'.)

Check for
Updates

Decalf: A Directed, Effectful Cost-Aware Logical Framework

HARRISON GRODIN, Carnegie Mellon University, USA
YUE NIU, Carnegie Mellon University, USA
JONATHAN STERLING, University of Cambridge, UK
ROBERT HARPER, Carnegie Mellon University, USA

We present decalf, a directed, effectful cost-aware logical framework for studying quantitative aspects of
functional programs with effects. Like calf, the language is based on a formal phase distinction between the
extension and the intension of a program, its pure behavior as distinct from its cost measured by an effectful
step-counting primitive. The type theory ensures that the behavior is unaffected by the cost accounting.
Unlike calf, the present language takes account of effects, such as probabilistic choice and mutable state. This
extension requires a reformulation of calf’s approach to cost accounting: rather than rely on a “separable”
notion of cost, here a cost bound is simply another program. To make this formal, we equip every type with an
intrinsic preorder, relaxing the precise cost accounting intrinsic to a program to a looser but nevertheless
informative estimate. For example, the cost bound of a probabilistic program is itself a probabilistic program
that specifies the distribution of costs. This approach serves as a streamlined alternative to the standard
method of isolating a cost recurrence and readily extends to higher-order, effectful programs.

The development proceeds by first introducing the decalf type system, which is based on an intrinsic
ordering among terms that restricts in the extensional phase to extensional equality, but in the intensional
phase reflects an approximation of the cost of a program of interest. This formulation is then applied to a
number of illustrative examples, including pure and effectful sorting algorithms, simple probabilistic programs,
and higher-order functions. Finally, we justify decalf via a model in the topos of augmented simplicial sets.

CCS Concepts: « Theory of computation — Type theory; Logic and verification; Program analysis;
Categorical semantics; » Software and its engineering — Functional languages.

Additional Key Words and Phrases: algorithm analysis, cost models, phase distinction, noninterference,
intensional property, behavioral verification, equational reasoning, modal type theory, mechanized proof,
proof assistants, recurrence relations, amortized analysis, parallel algorithms

ACM Reference Format:

Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper. 2024. Decalf: A Directed, Effectful Cost-
Aware Logical Framework. Proc. ACM Program. Lang. 8, POPL, Article 10 (January 2024), 29 pages. https:
//doi.org/l().l145/3632852

1 INTRODUCTION

The calf language [Niu et al. 2022a] is a full-spectrum dependent type theory that consolidates
the specification and verification of the (extensional) behavior and (intensional) cost of programs.
For example, in calf it is possible to prove that insertion sort and merge sort are extensionally
equal (i.e. have the same input/output behavior), and also that the former uses quadratically many

Authors’ addresses: Harrison Grodin, Carnegie Mellon University, Computer Science Department, 5000 Forbes Ave.,
Pittsburgh, PA, 15213, USA, hgrodin@cs.cmu.edu; Yue Niu, Carnegie Mellon University, Computer Science Department, 5000
Forbes Ave., Pittsburgh, PA, 15213, USA, yuen@andrew.cmu.edu; Jonathan Sterling, University of Cambridge, Department of
Computer Science and Technology, 15 J] Thomson Avenue, Cambridge, CB3 0FD, UK, js2878@cl.cam.ac.uk; Robert Harper,
Carnegie Mellon University, Computer Science Department, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA, rwh@cs.cmu.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/1-ART10

https://doi.org/10.1145/3632852

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-0947-3520
HTTPS://ORCID.ORG/0000-0003-4888-6042
HTTPS://ORCID.ORG/0000-0002-0585-5564
HTTPS://ORCID.ORG/0000-0002-9400-2941
https://doi.org/10.1145/3632852
https://doi.org/10.1145/3632852
https://orcid.org/0000-0002-0947-3520
https://orcid.org/0000-0003-4888-6042
https://orcid.org/0000-0002-0585-5564
https://orcid.org/0000-0002-9400-2941
https://doi.org/10.1145/3632852
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632852&domain=pdf&date_stamp=2024-01-05

10:2 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper

comparisons for a given input list, whereas the latter uses poly-logarithmically many for the same
input. Both programs are terms of the type theory, rather than encodings of programs internally to
the type theory, and the stated properties are expressed as types.

It may seem, at first blush, that the stated properties cannot possibly be verified by typing—
after all, if the sorting functions are equal as functions on lists, then how can they have different
properties? Moreover, what does it mean, type-theoretically, for the two algorithms to require the
stated number of comparisons? After all, it is not possible to determine a posteriori which piece of
code is a comparison, much less determine how often it is executed. Furthermore, dependent type
theory [Martin-Lof 1984] is given as an equational theory, so what would a comparison count even
mean in such a setting?

The key to understanding how these questions are handled by calf lies in the combination of
two developments in type theoretic semantics of programming languages:

(1) The view of cost as a computational effect, implemented equationally via Levy’s call-by-push-
value [Kavvos et al. 2019; Levy 2003].

(2) The reformulation of phase distinctions [Harper et al. 1990] in terms of open and closed modal-
ities from topos theory, emanating from Sterling’s Synthetic Tait Computability [Sterling
2021; Sterling and Harper 2021].

1.1 Polarity, Call-By-Push-Value, and Compositional Cost Analysis

In call-by-push-value, values of (positive) type are distinguished from computations of (negative)
type.! Following the notation of Niu et al., we will typically write arbitrary positive types as
A, B, C and negative types as X, Y, Z. Although not all models of call-by-push-value are of this
form, it is instructive to think of negative types as being the algebras for a strong monad on
the category of positive types and pure functions. Variables range over elements of positive
types, which classify “passive” values such as booleans, numbers, tuples, and lists; computations
inhabit negative types, which classify “active” computations, including the computation of values
and, characteristically, functions mapping values to computations. Call-by-push-value can also
accommodate type dependency more smoothly than either call-by-value or call-by-name [Ahman
et al. 2016; Pédrot and Tabareau 2019; Vakar 2017].

The purpose of imposing polarity in calf’s dependent type theory via call-by-push-value is to
give a compositional account of cost; in particular, calf instruments code with its cost by means
of a write-only “step counting” effect step®(e) that annotates computation e with an additional ¢
cost, so determining the figure-of-merit for cost analysis. (In the case of sorting, the comparison
operation is instrumented with an invocation of step counting on each usage.) The introduction of
step counting as just described means that insertion sort and merge sort are not equal as functions
on lists, exactly because they have different costs (but see Section 1.2). Moreover, their cost bounds
can be characterized by saying, informally for the moment, that their steps counts on completion
are related to the length of the input in the expected way.

1.2 A Phase Distinction Between Cost and Behavior

The calf type theory is therefore capable of expressing and verifying the usual sequential and
parallel cost bounds on these two sorting algorithms, as well as for other algorithms as described in
the paper of Niu et al. [2022a]. But what about their purely behavioral (extensional) equivalence?
Here the second key idea comes into play, the introduction of a phase distinction, represented by a
proposition (i.e. a type with at most one element) expressing that the extensional phase is in effect,

Here borrowing terminology from polarization in proof theory to distinguish the two classes of types.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:3

written Jext.> When {ex; is true/inhabited, e.g. by assumption in the context, then the step counting
computation is equal to the identity function, and hence the two sorting algorithms are deemed
extensionally equal.

1.2.1 Purely Extensional Types. 1t is best to understand the proposition Jex as a switch that collapses
all the cost information when activated/assumed. Then a type A is considered purely extensional
when it “maintains the fiction” that [y is true: phrased more precisely, a purely extensional type is
one for which the constant mapping A — ({ext — A) is an isomorphism in the logical framework.
Any type A can be restricted to its extensional part, namely the function space OA = (flext — A).
This extensional modality is also called an open modality in topos theory [Rijke et al. 2020].3

1.2.2 Purely Intensional Types. Dually, a type is considered purely intensional when it maintains
the fiction that {lx is not true; put in precise terms, A is purely intensional if and only if OA is a
singleton, or (equivalently) if the projection map Jext X A — {lext is an isomorphism. In either case,
the idea is that a purely intensional type A is one that becomes trivial (i.e. the unit type) within
the extensional phase. This facility is used by calf to allow cost profiling information to be stored
intensionally and then stripped away automatically in the extensional phase.?

1.2.3 Noninterference Between Intension and Extension. Under the phase distinction, intensional
data has the noninterference property with respect to extensional data.

ProPosITION 1.1 (NONINTERFERENCE). Let A be a purely intensional type, and let B be a purely
extensional type. Then any function f : A — B is constant, i.e. there is some by : B such that f = A_.by.

Noninterference is crucial for realistic cost analysis: instrumenting programs with profiling data
would not be conservative if the behavior of formalized programs could depend on that profiling data.
Another reflection of noninterference is that we have an isomorphism O(A — B) = (OA — OB),
which means that the behavior of a function is a function of the behaviors of its inputs.

1.3 Compositional Cost Analysis for Effectful Code

To motivate the contributions of this paper it is helpful to make more precise the informal discussion
about cost and correctness in calf. Using again the examples of insertion sort and merge sort, the
following facts about them can be verified in calf:

(1) Insertion sort is quadratic: [: list(nat) + _ : isBoundedist (nat) (isort I, 112).

(2) Merge sort is poly-logarithmic: [: list(nat) + _ : isBoundedist(nat) (msort [, || 1g |1]).

(3) They are extensionally equal: O (isort = msort).
Informally, the two sorting algorithms have the same input/output behavior, with insertion sort
being notably less efficient than merge sort.

Here the relation isBoundedy4 (e, ¢), for computation e : F(A) and cost ¢ : C, is defined by

hasCosta (e, c) == (a: A) X (e = step®(ret(a)))
isBounded (e, c) := (¢’ : C) X (c <c ¢’) X hasCosta (e, c’)

The first defines the cost of a computation of type F(A) by an equation stating that it returns a
value of type A with the specified cost, expressed as an equation between computations. The second
states that the cost of a computation is at most the specified bound.’

2The logic of calf is intuitionistic, so an indeterminate proposition need not be either true or false in a given scope.

3Note that the extensional modality is nothing more than a function space: therefore, unlike in many other modal type
theories, there is no need for sophisticated or nonstandard treatment of contexts (e.g. dual contexts, etc.).

