must construct the following:

(1) a coherent choice of morphisms (a) 𝐹 (𝜇) (I) → I and (b) 𝐹 (𝜇) (Ω) → Ω which respect

(a) De Morgan algebra structure and (b) bounded distributive lattice structure as well as

quantification of I.
(2) Coherent isomorphisms Γ.{𝜇}.I � Γ.I.{𝜇}
(3) If 𝜙 : Γ → Ω, coherent isomorphisms Γ.{𝜇}. ¯𝜙 � Γ.𝜙 .{𝜇} where ¯𝜙 is induced by (1.b).

The argument given by Aagaard et al. [1] shows that for any modality 𝜇 interpreted by right

Kan extension, (1.a), (2) may be realized by the identity. For (1.b), it suffices to note that if 𝐹 (𝜇) is
given by right Kan extension, its left adjoint 𝐹 (𝜇) preserves monomorphisms and therefore (1.b) is

6
This last point is a technical condition necessary only for Corollary 6.6.
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canonically defined such that (3) is realized by the identity—this is the universal property of the

subobject classifier Ω.
This argument does not generally apply for modalities defined by precomposition, but it does

apply to 𝐹 (𝜖0) and 𝐹 (⊤). For instance, JI𝑡 K in PShcSet (𝜔) is defined by JI𝑡 K𝑛 = JI𝑠K. Accordingly,
for 𝜇 = 𝜖0 the second isomorphism above is equivalent to requiring an isomorphism between the

following presheaves:

JΓ.{𝜖0}.I𝑡 K𝑛 =

{
JΓ.{𝜇}K × JI𝑠K 𝑛 = 0

0

JΓ.I𝑠 .{𝜖0}K𝑛 =

{
JΓ.{𝜇}K × JI𝑠K 𝑛 = 0

0

In the above, we have capitalized on the fact that 0 × 𝑋 = 0 in the category of (cubical) sets.

Accordingly, we may define (1–3) for all 𝜇 in exactly the same manner as Aagaard et al. [1]. That

is (1.a), (2), and (3) is realized by the identity and (1.b) is a uniquely defined morphism for every

modality 𝜇, regardless of whether or not is defined by right Kan extension and so all necessary

coherences are automatically satisfied.

Aside from the above details, no other changes are necessary for our model compared with

Aagaard et al. [1]. In particular, no changes to the interpretation of terms or types is necessary. □

Theorem 6.3. 𝐹 supports a model of Gatsby.

Proof. Lemma 6.2 almost suffices, but we must interpret Rule 1. However, since ⟨⊤ | −⟩ is
interpreted using _ ↦→ 1, we must have J1.{⊤}K = 0. We note that cSet is a topos and so 0 is a strict

initial object. It therefore follows that any object 𝑋 for which there is a map 𝑋 0 must itself be

the initial object. The interpretation of Rule 1 is then immediate by the universal property of 0. □

Remark 6.4. The same argument scales to PShcSet (𝛼) for an arbitrary limit ordinal 𝛼 .

Corollary 6.5. Gatsby is consistent.

Corollary 6.6. In the model supported by 𝐹 , the interpretation acc is true.

Remark 6.7. Ensuring that Corollary 6.6 holds requires some care. In particular, we take advantage

of the flexibility afforded by Aagaard et al. [1] in the construction of the model in PShcSet (𝜔). Unlike
other other models of guarded cubical type theory [4, 21], we are able to choose the cofibrations
of our model to be arbitrary monomorphisms. This change is necessary in order to validate acc,
whose intepretation is not globally true in the model provided by e.g., Kristensen et al. [21].

Beyond merely ensuring consistency, interpreting mode 𝑠 as into the standard model of cubical

type theory, ensures a degree of adequacy for constructions carried out in Gatsby. In particular,

Theorem 6.3 shows that any construction in mode 𝑠 induces a construction element in a model

already accepted by cubical type theorists. Consequently, there is no need to care about e.g. the

topos of trees or modalities when evaluating the content of Theorem 5.2.

More than this, Corollary 6.6 can be generalized to show that any result which holds for so-called

homotopy sets in mode 𝑡 will hold for the corresponding objects in PSh (𝜔). This is in contrast to

the models of guarded type theory previously considered [4, 21] where many types behaved in

non-standard and unintuitive ways. As this does not impact e.g., Corollary 6.5 or other results in

this paper, we defer a proper comparison between these models to future work.
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7 Related work
While many variations on guarded type theory have been proposed [3, 4, 7, 11, 13, 29], these failed to

meet at least one of the four goals raised in Thesis 1. Only two prior type theories offer a reasonably

complete solution: stratified guarded type theory [17] and clocked cubical type theory [21]. We

discussed both in Section 1.3 and we now sharpen our prior comparison.