4 Although its inclusion poses no issues, we omit the complementary closed modality of calf, @A, since it is not used here.
SNiu et al. include the extensional modality around the proof that ¢ <¢ ¢’. For simplicity, we omit it here; the modality may
be recovered by using cost model OC.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

10:4 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper

As long as the bounded expression is pure (free of effects other than the cost accounting itself),
these definitions make good sense, and indeed these formulations have been validated empirically
in the worst-case analysis of several algorithms [Niu et al. 2022a]. However, many algorithms
rely on effects for their correctness and/or efficiency. For example, randomized algorithms require
probabilistic sampling to ensure a good distribution on cost. Other algorithms rely on effects such
as errors, nondeterminism, and mutable storage for correctness. As defined, calf does not account
for any such behaviors. To be sure, it is entirely possible to extend calf with, say, a computation to
probabilistically choose between two computations, and one can surely reason about the behavior of
such programs, given sufficient libraries for reasoning about probabilities. The difficulty is with the
definition of hasCost and isBounded: if e has effects other than cost profiling, then the definition of
hasCost is not sensible because it neglects effects. For example, if e has effects on mutable storage,
then the “final answer” must not only reflect the stepping effect, but also any “side effects” that it
engenders as well. In the case of randomization the outcome of e, including its cost, is influenced
by the probabilistic choice, which cannot, in general, be disregarded.

The definition of isBounded reflects a long-standing tendency in the literature to isolate a
“mathematical” characterization of the cost of executing an algorithm by a function—typically
recursively defined—that defines the number of steps taken as a function of (some abstraction of)
its input. So, in the case of sorting, the functions |I|? and |I|lg|!| are mathematical functions that
are used to specify the number of comparisons taken to sort a list [. Often the characterization is
given by a recurrence, which is nothing other than a total recursive function of the cost parameter.
For example, Niu et al. [2022a] analyze the cost of Euclid’s algorithm in terms of the inverse to
the Fibonacci sequence. While desirable when applicable, it cannot be expected in general that
the cost can be so characterized. For example, one difficulty with the classical approach arises
when higher-order functions are considered. In truth the cost of a computation that makes use of a
function argument cannot be abstractly characterized in terms of “pure” costs, precisely because
the cost of the algorithm depends on the full behavior of that function.

Effects, such as probabilistic sampling, introduce a similar difficulty, even in the case that the
outcome is determinate, because the cost cannot be specified without reference to the source
of randomness, its distribution. To put it pithily, a computation that incurs cost sampled from
a binomial distribution is best characterized by the computation that implements the binomial
distribution itself. The central question that drives the present work is this:

What better way to define the cost of an effectful program than by another effectful program?

After all, calf is a full-spectrum dependent type theory capable of formulating a very broad range
of mathematical concepts—any appeal to an extrinsic formulation would defeat the very purpose
of the present work, which is to develop a synthetic account of cost analysis for effectful programs
that extends the established calf methodology for the special case of pure functional programs.

1.4 decalf: a Directed, Effectful Cost-Aware Logical Framework

The key to achieving these goals is to reformulate the calf type theory to consider inequalities, as
well as equalities, on programs that, intuitively, express relaxations of the cost profiling information
in a program. Reflexivity of the preorder means that it is always valid to say, in effect, that a piece
of code “costs what it costs.” In this sense a cost analysis can never “fail”, but of course it is usually
desirable to characterize the cost of a program more succinctly and informatively using, say, a
closed form, whenever possible. Transitivity of the preorder means that bounds on bounds may
be consolidated, facilitating modular reasoning. As regards the calf methodology, in decalf the
role of the hasCost relation is replaced by equational reasoning, and the role of the isBounded

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:5

relation is replaced by inequational reasoning. Inequalities, like equalities, account for both cost
and behavior (taking into account the extensional phase as appropriate).

Thus decalf may be described as a directed extension of calf to account for effects. The “directed”
aspect is manifested by the inequational judgments, a < a’ for values of (positive) type A, and
e < ¢’ for computations of (negative) type X.

e Extensionally, inequality is just equality: if e < e’, then O(e = ¢’).

e Intensionally, inequality relaxes costs: if ¢ < ¢’, then step®(e) < step® (e).
In the pure case (with profiling as the only effect), the original calf methodology is recovered by
defining isBounded via inequality, aligning with the existing definition of hasCost:®

hasCosta(e, c) == (a: A) X (e = step®(ret(a)))
isBounded (e, c) == (a: A) X (e < step®(ret(a)))

In the presence of other effects, though, this new definition of isBounded generalizes that of calf.
For example, suppose e makes use of randomization; as long as all possible executions use at most c
cost and return the same value, then we will have isBounded (e, ¢). Sometimes, we will wish to let
the cost bound itself include effects. Then, we will use the inequality relation e < e’ more generally.

Furthermore, the inequality relation can compare programs at all computation types, whereas
isBounded only compares at type F(A). To analyze a computation of type A — F(B) in calf, one
must quantify over values a : A and then use isBounded at type B. In contrast, decalf allows
computations of type A — F(B) to be compared and analyzed directly.

Simultaneous analysis of cost and correctness. The inequality relation compares both the cost (for
inequality) and the correctness (for equality) simultaneously. In general, this is essential: the cost
of later computations may depend on the behavioral/extensional part of earlier computations. For
example, suppose reverse is the usual list reverse algorithm with linear cost in the length of its
input. Then, knowing only the cost of a computation e : F(list(nat)) is not enough for determining
the cost of bind(e; reverse), which depends on (the length of) the result of e. Thus we see that the
intension-extension phase distinction counterposes the interference of behavior with cost to the
noninterference of cost with behavior (Section 1.2.3).

However, when the code exhibits noninterference of behavior with cost, we may work with a
notion of a classical bound of e by cost ¢ that arises by postcomposition with A — 1:

e;ret(x) = bind(e; A_.ret(x)) < step®(ret(x)).

This technique is useful for collapsing down multiple possible return values (Sections 3.2 and 3.3)
that all have the same cost and aligns well with the traditional presentations of cost analysis in
which cost and correctness are considered independently as a final result.

Synopsis. The remainder of this paper is organized as follows: In Section 2 we define the decalf
type theory, which is used in the remainder of the paper. In Section 3 we formulate algorithms
(some with effects) and derive their cost bounds. In Section 4 we justify decalf topos-theoretically.
In Section 5 we summarize results, and in Section 6 we suggest directions for future work.

1.5 Related Work

As regards related work, the principal reference is Niu et al. [2022a] on which the present paper is
based. Therein is provided a comprehensive comparison to related work on formalized cost analysis,
all of which applies as well to the present setting. We call attention, in particular, to the central
role of the (dependent) call-by-push-value formulation of type theory [Levy 2003; Pédrot and

®Notice that extensionally, both restrict to (a : A) X (e = ret(a)), only requiring that e return a value.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

10:6 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper

Tabareau 2019], and to the application of synthetic Tait computability [Sterling 2021] to integrate
intensional and extensional aspects of program behavior. In subsequent work, Grodin and Harper
[2023] perform amortized cost analyses coinductively by proving an equality between a realistic
implementation of a data structure and a simpler specification implementation; we draw inspiration
from this perspective, here considering inductive algorithms and generalizing to inequality.

Directed type theory and synthetic domain theory. The decalf type theory and its built-in inequal-
ity relation is closely related to the idea of directed type theory [Licata and Harper 2011; Riehl and
Shulman 2017], which generalizes Martin-Lof’s (bidirectional) identity types to account for directed
identifications. Another important input to decalf’s design is synthetic domain theory [Hyland
1991; Phoa 1991], in which types are also equipped with an intrinsic preorder. Both of these inputs
can be seen in our presheaf model of decalf (Section 4), which resembles both traditional models
of higher category theory and directed type theory and (pre)sheaf models of synthetic domain
theory [Fiore and Rosolini 1997, 2001]. Our method to isolate presheaves that behave like preorders
via internal orthogonality comes from Fiore [1997], whose ideas we have combined with the modern
accounts of internal orthogonal reflection of Christensen et al. [2020]; Rijke et al. [2020].

Integrating cost and behavior. As observed by Niu et al. in their work on calf, obtaining a cost
bound on a program frequently depends on simultaneously verifying a behavioral invariant of the
code/data structures involved. This requirement is fulfilled in the setting of calf because programs
are nothing more than terms in a dependent type theory equipped with a cost effect; consequently
one can use dependent type theory as a rich specification language for program behavior. In this
aspect the decalf verification ethos remains unchanged from that of calf: although decalf lacks
general dependent sums as a theory, we may still use the judgmental dependent types at the level
of the logical framework (see Section 2.1) to encode the necessary program behaviors.

On the other hand, one may take a more stratified view on programs vs. logic, an approach
exemplified by Radicek et al. [2017] in the context of relational cost analysis. To handle behavioral
properties of programs, the authors introduce a type system U by integrating a version of HOL
with a suitable equational theory on the cost monad. Aside from the well-known differences between
verification in dependent type theory and program logics, the type system of Radicek et al. differs
from decalf in several axes. First, UC is designed around the verification of pure functional programs,
whereas decalf is designed around the modular accommodation of different (possibly interacting)
effects. Second, whereas U works with additive costs’, decalf may be instantiated with any cost
monoid. Lastly, Radicek et al. also propose a type system for relational cost analysis. In this paper
we focus on unary program analysis to isolate the new ideas brought forth in decalf, but it should
be possible to incorporate the techniques of relation cost analysis into a dependently-typed setting.

Cost analysis of higher-order functions. In calf, cost bounds are “global” in the sense that cost
refinements such as hasCost and isBounded from Section 1.3 are only defined for the type of free
computations F(A). In contrast, the presence of an intrinsic preorder structure on every type in
decalf allows us to easily express the cost bounds of higher-order functions as functions themselves
(see Section 3.3). In this sense decalf represents a departure from the standard dogma held by the
cost analysis community in which cost as a notion is categorically segregated from programs. In
our view this stratification often invites unnecessary duplication of structures, especially in the
analysis of higher-order functions. This can be seen in e.g. the work of Rajani et al. on a type system
called A-amor for higher-order amortized analysis. Roughly, A-amor deals with the pain points of

7 Additivity was not precisely defined in Radicek et al. [2017]; we believe this refers to when a monoid is both commutative
and satisfies the cancellation property.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:7

traditional potential-based type systems by properly accounting for the affine structure of higher-
order potential-carrying types. To accurately represent the cost structure of higher-order functions,
A-amor is also equipped with a language of indices resembling a simple functional language. Indices
are a classic example of a “shadow language” in the sense that they simply abstract over the existing
constructs of the associated programming language. By taking seriously the dictum “cost bounds
are programs”, we may dispense with such duplications of effort in decalf by means of internal cost
refinements that are defined using ordinary type-theoretic constructions.

Algebraic effects. In Section 3, we extend decalf with various effect structures: nondeterminism,
probabilistic choice, and a simple form of global state. Each effect is specified via an algebraic
theory, drawing from foundational ideas on algebraic effects [Plotkin and Power 2002]. Note that
here, we do not support handling of effects.

2 THE decalf TYPE THEORY

The decalf type theory is a dependent extension of Levy’s call-by-push-value framework [Levy
2003] in which types are classified into one of two categories,

(1) Value, or positive, types are those whose elements are “pure data” This includes finite sums
and products, inductive types such as the natural numbers or lists of a value type, and
suspensions of computations.

(2) Computation, or negative, types are “active” and, in particular, may engender effects. The
basic constructs are ret and bind, which incorporate values as computations, and sequence
computations, respectively. Computation types include functions from positive to negative
types, according to the intuition that functions may only be applied to values, and doing so
engenders a computation. However, functions may be turned into values by suspension.

Crucially, variables range over value types, both in terms and in types themselves. That is, families of
values and families of types are indexed by values, not computations, just as in the work of Pédrot
and Tabareau [2019]. As in that work, the decalf type theory includes both positive and negative
dependent functions and internalized equality and inequality types (more on the latter shortly).
In contrast to op. cit., decalf does not have dependent sums, but it does have positive products,
non-dependent sums, and inductive types. In this regard, the decalf type theory is simpler than
both calf [Niu et al. 2022a] or dcbpv [Pédrot and Tabareau 2019].

The importance of the call-by-push-value—inspired formulation is that it is compatible with
effects. In the case of calf, the sole effect under consideration is cost profiling, or step-counting, which
is used to express the cost of a computation. For example, in the case of sorting, the comparison
function is instrumented with a step operation that serves to count the number of comparisons,
and permits the cost of sorting to be expressed in terms of this fundamental operation. In terms
of semantics, the manifestation of the profiling effect is that computations types are interpreted
as an algebra for the writer monad, which maintains state to accumulate the total cost of step
operations that have been executed. Various forms of cost accounting (both sequential and parallel)
are accounted for by parameterizing the type theory with respect to an ordered cost monoid. The
present work seeks to extend calf to consider programs that engender effects besides profiling.

Phase distinction. As with calf, the decalf type theory includes a phase distinction between
extensional and intensional aspects of programs. As in calf the extensional phase is governed by a
proposition (a type with at most one element) named Jlext, whose assumption renders step counting
inert. However, in contrast to calf, the expression of cost bounds in the presence of effects is much
more delicate. In calf the outcome of a closed computation must be of the form step®(ret(v)), which
specifies both the cost, c, and the final value, v, of that program. However, in the presence of effects,

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

10:8 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper

this simple characterization is not available. For example, the outcome of a probabilistic program is
a distribution of such costs and behaviors derived from the distribution of its randomized inputs.
Similarly, the outcome of an imperative computation must include accesses to the global state,
because the final value may well refer to it. As in calf, the “open” modality OA = (Jlext — A) is
used to disregard the profiling effects to speak of pure behavior.

Program inequalities. To account for effects, the specification and verification of cost bounds
in decalf is markedly different from that in calf. The most natural, and most general, way to
specify the outcome of an effectful computation is by another effectful computation. Thus, just as a
randomized algorithm uses coin flips to guide its behavior, so the cost specification correspondingly
makes use of coin flips in its formulation. This might suggest an equational formulation of cost,
until one considers that algorithm analysis is typically phrased in terms of upper bounds on cost. In
calf that was handled by the preorder on the cost monoid, but to account for this in decalf the
essential move is to introduce an approximation ordering among the programs of a type that permits
these bounds to be relaxed. Thus, upper bounds on cost are expressed using the approximation
ordering, written e < e’, where e’ captures some (weakening of) the cost of e.

In particular, in the case of purely functional programs (apart from step counting), the expression
e’ can, as in calf, be taken to have the form step®(ret(v)). At the other extreme, the reflexivity of a
preorder ensures that e’ may always be taken to be e itself, specifying that “e costs whatever it
costs”! This remark is not entirely frivolous. For one thing, there certainly are situations in which
no better bound can be proved without significant simplifying assumptions. These situations arise
especially when using higher-order functions whose cost and behavior may well be highly sensitive
to the exact input, and not just some approximation thereof. Here approximation comes to the
rescue, allowing one function to be approximated by another, and relying on the monotonicity of
the approximation ordering to derive a useful upper bound. For example, let map be the usual
higher-order list mapping function taking a function as an argument (Example 3.12). If f < f7,
then map f < map f’, and the latter may well admit a meaningful upper bound—if, say, f” has
constant cost, then, by transitivity of the approximation preorder, that constant may be used to
derive a useful linear-time upper bound for that instance of list mapping.

2.1 Presentation of decalf in a Logical Framework

Following the formulation of Niu et al. [2022a], the decalf type theory is defined as a signature in
an extensional, higher-order, dependently typed logical framework (LF). Specifically, a type theory
is described by a list of constants in a version of extensional type theory with dependent product
and sum types. The adequacy of the LF presentation of decalf with respect to the conventional
presentations with contexts follows from conservativity of locally cartesian closed categories
[Gratzer and Sterling 2020] over categories with representable maps [Uemura 2021, 2023].

The object theory decalf is specified with judgments declared as constants ending in Jdg,
handling binding and scope of variables via the framework-level dependent product (a : A) — X (a).

2.2 Dependent Call-By-Push-Value Structure

First, we give a presentation of our core dependent call-by-push-value calculus:

tp*,tp® : Jdg U:tp® — tp*

tm* : tp* — Jdg F:tpt — tp®

tm® : tp® — Jdg ret: (A:tp*,a:tm*(A)) —» tm®(F(A))
tm®(X) = tm*(U(X)) bind : {A : tp*, X : tp®} tm®(F(A)) —

(tm*(A) — tm®(X)) - tm®(X)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:9

Types in decalf are divided into two classes, the positive value types tp™ and the negative
computation types tp®. Each type has a corresponding collection of terms, tm*(A) and tm®(X).
Following Niu et al. [2022a], we define computations as tm®(X) := tm*(U(X)), leading to a less
bureaucratic version of call-by-push-value in which thunk and force are identities.

The two levels are linked by a pair of modalities, F(A) and U(X), that, respectively, classify com-
putations of a given value and reify such computations as values. The ret and bind constructs return
values and sequence computations, as would be expected in a language with effects. Semantically,
computation types are interpreted as algebras for a monad, which provides the structure required
to consolidate effects as a computation proceeds. Equality of values, a = a’, and computations,
e = ¢’, is the equality provided by the logical framework.

2.3 Type Structure

The decalf language includes both positive and negative dependent product types. As to the former,
these are functions that map values to values, and hence must not have effects. Their applications
constitute complex values in the sense of [Levy 2003, §3]. We make use of them for readability; for
example, we freely use arithmetic operations to describe the amount of cost being incurred. The
latter map values to computations, and hence may have effects, both profiling and any other effect
that may be added to the language. The decalf type theory includes equality types with equality
reflection, with the consequence that function equality is extensional (and hence undecidable in
cases of interest).?

X :tp* — tpt — tp*

(unpair, pair) : {A, B} tm*(A X B) = (a: tm*(A)) x tm*(B)

eq: (A:tp") - tm*(A) - tm*(A) — tp*

(ref, self) : {A} (a,a" : tm*(A4)) — tm*(eq,(a a’)) = (a=4a’)
It : (A:tp",B:tm*(A) — tp*) — tp*

(ap*,lam*) : {A, B} tm™(IT*(A; B)) = (a : tm*(A)) — tm*(B(a))
IT: (A:tp*, X : tm*(A) - tp®) — tp°

(ap,lam) : {A, X} tm®(II(A4; X)) = (a: tm*(A)) — tm®(X(a))

The language is also equipped with standard positive types, including (non-dependent) sum
types and inductive types (such as natural numbers and lists), whose definitions are included in
the appendix of the extended version [Grodin et al. 2023]. Importantly, the elimination forms for
these types take as motives families of judgments, not just types. The reason for this is to support
so-called “large eliminations,” families of types indexed by sums and inductive types.

2.4 Reasoning About Extensional Properties Using Jex
In general, programs, equations, and inequalities in decalf take cost structure into account. To

consider only cost-ignoring behavioral properties, we study programs in the fragment of decalf
under the extensional phase, {lext:

Plext : Jdg

Qext/uni : {u, v : fext} u =0

O(j) = et = I

80f course, the famous conservativity result of Hofmann [1995] shows that decalf can nonetheless be adequately formalized
in a decidable intensional type theory with enough axioms; this principle is used already in the Agda mechanization of calf,
where Agda is extended with calf-specific primitives and axioms as postulates.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

10:10 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper

Here, O(-) is the extensional modality, governing behavioral specifications in the sense that
any type in the image of O is oblivious to computation steps. One such behavioral specification is
the extensional equality between programs, rendered in decalf as the type O(e = ¢’).

2.5 Preorder Structure on Types
The approximation preorder on decalf values and computations is induced by these principles:

(1) All functions are (automatically) monotone.
(2) Functions are compared pointwise.
(3) Under the extensional phase, a < a’ implies a = a’.

The extensionality requirement expresses that the approximation ordering is solely to do with cost:
when cost effects are suppressed, the preorder is just equality, and thus has no effect on the
behavior of the program. We render these conditions formally in the logical framework as follows:

<:{A:tp*} tmT(A) - tm*(A) — Jdg

<isPreorder : (A : tpT) — isPreorder(A, <)

<mono : {A,B,a,a’} (f :tm*(A) - tm*(B)) - a<da — f(a) < f(a)

<pi {AB. f, f'} ((a: tm*(A)) — f(a) < f'(a)) — lam(f) < lam(f”)

Sext i flext 7 a<d —sa=d
By the definition of tm®(X), computations of type X are compared at value type U(X). We may
also internalize this judgmental structure:
leq: (A:tp*) » tm*(A) — tm*(A) - tp*
(Iref, Iself) : {A} (a,a’ : tm*(A)) — tm*(leq (a,a’)) = (a < a')

2.6 Cost Monoid: Cost Structure of Programs

Cost-aware programs carry quantitative information through elements of the cost monoid C,
which is a positive type in decalf. Because different algorithms and cost models require different
notions of cost, we parameterize decalf by a purely intensional monoid (C, +,0) in the sense of
Section 1.2.2; in other words C becomes a singleton in the extensional phase.’

C: tp*

C/q[ext : O(tm+(C) = 1)

0:tm*(C)

+:tm*(C) - tm*(C) — tm*(C)

costMon : isMonoid(C, 0, +)

Since every type is equipped with an intrinsic preorder, this automatically makes (C,+,0, <¢) a
preordered monoid.