Stratified guarded type theory. Recall from Section 1.3 that stratified guarded type theory is

actually a pair of type theories: one in which Löb computes and one in which it does not. In the type

theory where Löb induction computes, Gratzer and Birkedal [17] introduce a notion of guarded

canonicity where canonical forms are judged in a special context 0[ℓ𝑛]. All terms trivialize when

0[ℓ𝑛] is placed under {ℓ𝑛} and so the canonicity result enables one to extract a finite approximation

to an infinite canonical form. In Gatsby, 0[ℓ𝑛] can be defined as 1 .{𝜖0 ◦ 𝑒𝑛}. Guarded canonicity

becomes a special case of ordinary canonicity.

For example, if we assume acc to prove𝑀 : 𝐴, we may place𝑀 under ⟨𝜖0 ◦ 𝑒𝑛 | −⟩ to discharge

acc and obtain an element of ⟨𝜖0 ◦ 𝑒𝑛 | 𝐴⟩. Just as in stratified guarded type theory, we are able to

extract information about 𝐴 from this term but we are only able to descend “beneath 𝑛 iterations of

▶”. In this way, Gatsby takes the idea of guarded canonicity in stratified guarded type theory and

recasts it as a modal discipline. The result is an internalization of guarded canonicity as normal

canonicity and, moreover, Gatsby does not rule out normalization in the process.

We have also isolated the universe of accessible types where there is a canonical and optimal

choice of fuel and used this to avoid requiring the user to choose a fuel supply each time they wish

to calculate a result. Thus, by enriching type theory with modalities and Rule 1, we are able to

essentially recover stratified guarded type theory without splitting our theory into two.

Clocked cubical type theory. As described in Section 1.3, clocked cubical type theory (CloTT□) is an
alternative approach to guarded recursion built around indexing ▶ by a clock. In this way, CloTT□
allows Löb induction to compute only when the clock indexing the relevant ▶ modality has been

bound. This essentially limits computation to occurring at the top-level and thereby conjecturally

preserves canonicity and normalization. A more substantial difference between CloTT□ and Gatsby
is in the approach they take to Löb induction. In CloTT□—and all other proposed guarded type

theories—Löb induction is a primitive while in Gatsby it is derived.

At a high-level, Gatsby provides a richer set of modalities and a simpler semantics, but does

not support multi-clock guarded recursion. This means that Gatsby, unlike CloTT□, can internally

express notions such as “constant types” but cannot directly encode a coinductive stream of non-

constant types. Despite these differences, both theories conjecturally satisfy the goals of Thesis 1

and so both provide adequate foundations for guarded recursion.

Interestingly, just as our approach to Löb induction necessitates consideration of accessible types,
the use of clocks in CloTT□ requires users to frequently restrict to clock-irrelevant types. Roughly,
these are types which are “clock-null”. However, accessible types form a better-behaved class than

clock-irrelevant types; accessible types form an open reflective subuniverse [34]. Consequently, we

are not only able to show important type operations respect accessibility but also prove that the

universe of accessible types is accessible. We are even able to replace a non-accessible type by a

universal accessible counterpart. This machinery is not available for clock-irrelevant types; the

sort of clocks is not presented as a type but, more fundamentally, it is not a homotopy proposition.

Consequently, for instance, the question of whether or not a suitable clock-irrelevant universe of

clock-irrelevant types within CloTT□ [12] remains open.

Other occurrences of accessibility. Finally, we note that variants of the accessibility proposition acc
have appeared before in the literature. In Palombi and Sterling [32], for instance, it is used to isolate
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the universal property of PSh (𝜔) as a model of guarded recursion. That ∃𝑛. ▶𝑛⊥ holds in PSh (𝜔)
is also an important motivation for transfinite Iris [37] which uses higher-ordinal models of guarded

recursion precisely to avoid having acc = ⊤ hold. Amin Timany has further proposed adding the

axiom acc = ⊤ to Iris, as a more intuitive but equivalent formulation of Löb induction [9].

8 Conclusions and future work
We have presented Gatsby,7 a univalent multimodal type theory based on cubicalMTT. Proceeding
from the observation that Löb induction is an ill-behaved primitive for guarded recursion, Gatsby
uses additional modalities to essentially derive Löb induction.

Concretely, we isolate a homotopy proposition accwhich suffices to imply Löb induction.We then

show that the collection of accessible types 𝐴—those which are acc-null and therefore support Löb

induction—is closed under numerous standard constructions. Gatsby also constrains the modality

⟨⊤ | −⟩ to be equivalent to 𝐴 ↦→ Unit and this ensures that all constant types are accessible. Using

these results, we show that it is possible to encode any program in a standard guarded type theory

within Gatsby. We have further exploited Gatsby’s rich multimodal structure to improve upon

case studies considered already in guarded recursion.