2.7 Cost as an Effect in decalf

As in calf, costs in decalf are formulated in terms of a profiling computation step (e) that is
parameterized by a computation type X and an element of the cost type c. The meaning of
step$ (e) is to charge c units of cost and continue as e; consequently, we require that step is
coherent with the monoid structure on C.

step : {X : tp®} tm*(C) — tm®(X) — tm®(X)

step, : {X, e} step®(e) = e

step, :{X, c1, ¢z, e} step® (step®(e)) = step“*<2(e)

?Observe that this implies that we have step®(e) = e for every cost ¢ : C in the extensional phase.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:11

double : nat — F(nat)
double zero = ret(zero)
double (suc(n)) = step (bind n’ « double nin ret(suc(suc(n’))))

Fig. 1. Recursive implementation of the doubling function on natural numbers, instrumented with one cost
at each recursive call.

In addition, we require equations governing the interaction of step with other computations, as
is standard in call-by-push-value.

bindsiep : {A, X, e, f, c} bind(step®(e);) = step®(bind(e; f))
apgep 1 {A X, f, a,c} ap(step®(f))(a) = step®(ap(f)(a))

As a consequence of monotonicity, if ¢ < ¢’ holds, then we have step§ (e) < stepgé(e) for any
computation e : X. This is the means by which cost bounds are relaxed in an analysis.

3 VERIFICATION EXAMPLES

Equipped with equality and inequality of programs, we now provide examples of how a cost analysis
may be performed. In place of a cost bound, we simply use another program. The purpose of cost
analysis, then, will be to condense the details of a complex program.

In the forthcoming examples, we will instantiate the cost model to (w, <, +,0), the natural
numbers with the usual ordering and additive monoid structure. Note that this object is not the
inductive type of natural numbers, whose preorder is discrete. We note that w is a purely intensional
type and provide a description of w as a quotient inductive type [Kaposi et al. 2019] in Section 4.5.1.

3.1 Pure Algorithms

First, we discuss pure algorithms in which cost is the only available effect, presenting the work of
Niu et al. [2022a] in decalf. In this case, a cost bound will typically look like a closed form for the
program at hand.

Example 3.1 (Doubling function). Consider the function that recursively doubles a natural number,
given in Fig. 1, where we annotate with one unit of cost per recursive call. Its behavior can be
concisely specified via a non-recursive closed form:

doublepgyng = An. step™ (ret(2n))

Here, 2n is a complex value used to specify the return value. By induction, we may prove that
double is equal to the closed form double,oung. This fact constitutes a proof of both the cost and
correctness of double. As a corollary, we may isolate a correctness-only proof using the extensional

phase: O(double = An. ret(2n)). 4

Although this approach is new, the same reasoning is valid in calf. However, not every algorithm
has a simple closed form; sometimes, we may only wish to give an upper bound.

Example 3.2 (List insert). Consider the implementation of insert, a subroutine of insertion sort, in
Fig. 2. Here, we count the number of comparison operations performed. The cost incurred by the
computation insert x | depends on the particular elements of the list [in relation to the value x. To
characterize its cost precisely, we could of course take insert as its own cost bound, since insert is
equal to itself by reflexivity. However, this bound provides more detail than a client may wish for.
Rather than characterize this cost precisely, then, it is common to give only an upper bound.

In the worst case, insert x I incurs |l| cost, when x is placed at the end of I. Thus, we may define
insertpound = Ax. Al step'” (ret(insertspec x 1)). Here, inserts,e. is a complex value specifying the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

10:12 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper

insert : nat — list(nat) — F(list(nat))
insert x [] = ret(x :: [])
insert x (y :: ys) =
bind b « step!(x <’ y) in
if bthenret(x :: y = ys) else bind ys” « insert x ysinret(x :: ys’)

Fig. 2. Recursive implementation of the list insertion, the auxiliary function of insertion sort, instrumented
with one cost per element comparison.

isort : list(nat) — F(list(nat))
isort [] = ret([])
isort (x :: xs) = bind xs’ « isort xsin insert x xs’

Fig. 3. Insertion sort algorithm, using auxiliary insert function from Fig. 2. Cost is not directly instrumented
here, but a call to isort counts comparisons based on the implementation of insert.

intended behavior of the insert computation. Using program inequality of decalf, we prove by
induction that insert is bounded by this closed form in the sense that insert < insertpoung. As in
Example 3.1, this fact constitutes a proof of both the cost and correctness of insert. In terms of
cost, it shows that insert x [incurs at most |I| cost. The inequality of programs only has an impact
on cost; thus, this proof also guarantees that insert x [returns insertspe. x I. Since inequality is
extensionally equality, we achieve the following extensional correctness guarantee as a corollary
of the inequality above: O(insert = Ax. Al. ret(insertsec x I)). 4

Remark 3.3. The implementation of insertyc. here corresponds to a component of the cost bound
proofs of Niu et al. [2022a]. There, the specification is implemented inline in the cost bound proof
as the value that the computation proved to return. Here, we reorganize the data, giving the
specification implementation first and using it to prove a program bound.

Example 3.4 (Insertion sort). In Fig. 3, we show the implementation of the insertion sort algorithm,
using auxiliary function insert from Fig. 2. As in Example 3.2, we may define a bounding program:

isOrtpound = Al steplllz(ret(sortSpec)

Then, we may prove by induction that isort < isortyound-

Although it is less common than proving an upper bound, we may also show a lower bound of a
computation. Since insert x [costs at least 1 on a non-empty list [and isort is length-preserving,
we can show that isort [incurs at least |/| — 1 cost:

/ll.steplllfl(ret(sorl‘SlDeC) < isort Ny

Adapting the work by Niu et al. [2022a], we may also define the merge sort algorithm, msort,
and prove that it is bounded by cost || 1g|!|:

msort < Al stepll“glll(ret(sortSlDeC 1)).

Using the fact that program inequality is extensionally equality, though, we may recover the
proof that these two sorting algorithms are extensionally equal.

THEOREM 3.5. In the extensional phase, we have that isort = msort.
Proor. Extensionally, the inequalities in the cost bounds are equalities and the cost operation is

trivialized. So, isort = isortyound = Al. ret(sortepec 1) = msortyound = msort.]

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:13

branch : {X : tp®} tm®(X) — tm®(X) — tm®(X)

fail : {X : tp®} tm®(X)

branch/id" : {X, e} branch(fail, e) = e

branch/id" : {X, e} branch(e, fail) = e

branch/assoc : {X, e, e, e2} branch(branch(ey, e;), e;) = branch(ey, branch(ey, e;))
branch/comm : {X, ey, e;} branch(ey, e;) = branch(ey, ¢j)

branch/idem : {X, e} branch(e,) = e

branch/step : {X, c, e, e1} step$ (branch(eo, e1)) = branch(step (eo), step$ (e1))
fail/step : {X, c} step(fail) = fail

Fig. 4. Specification of the branch and fail primitives for finitary nondeterministic branching, which form
a semilattice. The laws for interactions with the step primitive are included. Note that fail is the nullary
correspondent to branch, so just as branch/step pushes cost into all two branches, fail/step pushes cost into
all zero branches. The laws for interactions with computation type primitives are omitted for brevity, as they
are analogous to those described in Section 2.7.

choose : list(nat) — F(nat X list(nat))
choose [] = fail
choose (x :: xs) =
branch(bind (pivot, I) < choose xs in ret(pivot, x :: I), ret(x, xs))

partition : nat — list(nat) — F(list(nat) X list(nat))
partition pivot [] = ret([], [])
partition pivot (x :: xs) =

bind (xs1, xs2) < partition pivot xs in

bind b « step!(x <” pivot) in

if bthenret(x = xs1, xs7) else ret(xsy, x = xs3)

gsort : list(nat) — F(list(nat))

gsort [] = ret([1)

gsort (x = xs) =
bind (pivot, I) « choose (x :: xs) in
bind (L,) « partition pivot lin
bind I « gsortl; in
bind I}, «— gsortl,in
ret(I] + (x =2 []) + 1)

Fig. 5. Quicksort algorithm [Hoare 1961, 1962], where the choose auxiliary function chooses a pivot nondeter-
ministically. As in Figs. 2 and 3, the cost instrumentation tracks one unit of cost per comparison.

3.2 Effectful Algorithms
Treating cost bounds as program inequalities, we can extend decalf with various computational
effects and prove bounds on effectful programs.

3.2.1 Nondeterminism. First, we consider the nondeterminism effect, specified in Fig. 4. Here, we
specify finitary nondeterministic branching as a semilattice structure. The identity element for a
binary nondeterministic branch is called fail, since nullary nondeterminism is akin to failure.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

10:14 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper

lookup : list(A) — nat — F(A)

lookup [] i = fail

lookup (x :: xs) zero = ret(x)

lookup (x :: xs) (suc(i)) = step! (lookup xs i)

Fig. 6. The usual implementation of list index lookup, instrumented with one cost per recursive call. If the
desired index is out of bounds, the computation errors via the fail effect.

Example 3.6 (Quicksort). In Fig. 5, we define a variant of the quicksort algorithm [Hoare 1961,
1962] in which the pivot is chosen nondeterministically. The number of comparisons computed
by gsort I depends on which element is chosen as a pivot; in the worst case, it can compute |!|2
comparisons. We may prove this by induction:

gsort < Al. steplllz(ret(sorl‘spec 1)).

The fact that gsort [is nondeterministic is not reflected in this bound: regardless of the chosen pivot,
it always incurs at most |I|? cost and returns s0rtspec 1. In other words, the use of nondeterminism
was benign: extensionally, it is invisible, rendering the program effect-free. 4

In the following examples, we consider situations where the effect is not benign and thus appears
in the bounding program.

Example 3.7 (List lookup). In Fig. 6, we define a function lookup that finds an element of a list at a
given index. Here, the cost model is that one cost should be incurred per recursive call. In case the
list is shorter than the desired index, the program performs the fail effect, terminating the program.
This effect is not benign: even extensionally, the impact of fail is visible. Therefore, any bound for
this program must involve the fail effect, as well. We can define an exact bound for lookup:

lookupy,,.q = AL Ai.if i <" |I| then stepi(ret(lookupspec 1 1)) else fail
We may then prove by induction that lookup < lookup, 4. Extensionally, this says that
lookup = Al Ai.if i <” |I| then ret(lookup,.. 1 i) else fail,
which is the desired behavioral specification. 4

Example 3.8 (Pervasive nondeterminism). Sometimes, nondeterminism has an impact on the
output of a program. For example, consider the following program:

e := branch(step®(ret(true)), step'®(ret(false)))
Using the monotonicity of inequality and the laws for branch, it is possible to bound e as follows:
e < step'?(branch(ret(true), ret(false)))

However, for programs with more branching, specifying the correctness alongside the cost may
add undesired noise. Thus, one may wish to bound the computation e; ret(*) instead:

e;ret(k) < step'®(ret(x)). a

3.2.2 Probabilistic Choice. Similar to nondeterminism, we consider the (finitely-supported) proba-
bilistic choice effect, where the nondeterminism is weighted by a rational number between 0 and
1. We specify the signature in Fig. 7 as the axioms for a convex space, where flip p(eo, e;) takes
the p-weighted combination of computations e, and e;: with probability p compute e;, and with
probability 1 — p compute ;.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:15

flip : {X : tp®} Q[o,1] = tm°(X) — tm®(X) — tm°(X)
flip/0 : {X, eg, e1} flip, (e, €1) = eg
flip/1:{X, e, e1} flip;(eo, €1) = &1
flip/assoc : {X,p,q. 1, €0, e1, €2} (p=1-((1-pg)(1-71)))
— flippq(flipr(eo, e1), e3) = flipp(eo, flipq(el, e))
flip/comm : {X, p, e, €1} fIipp(eo, e) = flipl_p(el, €o)
flip/idem : {X, p, e} flipp(e, e)=e
flip/step : {X,c, p, ep, €1} stepg((flipp(eo, e1)) = flipp(stepg((eo), step$ (e1))

Fig. 7. Specification of the flip primitive for finitary probabilistic choice, which forms a convex space. The law
for interaction with the step primitive is included. Like in Fig. 4, the laws for interactions with computation
type primitives are omitted for brevity, as they are analogous to those described in Section 2.7.

sublist : list(nat) — F(list(nat))
sublist [] = ret([])
sublist (x :: xs) =

bind xs” « sublist xs in

flip,, (ret(xs’), step'(ret(x = xs)))

Fig. 8. Implementation of sublist, an algorithm to compute a random sublist of an input list, where one unit
of cost is incurred for each ::-node in the output list.

bernoulli : F(1)
bernoulli = flip,, (ret(%), step' (ret(x)))

binomial : nat — F(1)
binomial zero = ret(%)
binomial (suc(n)) = bind x < bernoulliin binomial n

Fig. 9. Implementation of the Bernoulli and binomial cost distributions with p = %.

The worst-case analysis of a probabilistic algorithm is analogous to the worst-case analysis
of its nondeterministic counterpart. For example, one could define a randomized variant of gsort
and show that its worst-case behavior is quadratic. Some algorithms, though, can be given tighter
bounds based on their probabilistic weights.

Example 3.9 (Random sublist). In Fig. 8, we describe sublist, an algorithm for selecting a random
sublist of an input list. We keep an element with probability % and count the number of ::-nodes
as our cost model. It is not obvious how to simplify this code on its own, since the output is
dependent on the effect. However, we can exactly bound the algorithm Al. (sublist [; ret(x)) that
ignores the returned list by the binomial distribution, given in Fig. 9. Concretely, we can show that
AL (sublist I;ret(x)) = Al. binomial |l|. As a lemma, we have that binomial < An. step™ (ret(x)). We
may use this to upper bound sublist, i.e. AL (sublist [; ret(%)) < AL step!! (ret(x)). ¥

3.2.3 Global State. Finally, we consider the global state effect, specified by a signature in Fig. 10.
For simplicity, we only provide a single global mutable cell.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

10:16 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper

get : {X : tp®} (tm*(S) — tm®(X)) — tm®(X)

set : {X : tp®} tm*(S) — tm®(X) — tm®(X)

get/get : {X, e} get(s;.get(sz. e s152)) = get(s.ess)
get/set : {X, e} get(s.set(s; e)) =e

set/get : {X, e} set(s; get(s’.es’)) = set(s; es)

set/set : {X, e} set(sy; set(sy; €)) = set(sy; e)

get/step : {X, c, e} step$ (get(s. e s)) = get(s. step$ (e s))
set/step : {X,c,s, e} step§ (set(s; e)) = set(s; step$(e))

Fig. 10. Specification of the get and set primitives for single-cell global state [Plotkin and Power 2002] with a
fixed state type S : tp*. The laws for interaction with the step primitive are included. Like in Fig. 4, the laws
for interactions with computation type primitives are omitted for brevity, as they are analogous to those
described in Section 2.7.

twice : U(F(nat)) — F(nat)
twice e =

bind x; <« ein

bind x, < ein

ret(x; + x3)

Fig. 11. Implementation of the twice function which takes a suspended computation as input, runs it twice,
and adds the results. No cost is instrumented explicitly, but e may incur cost (and/or other effects).

Example 3.10 (State-dependent cost). For this example, let state type S = nat. Recall the double
function from Example 3.1, and consider the program

e = get(n.bindn’ « double ninset(n’; ret(n)))

that doubles the global state and returns its original value. Here, pervasive effects are used, so they
must appear in the bounding program; notice that the cost even depends on the result of the get
operation. A tight bound for e is epound = get(n. set(2n; step™(ret(n)))), specifying that e must
read the global state n, set the state back to 2n, incur n cost, and then return n; thus e = epound. =

This example illustrates once again that for general effectful programs, the effects must be
available in the language of cost bounds, thus shattering the illusion that there can be a simple
“shadow language” of cost bounds as discussed in Section 1.5.

3.3 Higher-Order Functions

Thus far we have considered first-order functions, where the function inputs were simple data. What
about higher-order functions that takes in suspended computations as input? Given the definitions
of hasCost and isBounded from Section 1, it is unclear what a bound for a higher-order function
should be, especially if the input computation is effectful. Using program equality and inequality,
though, a bound for a higher-order function is just another higher-order function.

Example 3.11 (Twice-run computation). In Fig. 11, we define a function twice that takes as input
a suspended computation e : U(F(nat)), runs it twice, and sums the results. In general, e could
be costly, probabilistically sample, interact with mutable state, and more. Therefore, the only
plausible choice of bound for e would be e itself, since e < e. This aligns with standard practice in
algorithms literature: for arbitrary computation inputs, the cost bound and behavioral correctness
of a higher-order function depend on the specific implementation details of the program.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:17

map : U(nat — F(nat)) — list(nat) — F(list(nat))
map f [] = ret([])
map f (x = xs) =

bind ys « map f xsin

bindy « f xin

ret(y :: ys)

Fig. 12. Implementation of the map function on lists, which applies a suspended function elementwise to an
input list. No cost is instrumented explicitly, but the applications of f may incur cost (and/or other effects).

If some properties about input e are known, though, we may be able to simplify. For example, if
e;ret(%) < step!(ret(*)), we can prove that twice e; ret(x) < step?(ret(*)). In other words, if we
know that e incurs at most 1 cost and always returns, we can show that twice e incurs at most 2
cost and always returns. 4

Example 3.12 (List map). In a similar direction, consider the implementation of the map function
on lists in Fig. 12. If nothing is known about the input f, then map is the only reasonable bound for
itself. However, if some properties about f are known, we can provide a more concise bound.

(1) Suppose for all x, it is the case that f x;ret(x) < step®(ret(x)), for some fixed cost c. Then
for all lists I, we have map f I; ret(x) < step®!!(ret(%)). In other words, if each application
of f incurs at most ¢ cost and returns, we can show that map f [incurs at most c|l| cost and
always returns, the standard bound on map for total functions.

(2) Suppose for all x, it is the case that f x; ret(x) < binomialn, for some fixed n. Then, for all lists
I, we have map f I;ret(x) < binomial (n|l|). In other words, if the cost of each application of
f is bounded by the binomial distribution with n trials, we can show that map f [is bounded
by the binomial distribution with n|l| trials. a

This style of reasoning aligns well with existing on-paper techniques. If details about an input
computation are known, then a concise and insightful bound can be derived. Otherwise, one must
examine the program in its entirety to understand the behavior.

3.4 Parallelism

When calf is instantiated with the parallel cost monoid in the sense of Niu et al. [2022a], one obtains
a theory for reasoning about a version of fork-join parallelism. Parallel composition is represented
via an operation || : F(A) X F(B) — F(A X B) satisfying the law (step® (ret(a)) || step®2(ret(b))) =
step1®2(ret(a, b)), where we write ¢; ® c, for parallel cost composition. In the decalf theory
equipped with only the cost effect, one may continue to define and reason about parallel programs
in this fashion. Moreover, because of the presence of the preorder structure, we automatically obtain
a cost refinement lemma for parallel composition by monotonicity, in the sense that e; || e; < e] || e,
whenever e; < e] and e, < e;. The interaction of parallelism with other effects is a difficult problem;
we leave a proper theory to future work.

4 A PRESHEAF MODEL OF decalf

Our goal is to construct a model of type theory that contains a non-trivial interpretation of the
constructs of decalf: this must necessarily contain a universe of types equipped with a built-in
preorder structure, as well as a phase distinction — such that in the “extensional” phase, the
inequality relations collapse to equalities. Although the technical development of this model brings
together many sophisticated tools from category theory, the main ideas behind our construction

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

10:18 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper

can and should be explained intuitively. Proofs of these and more results appear in the appendix of
the extended version [Grodin et al. 2023].

Main Idea 1 (An interval type for automatic monotonicity). The first problem to solve when
building a model of decalf is to devise a binary relation (E4) € A X A on every type A such that
any function A — B is automatically monotone. The solution to this problem, which was first
discovered in the world of synthetic domain theory, is to define (E,4) uniformly in A by considering
functions into A from an interval, i.e. some special type I equipped with two constants 0,1 : L.

An interval (1,0, 1) always induces a path relation x Ty y & Jp: 1 - Ap0 =x A pl =y,
and this relation is automatically preserved by any function f: A — B. Suppose that x £4 y and
we wish to show that fx Ep fy; by definition, we may choose some p: I — A such that p0 = x
and p1 = y; then the map f o p: I — B satisfies p0 = fx and p1 = fy, and so we have fx Cp f.

Although the idea of an interval lets us define a binary relation on every type A, this relation
does not enjoy almost any of the properties that we need in order to model decalf:

(1) Extensional discreteness: O(x C4 y) does not necessarily imply O(x = y).

(2) Path transitivity: It need not be the case that (C4) is transitive, i.e. exhibit A as a preorder.

(3) Pointwise order: It need not be the case that functions have the pointwise order, i.e. we do
not necessarily have f C4_,p g if and only if Vx : A.fx Cp gx.

We can solve all the problems above by using the categorical notion of orthogonality.

Main Idea 2 (Orthogonality). Let A be a type, and let i: U — V be a function; the concept of
orthogonality is one way to make precise the idea that A behaves “as if” the map i: U — V were
an isomorphism. We say that A is orthogonal to i: U — V when any function f: U — A can be
extended to a unique function iy f: V — A such that ijf oi = f. More succinctly, the precomposition
map (—oi): (V> A) - (U — A) is required to be an isomorphism.