Gatsby constitutes a canonical point in the space of guarded type theories satisfying Thesis 1 as

it captures much of the behavior of the important model of guarded recursion in PSh (𝜔) while still
maintaining a well-behaved metatheory.

We summarize several directions for future work below.

8.1 Normalization and canonicity for Gatsby
At present, we have not proven thatGatsby enjoys either normalization or canonicity.We conjecture

that it in fact enjoys both. We offer preliminary evidence in support of this conclusion.

We note that Gatsby is built on top of cubical MTT and we expect to be able to adapt a proof of

normalization and canonicity for the latter to apply to the former. At present no such proof for

cubicalMTT exists, so we begin by discussing prospects for this result.

CubicalMTT is a fusion of two type theories,MTT and cubical type theory, which both enjoy

canonicity and normalization [15, 38]. Normalization and canonicity are not modular properties,

so this does not necessarily mean that cubical MTT enjoys either. However, given that there are no

meaningful interactions between the two theories in cubical MTT, we expect both to hold.

In order to adapt such a proof of normalization and canonicity for cubicalMTT to apply toGatsby,
we must show that Rule 1 does not introduce stuck terms and does not disrupt the decidability

of normal forms. We expect the techniques used by Sterling and Angiuli [38] to handle the false

cofibration should suffice for our situation. In particular, we can show that the crucial lemma of op.

cit. stating that it is decidable whether a given context proves the false cofibration can be adapted

to Gatsby. That is, it is decidable whether or not there exists a substitution from Γ to 1 .{⊤}; it is
equivalent to whether one of the following two conditions hold (1) Γ proves the false cofibration or

(2) the composite of the modalities in Γ contains ⊤. We give a version of this theorem below which

deals with MTT extended by Rule 1 rather than cubical MTT, as the latter involves essentially
unrelated details of cubical type theory.

Theorem 8.1. A substitution Γ ⊢ 𝑟 : 1 .{⊤} @ 𝑠 exists if and only if the composite of all modalities
within Γ is 𝜈 ◦ ⊤ for some 𝜈 .

Proof Sketch. We do not present the full details of the proof because it requires amore thorough

explanation of the substitution calculus of MTT and Gatsby. We begin by noting that there is a

7
The authors defer to the reader on whether or not Gatsby is great.
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trivial model of Gatsby in which every type is interpreted by Unit. The category of contexts of this

model is a reflective subcategory of the ordinary syntactic category of contexts and substitutions.

The reflection sends Γ to a new context |Γ | obtained by weakening away all variables in Γ so |Γ | is
of the form 1.{𝜇} for some 𝜇.

As 1.{⊤} lies within this subcategory already, a substitution from Γ to 1.{⊤} exists just when
one there is one from |Γ | = 1 .{𝜇} to 1 .{⊤}. An inductive argument shows that this occurs just

when 𝜇 ≥ 𝜈 ◦ ⊤ for some 𝜈 . However, if 𝜇 ≥ 𝜈 ◦ ⊤ then 𝜇 = 𝜈 ◦ ⊤. □

While the above observations give strong support to our conjecture, normalization and canonicity

proofs for any type theory are complex and cubicalMTT and Gatsby are both sophisticated type

theories. We therefore leave the normalization and canonicity of Gatsby to future work. However,

even if one or both of these properties were to fail, we expect that Gatsby could still be a useful

pen-and-paper system: one could formulate putative axioms to include in e.g., cubical Agda [43] as

a statement in mode 𝑠 which can then be argued and proven on paper using guarded recursion (c.f.,

Theorems 4.4 and 5.2).

8.2 Extensions to Gatsby
Aside from extending our knowledge of the metatheory of Gatsby, we hope to study the behavior

of other concepts from univalent foundations within this framework. In particular, it remains to

isolate which higher inductive types (HITs) naturally land within the universe of accessible types.

The work on HITs within the context of CloTT□ [21] suggests that this may hold for a broad

class, though Section 3.3.1 demonstrates that the situation is subtle. That accessible types form a

reflective subuniverse does mean that while this may improve convenience, it is not as vital as the

corresponding question for clock-irrelevance.

We have focused on capturing the behavior of guarded recursion within the topos of trees and,

in particular, indexing over 𝜔 . In the future, we intend to explore whether the idea of isolating

accessible types can be adapted to account for indexing over higher ordinals with the goal of

modeling PShcSet (𝛼) for at least countable 𝛼 .
Finally, we intend to explore the behavior of Gatsby further by implementing it. Both MTT and

cubical type theories have been implemented in proof assistants and, as discussed in Section 8.1, such

implementations should be possible to extend to cubicalMTT and Gatsby. Such an implementation

would provide a better setting to explore what definitional equalities are possible to achieve in

Gatsby, as checking such calculations is subtle and error-prone.
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