Many common structures may be characterized via orthogonality conditions. For instance, a set
is subsingleton if and only if it is orthogonal to the map *: 2 — 1. Likewise, a poset is a complete
partial order (cpo) if and only if it is orthogonal to @ < @, where o is the poset of natural numbers
with the usual order and o is the free extension of w by an infinite point.

We can now summarize how orthogonality solves the three problems we identified above.

Main Idea 3 (Extensional discreteness by orthogonality). We can force O(x C4 y) toimply O(x = y)
by refining our specification of the interval: in particular, we shall require the interval I to be
orthogonal to the unique function L — {x. By our metaphor (Main Idea 2), this means that we
want the interval I to “think” that {ley is false. From a mathematical point of view, this is equivalent
to saying that the OI = 1 as we shall have Ol = (Jext = I) = (L — I) = 1. To see that this
condition suffices, we observe that O(x C4 y) is defined to be ext — Ip: I = Ap0=x A pl =y;
this is equivalent to fext = 3p : (ext =) = Ap(A_.0) = xAp(A_.1) = y. As (Jext =) = OIl = 1
we know that any such p must be constant, and so we have indeed have O(x = y).

There are no reasonable conditions that we can impose on the interval I to ensure that each
path relation (E,) is transitive. Indeed, Fiore and Rosolini [1997, Proposition 1.2] have shown that
only a slight strengthening of the transitivity condition will imply that I = 2, and under these
conditions it would follow that every type is discrete, i.e. we would have x E4 y if and only if x = y.
We likewise cannot hope for a condition on I that makes every function space have the pointwise
order. In either case the best we can do is restrict our attention to a class of types that do have these
desirable properties, and provide a universal way to approximate any given type by a type in this
class; such a class of types is called a reflective subuniverse [Rijke et al. 2020].

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:19

Main Idea 4 (Reflective subuniverses). A reflective subuniverse is defined to be a class of types S
such that for any type A, there exists a type Ag € S and a map n4: A — Ag to which every type
B € 8 is orthogonal.'” Recalling our metaphor, this means that every type in S thinks that A is
isomorphic to Ag; types that do not lie in S would then see Ag as the “best approximation” of A
by a type lying in S. Reflective subuniverses are exponential ideals, which means that if B lies in S,
then we automatically have (A — B) € S; in fact, the same applies for dependent function spaces.

Main Idea 5 (Transitivity and pointwise functions by orthogonality). It happens that given some
finite collection of maps M, the class of types orthogonal to every map in M is a reflective
subuniverse, assuming sufficiently powerful quotient and inductive types. Therefore, in order to
obtain a reflective subuniverse of types A such that (C,) is transitive and (Ep_,4) is pointwise,
it would suffice to find orthogonality conditions that imply these properties. Using the interval I
and pushouts we can indeed find a pair of maps such that if A is orthogonal to both, then the
relation (E4) is transitive and any function space B — A has the pointwise order. Thus we obtain
a reflective subuniverse whose types satisfy all the desirable properties needed by decalf.

Taking stock, what exactly do we need to do in order to construct a model of decalf along the
lines of Main Ideas 1 to 5? It will be sufficient to find a model of type theory with a proposition Jext
and an interval object (I, 0, 1) such that I is orthogonal to L — eyt From just this data, all the rest
follows by the construction of reflective subuniverses from orthogonal classes. In the sections that
follow we will develop the ideas explained intuitively above with more mathematical precision,
culminating in an explicit construction of a specific model of decalf supporting a cartesian closed
and order-preserving embedding from the category of preorders and monotone maps.

4.1 Topos-Theoretic Preliminaries

Much of this section will revolve around synthetic constructions in the internal language of an
elementary topos, i.e. a cartesian closed category with finite limits and a subobject classifier. An
elementary topos & has an internal language, which is a form of extensional dependent type
theory with a univalent universe of propositions (subsingleton types). We will favor working type
theoretically on the inside of & rather than diagrammatically on the outside of &; unless we say
otherwise, all statements are to be understood as internal. We refer the reader to Awodey et al.
[2021]; Maietti [2005] for further discussion of this type theoretic language.

Definition 4.1. We define an elementary QWI-topos to be an elementary topos closed under
QWI-types a la Fiore et al. [2021].

QWI-topoi are closed under a form of quotient inductive types dubbed QWI-types by Fiore et al.
[2021], whence the name. Quotient inductive types allow the simultaneous definition of a type by
generators and relations.

Example 4.2. Every category of Set-valued presheaves is a QWI-topos. 4

Orthogonality and Local Types. In the internal language of an elementary topos &, we will state
many important conditions in terms of orthogonality (Main Idea 2); by our convention, we shall
always mean internal orthogonality. We shall introduce an intermediate notion of suborthogonality.

Definition 4.3. Let A be a type, and let i: U — V be an arbitrary map. We say that A is sub-
orthogonal (resp. orthogonal) to i: U — V when the induced precomposition map A: AV —
AV is a monomorphism (resp. isomorphism). If J is a type parameterizing a family of maps

19This is in fact a universal property, as it can be seen that the pair (As,74: A — Ag) are unique up to unique isomorphism
with this property.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

10:20 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper
S = {ij: U; = Vj}jej, we say that A is orthogonal to S if and only if it is orthogonal to each
ij: Up — V; € Sfor j: J. We will also say that A is S-local when it is orthogonal to S.

When & is an elementary QWI-topos, the S-local types are internally reflective in &, meaning
that every type has a “best approximation” by an S-local type.

PROPOSITION 4.4 (ORTHOGONAL REFLECTION). Let & be an elementary QWI-topos. In the internal
language of &, let S be a J-indexed family of maps for some type J; then for any type A, we may
define an S-local type As and a map na: A — Ag such that every S-local type is orthogonal to n.

Proor. The orthogonal reflection can be constructed by means of a quotient inductive type,
adapting the method of Rijke et al. [2020] from homotopy type theory to extensional type theory. O

4.2 Synthetic Preorders in the Presence of an Interval

Let & be an elementary topos equipped with an interval object, i.e. an object I with two elements
0,1 : L' We will work in the internal language of & for the remainder of this section.

Definition 4.5 (Partial order on the interval). We have an embedding [—]: I < Q sending i : [to
the proposition (i = 1), which creates a partial order i —) j & ([i] — [j]) on L

Definition 4.6 (Finite chains). For each finite ordinal n, we may define an auxiliary figure I,
classifying “chains” of length n in I, setting I, to be the subobject of I" spanned by vectors
(ip =1 ... =1 ip—1). In particular, we have [y = 1,I; =L and I, = {i, j : I | i —1 j}.

4.2.1 Paths and Path-Transitivity.

Definition 4.7 (Paths). A pathin atype A from an element x : A to y : A is defined to be a function
a:1 — Asuchthat @0 = x and al = y.

The following definitions are adapted from Fiore and Rosolini [1997].

Definition 4.8 (The path relation). On any type A we may define a reflexive relation T4 C A X A,
saying that x C4 y if and only if there exists some path from x to y in A.

Definition 4.9 (Path-transitivity). A type A is called path-transitive when it is orthogonal to the
dotted cocartesian gap map 7: [VI — I, depicted below:

1 .
——1 /[’-(o

1 .
r &
OJi in1
4
I —ing— IVI e S)

2i.(i,1)

LEMMA 4.10 (PATH-TRANSITIVE TYPES ARE PREORDERS). If a type A is path-transitive in the sense
of Definition 4.9, then the path relation T4 is a preorder on A.

As remarked by Fiore and Rosolini [2001, §1.3], the converse to Lemma 4.10 need not hold.
1We do not here assume that 0 # 1.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:21

4.2.2 Boundary Separation. As it stands, there could be two distinct paths I — A that have the
same endpoints. We wish to isolate the types A for which paths are uniquely determined by their
endpoints; this property was dubbed boundary separation by Sterling et al. [2019, 2022] and X-
separation by Fiore and Rosolini [2001]. The purpose of imposing boundary separation in our
setting is to make the path order on function spaces pointwise, as we shall see in Lemma 4.15.

Definition 4.11. A type A is called boundary separated when it is suborthogonal to the boundary
inclusion i : 2 — I determined by the two endpoints of I.

Although the presentation of boundary separation in terms of suborthogonality is simple and
elegant, it will be later advantageous to observe that boundary separation can also be seen as an
orthogonality property so as to incorporate it into a reflective subcategory via Proposition 4.4. To
that end, we introduce path suspensions below in order to state Lemma 4.13, which characterizes
boundary separation in terms of orthogonality.

Definition 4.12. We define the path suspension of a type A to be following pushout:

AX[0]1]

Ax2 — AXI

ﬂzl m

[+

D)SA
[n|s]

The universal property of path suspension places functions SA — B in bijection with triples
(n,s:B;f: A— BH) where f is valued in paths from n to s.

LEMMA 4.13. A type A is boundary separated if and only if it is orthogonal to the path suspension
S#: S2 — S1 of the terminal map : 2 — 1.

Remark 4.14. Observe that a type is a proposition (subsingleton) if and only if it is orthogonal to
the terminal map *: 2 — 1. Boundary separation asserts that the path spaces with fixed endpoints
are propositions. Our use of path suspension therefore corresponds precisely to the observation
of Christensen et al. [2020] in the context of homotopy type theory that a type is separated with
respect to a given class of maps if and only if it is local (orthogonal) to their suspensions. Fiore and
Rosolini [2001] equivalently describe boundary separation in terms of orthogonality to a different
(but closely related) map; we have preferred here to make the connection with suspensions.

LEMMA 4.15. Let x : A + Bx be a family of boundary separated types, and let f,g: (x : A) — Bx
be a pair of dependent functions. Then f T (x.4)—px ¢ if and only if for all x : A we have fx Cpy gx.

4.2.3 Synthetic Preorders. We now come to a suitable definition of “synthetic preorder” within &.

Definition 4.16. Atype Ais called a synthetic preorder when it is both path-transitive and boundary
separated, i.e. orthogonal to both 7: I VI — I; and S*: S2 — S1.

The benefit of defining synthetic preorders in terms of (internal) orthogonality is that they
automatically form a (full, internal) reflective subcategory of & via Proposition 4.4; we specialize
the general result below to the case of path-transitivity.

COROLLARY 4.17 (SYNTHETIC PREORDER REFLECTION). Assume that & is a QWI-topos. For any type
A we may define a synthetic preorder PA equipped with a map ns: A — PA to which any synthetic
preorder B is orthogonal. In other words, every type A has a reflection PA as a synthetic preorder.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

10:22 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper

Corollary 4.17 further implies that the full (internal) subcategory of & spanned by synthetic
preorders is cartesian closed, and moreover closed under dependent functions spaces for families of
synthetic preorders. It is also (internally) complete and cocomplete, with limits computed as in the
ambient category and colimits computed by applying the synthetic preorder reflection to the those
of the ambient category. These results concerning (internally) orthogonal subcategories, among
many others, can be found in the work of Rijke [2019]; Rijke et al. [2020].

4.2.4 Discrete Types. We introduce a notion of discrete types that provides a sufficient condition
for being a synthetic preorder.

Definition 4.18. A type A is called discrete when the following equivalent conditions hold:

(1) the type A is orthogonal to the map I — 1;
(2) the type A is boundary separated and the path relation (E4) is the diagonal, i.e. (E4) € (=).

PROPOSITION 4.19. Any discrete type A is a synthetic preorder.

4.3 A Synthetic Theory of Partially Discrete Preorders

Let & be an elementary topos equipped with an interval object as in the previous section. In
this section, we extend the axiomatics of & to account for a phase distinction under which every
synthetic preorder becomes discrete. Semantically, this corresponds to assuming an indeterminate
proposition Jey : Q such that the interval I is {ex-connected in the sense of Rijke et al. [2020],
i.e. such that the proposition Jext — (I = 1) holds or, equivalently, I is orthogonal to L — {lex.
The purpose of this axiom is as follows: if I is {[ex-connected in the above sense, any path I — A
restricts to a constant function under Jlex; thus we always have {lext A x E4 y — x = y. Thus in the
presence of this axiom, any synthetic preorder is “partially discrete” in the sense of being discrete
assoon as Jext = T.

We now summarize the axiomatics of synthetic partially discrete preorder theory for an arbitrary
elementary QWI-topos &.

Axiom 4.20. We assume a proposition Jex: : Q.

Axiom 4.21. We assume a typel together with two elements 0,1 : I

Axiom 4.22. The interval object I of Axiom 4.21 is Jext-connected.

AxioMm 4.23. The natural numbers object N is discrete in the sense of Definition 4.18.

Definition 4.24. Let & be an elementary QWI-topos.

(1) We say that & is a model of synthetic preorder theory when it satisfies Axioms 4.21 and 4.23.
(2) If & additionally satisfies Axioms 4.20 and 4.22, then we call it a model of synthetic partially
discrete preorder theory.

The purpose of making N a discrete type is to allow the motive of the elimination principle of
inductive data types to range over arbitrary types, which enables us to compute program invariants
in decalf using the dependent sum of the LF as mentioned in Section 1.5.

4.4 Well-Adapted Models

A priori, a cost bound in the theory of synthetic preorders has little to do with a cost bound in
concrete preorders. However, in a model of synthetic preorders that embeds the concrete preorders,
we may relate a synthetic cost bound to a more traditional account of cost bounds in concrete
preorders. This is captured by the notion of well-adapted models.

Definition 4.25. Let & be a model of synthetic preorder theory.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:23

(1) We say that & is well-adapted when there is a fully faithful cartesian closed functor Preord —
& that preserves the interval object. This means that the actual interval [1] : Preord is sent
to I and the points 0,1 : I are determined by the maps 0,1: [0] — [1] respectively.

(2) If moreover & is a model of synthetic partially discrete preorder theory, we say & is well-
adapated if there is a functor satisfying the conditions above and whose image lies within
the Jext-connected types, i.e. those that restrict under Jy to a singleton.

This terminology is inspired by an analogous situation in synthetic differential geometry where
a topos model & is called well-adapted [Dubuc 1979] when there is an embedding of ordinary
manifolds into & preserving the differential geometry structure. The canonical example of a well-
adapted model of synthetic (partially discrete) preorder theory is (augmented) simplicial sets, for
which the corresponding embedding is given by the nerve functor. Now, we discuss how to relate
synthetic cost bounds to cost bounds in concrete preorders in well-adapted models.

Well-Adapted Models and Concrete Preorders. Let & be a well-adapted model of synthetic preorder
theory (Definition 4.25), and write N: Preord < & for the associated embedding.

THEOREM 4.26. Let (P, <) be a concrete preorder. If p < q, then Np Cnp Nq holds in &.

COROLLARY 4.27 (COMPLETENESS OF SYNTHETIC COST BOUNDS). Let P,Q : Preord be concrete
preorders. Given monotone maps f,g: P — Q such that f < g on the pointwise order, then the
synthetic preorder relation Nf Enp_.no Ng holds in &.

Proor. By Theorem 4.26 and the fact that e is cartesian closed. O

THEOREM 4.28. Let (P, <) be a concrete preorder. If x Cnp y holds in &, then there exist p,q : P
such that p < g andx = Np andy = Ngq.

COROLLARY 4.29 (SOUNDNESS OF SYNTHETIC COST BOUNDS). Let P, Q : Preord be concrete preorders.
Given maps x,y: NP — NQ such that the synthetic preorder relation x Cnp_No Y holds in &, then
there exist f,g: P — Q such that f < g in the pointwise order and x = Nf andy = Ng.

Proor. By Theorem 4.28 and the fact that N is cartesian closed. O

4.5 Algebra Models of decalf in Synthetic Partially Discrete Preorder Theory

In this section, we describe how to instantiate the constructs of decalf in any model & of synthetic
partially discrete preorder theory in the sense of Definition 4.24. To construct our model, we fix
universes U € V in &; judgments of calf are intepreted in the outer universe V. We will write
Up C U for the subuniverse of U spanned by synthetic preorders, i.e. path-transitive and boundary
separated types.

4.5.1 Cost Structure. The theory of decalf is parameterized by a cost monoid C : Up that is
Jlext-connected, i.e. becomes a singleton when ey is true. In a well-adapted model of synthetic
preorder theory & in the sense of Section 4.3, we may take an ordinary preordered monoid P and
define C as the image of P under the full embedding Preord < &. An alternative method would be
to define the cost monoid C as a quotient inductive type that builds in the expected order structure.
For instance, we may define the synthetic preorder w that can be thought of as the colimit of the
inclusions of finite chains Iy — I; — ... by means of a quotient inductive type, shown in Fig. 13.
The object w as defined is {[ext-connected because I is.

4.5.2 Monads for Effects. Let M be a (strong) monad on U. The monad M may not preserve the
property of being a synthetic preorder, but we may adapt it to a monad Mp on Up by postprocessing

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

10:24 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper

data w : Up where
zero: w
Suc:w —
rel:w—->1- o
_:(n:w) —>relnd=n
_:(n:w) —>relnl=sucn

Fig. 13. Quotient inductive type defining cost structure w.

with the synthetic preorder reflection, sending A : Up to P(MA).'? We can then adapt Mp to
support a cost effect using the cost monad transformer corresponding to the writer monad C X —. In
particular, we define a new monad T on Up by the assignment TA := Mp(C X —).

(1) For verifying pure code (as in calf), we can let M be the identity monad.

(2) For nondeterminism (as in Section 3.2.1), we can let M be the free semilattice monad, which
can be defined by a quotient inductive type.

(3) For probabilistic choice (as in Section 3.2.2), we can let M be the free convex space monad,
which is likewise (constructively) definable by a quotient inductive type.'

(4) For global state (as in Section 3.2.3), we can let M be the state monad S — S X —.

As an alternative to defining T using the cost monad transformer as above, we can also treat the
effect signatures of Section 3.2 as specifications of an algebraic effect, where for each ¢ : C we have
a generating operation step®. In such cases, we can simply define T as the free monad for these
effect signature using a quotient inductive type.

Remark 4.30. Although we have restricted our attention to Eilenberg—Moore models of decalf
above, it is indeed possible and desirable to consider more general models. For example, our
interpretation of global state in terms of algebras for the state monad is somewhat bizarre and
uncanonical; this could be replaced by interpreting computation types as (C X —)-algebras, and
then letting U(X) =S — X and F(A) = AXCXxS.

4.5.3 Universes of Positive and Negative Types. We then define tp* to be Up itself, letting the
decoding function tm*(A): tp* — Jdg be the image of A : Up under the inclusion Up — V,
which we shall leave implicit in our informal notations. We interpret tp® by the type of T-algebras
where T is the application of the cost monad transformer to a monad M from Section 4.5.2, which
we may equip, as we please, with the structure of the Eilenberg—Moore category. Then tm®(X) is
interpreted the same as tm*(U(X)). Thus we have a free-forgetful adjunction F 4 U: tp® — tp*
interpreting the call-by-push-value adjunctive structure of decalf.

4.5.4 Inequality Relation. For any type A : tp™ and elements x,y : tm*(A), the inequality x < y
is interpreted by the path relation x Ciy+(4) y, which is transitive because A lies in Up. The <ex
axiom is a consequence of the partial discreteness axiom (Axiom 4.22) that we have assumed of
& the <ono axiom holds by definition. The <; axiom holds by Lemma 4.15, as every synthetic
preorder is boundary separated. Thus the path relation x Eim+(4) y is a proposition (and so a
synthetic preorder) and may be internalized as a type of decalf.

121f M does preserve synthetic preorders, then we have Mp = M as reflections are idempotent.
BClassically this is equivalent to the finite distribution monad; in our definitions we must be careful to give constructive
definitions because the logic of & is not classical.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:25

4.6 A Presheaf Model of decalf in Augmented Simplicial Sets

We will construct a presheaf model of decalf by equipping a simplicial model of synthetic preorders
with a phase distinction.

4.6.1 Simplicial Sets for Synthetic Preorders. To model synthetic preorders in a QWI-topos, we
take a cue from higher category theory and consider simplicial sets, which are presheaves on the
simplex category defined below.

Definition 4.31 (Simplex category). We will write A for the simplex category, i.e. the category of
inhabited finite ordinals [n] and order-preserving maps between them. By convention, [0] will
denote the singleton ordinal, i.e. the terminal object of A.

What do simplicial sets have to do with preorders? Every preorder can be reconstructed by
gluing simplices together in a canonical way; this is the density of the embedding I: A — Preord,
which implies that the corresponding nerve functor N: Preord — Pr(A) sending a preorder P
to the restricted hom presheaf hompyeora (I—, P) is fully faithful. In this way, simplicial sets are an
appropriate place to study concrete preorders; this is the content of a well-adapted model as defined
in Section 4.3. The synthetic preorder theory of simplicial sets, then, studies sufficient conditions
in the internal language for arbitrary simplicial sets to “behave like” those that arise from actual
preorders via the nerve functor N.

THEOREM 4.32. The category Pr(A) of simplicial sets forms a non-trivial model of synthetic
preorder theory in the sense of Definition 4.24 in which the interval is given by the representable
presheafy[1] and its two global points.

4.6.2 Augmented Simplicial Sets for Synthetic Partially Discrete Preorders. In fact, Pr(A) also forms a
(highly degenerate) model of synthetic partially discrete preorder theory in the sense of Definition 4.24,
setting Jext := L. Our goal is to find a non-trivial model &, i.e. where the slice & /{ex is not the
terminal category. The most canonical choice for such a topos is obtained by freely extending
Pr(A) with a maximal topos-theoretic point by forming an “inverted Sierpinski cone”, i.e. the Artin
gluing [Artin et al. 1972] of the constant presheaves functor Set — Pr(A). This gluing can also
be presented equivalently by presheaves on a different category, as adding a maximal point to a
presheaf topos corresponds (dually) to freely extending the base category by an initial object —
which amounts in the case of A to the use of augmented simplicial sets. These two perspectives on
the same topos are both useful, and play a role in our results.

Definition 4.33 (Augmented simplex category). We will write A, for the augmented simplex
category, the free extension of A by an initial object [—1]. Concretely, A, can be thought of as
the category of arbitrary finite ordinals and order-preserving maps between them; under this
interpretation, [—1] corresponds to the empty ordinal.

THEOREM 4.34. The categoryPr(A) of augmented simplicial sets forms a non-trivial well-adapted
model of synthetic partially discrete preorder theory in the sense of Definition 4.24 in which:

(1) the interval is given by the representable presheaf = y[1];

(2) and the phase distinction is given by the representable subterminal presheaf ext := y[—1].

4.6.3 Soundness of decalf. The following soundness theorem is a corollary of Theorem 4.34 via
the description of algebra models of decalf in Section 4.5.

THEOREM 4.35 (SOUNDNESS). For any of the notions of computational effect considered in Section 3.2,
we have a non-trivial model of the decalf theory in Pr(A,).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

10:26 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper

5 CONCLUSION

In this work, we presented decalf, an inequational extension of calf [Niu et al. 2022a] that supports
precise and approximate bounds on the cost and effect structure of programs. Ab initio, the theory
of decalf has been forged and guided by the pragmatic struggles encountered in cost analysis
and program verification. Throughout the development, our guiding principle has been that a cost
bound for an effectful program should be another effectful program.

In Section 3, we demonstrated this methodology through a variety of case studies. For pure,
first-order algorithms, we were able to provide simple proofs of combined cost and correctness.
Such proofs in decalf are more streamlined than their calf counterparts and can be carried out
without reference to any separable notion of recurrence. Instead, the code itself serves the role of
the recurrence, which we then solve for a closed form, either exactly using equality or loosely using
inequality. Then, using the extensional modality, we were able to extract extensional equalities
from both equality and inequality program bounds. For example, from the cost and correctness
proofs of various sorting algorithms, we may determine immediately that all the given sorting
algorithms are extensionally equal. This approach scaled naturally to support more complex classes
of programs, including higher-order programs with non-cost effects.

In Section 4, we justified this style of reasoning using the notion of a synthetic partially discrete
preorder theory, a novel formulation of an intrinsic theory of preorders that smoothly integrates
with the existing intension-extension phase distinction of calf. To obtain a model of this new
theory, we draw inspiration from both work in directed type theory and synthetic domain theory
and characterize the synthetic preorders using simple orthogonality conditions, which furnish a
well-behaved subuniverse that supports the structures for workaday program verification.

6 FUTURE WORK

We view decalf as a starting point for deeper investigations. Here, we outline future directions.

Amortized analysis via coinduction. Our approach draws inspiration from Grodin and Harper
[2023], who perform amortized analyses in calf for programs whose only effect is cost. We anticipate
that decalf could be used to perform a broader class of amortized analyses.

Advanced probabilistic reasoning. In Section 3.2.2, we implement a simple probabilistic program
and show an exact bound on its cost. However, many algorithms in practice do not have well-
behaved distributions, so one may instead wish to analyze expected and high probability bounds.
We believe that the techniques presented here will scale to support such reasoning in future work.

Parallelism and more sophisticated effects. As mentioned in Section 3.4, while parallelism is
compatible with pure algorithms in decalf, we leave a proper theory of the interaction between
parallelism and other effects to future work. Additionally, it would be useful to consider a semantics
for decalf that goes beyond the simple, non-enriched algebraic effects we have considered here,
allowing for constructs like control or unbounded recursion.

Abstraction and specification implementations. One drawback of decalf, inherited from calf, is
that one must compute the result of a computation via a “specification” implementation to give
a cost bound. Unfortunately, this puts abstraction at odds with cost analysis: in order to export
a bound of an abstract computation, one must also make the return value public. We observe a
similarity to frameworks based on program logics, in which one sometimes verifies an effectful
(there, imperative; here, costly) algorithm by first providing a functional specification (for instance,
see the case study on list fold in Iris [Birkedal and Bizjak 2022]). We hope this tension can be
resolved in future iterations of decalf.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:27

DATA AVAILABILITY STATEMENT

Building on the work of Niu et al. [2022b], the definition of decalf and the examples presented have
been mechanized in the Agda proof assistant [Norell 2009]. Several case studies considered by Niu
et al. [2022a] have been adapted to the decalf setting, as well. The source code is available as an
artifact [Grodin et al. 2024] and via a GitHub repository (https://github.com/jonsterling/agda-calf).

ACKNOWLEDGMENTS

We are grateful to Marcelo Fiore, Runming Li, and Parth Shastri for many insightful discussions.
Additionally, we thank the anonymous reviewers for their thoughtful comments.

This work was supported in part by AFOSR (Tristan Nguyen, program manager) under grants
MURI FA9550-15-1-0053, FA9550-19-1-0216, FA9550-21-0009, and FA9550-23-1-0728 and in part by
the National Science Foundation under award number CCF-1901381, and by AFRL through the
NDSEG fellowship. This work was co-funded by the European Union under the Marie Sklodowska-
Curie Actions Postdoctoral Fellowship grant agreement 101065303 (https://cordis.europa.eu/project/
id/101065303). Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the AFOSR, NSF, AFRL,
the European Union, or the European Commission. Neither the European Union nor the granting
authority can be held responsible for them.

REFERENCES

Danel Ahman, Neil Ghani, and Gordon D. Plotkin. 2016. Dependent Types and Fibred Computational Effects. In Foundations
of Software Science and Computation Structures, Bart Jacobs and Christof Loding (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 36-54.

Michael Artin, Alexander Grothendieck, and Jean-Louis Verdier. 1972. Théorie des topos et cohomologie étale des schémas.
Lecture Notes in Mathematics, Vol. 269, 270, 305. Springer-Verlag, Berlin. Séminaire de Géométrie Algébrique du
Bois-Marie 1963-1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J.-L. Verdier. Avec la collaboration de N. Bourbaki,
P. Deligne et B. Saint-Donat.

Steve Awodey, Nicola Gambino, and Sina Hazratpour. 2021. Kripke-Joyal forcing for type theory and uniform fibrations.
(2021). arXiv:2110.14576 [math.LO] Unpublished manuscript.

Lars Birkedal and Ales Bizjak. 2022. Lecture Notes on Iris: Higher-Order Concurrent Separation Logic. https://iris-
project.org/tutorial-material.html

J. Daniel Christensen, Morgan Opie, Egbert Rijke, and Luis Scoccola. 2020. Localization in Homotopy Type Theory. Higher
Structures 4 (Feb. 2020), 1-32. Issue 1. https://higher-structures.math.cas.cz/api/files/issues/Vol4Iss1/ChrOpiRijSco

Eduardo J. Dubuc. 1979. Sur les modéles de la géométrie différentielle synthétique. Cahiers de Topologie et Géométrie
Différentielle Catégoriques 20, 3 (1979), 231-279. http://eudml.org/doc/91216

Marcelo P. Fiore. 1997. An Enrichment Theorem for an Axiomatisation of Categories of Domains and Continuous Functions.
Mathematical Structures in Computer Science 7, 5 (Oct. 1997), 591-618. https://doi.org/10.1017/S0960129597002429

Marcelo P. Fiore, Andrew M. Pitts, and S. C. Steenkamp. 2021. Quotients, inductive types, and quotient inductive types.
(2021). arXiv:2101.02994 [cs.LO]

Marcelo P. Fiore and Giuseppe Rosolini. 1997. The category of cpos from a synthetic viewpoint. In Thirteenth Annual
Conference on Mathematical Foundations of Progamming Semantics, MFPS 1997, Carnegie Mellon University, Pittsburgh, PA,
USA, March 23-26, 1997 (Electronic Notes in Theoretical Computer Science, Vol. 6), Stephen D. Brookes and Michael W.
Mislove (Eds.). Elsevier, 133-150. https://doi.org/10.1016/S1571-0661(05)80165-3

Marcelo P. Fiore and Giuseppe Rosolini. 2001. Domains in H. Theoretical Computer Science 264, 2 (Aug. 2001), 171-193.
https://doi.org/10.1016/S0304-3975(00)00221-8

Daniel Gratzer and Jonathan Sterling. 2020. Syntactic categories for dependent type theory: sketching and adequacy. (2020).
arXiv:2012.10783 [cs.LO] Unpublished manuscript.

Harrison Grodin and Robert Harper. 2023. Amortized Analysis via Coinduction. In 10th Conference on Algebra and
Coalgebra in Computer Science (CALCO 2023) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 270), Paolo
Baldan and Valeria de Paiva (Eds.). Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 23:1-23:6.
https://doi.org/10.4230/LIPIcs. CALCO.2023.23

Harrison Grodin, Robert Harper, Yue Niu, and Jonathan Sterling. 2023. Decalf: A Directed, Effectful Cost-Aware Logical
Framework (Extended Version). https://doi.org/10.48550/arXiv.2307.05938 arXiv:2307.05938 [cs]

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

https://github.com/jonsterling/agda-calf
https://cordis.europa.eu/project/id/101065303
https://cordis.europa.eu/project/id/101065303
https://arxiv.org/abs/2110.14576
https://iris-project.org/tutorial-material.html
https://iris-project.org/tutorial-material.html
https://higher-structures.math.cas.cz/api/files/issues/Vol4Iss1/ChrOpiRijSco
http://eudml.org/doc/91216
https://doi.org/10.1017/S0960129597002429
https://arxiv.org/abs/2101.02994
https://doi.org/10.1016/S1571-0661(05)80165-3
https://doi.org/10.1016/S0304-3975(00)00221-8
https://arxiv.org/abs/2012.10783
https://doi.org/10.4230/LIPIcs.CALCO.2023.23
https://doi.org/10.48550/arXiv.2307.05938
https://arxiv.org/abs/2307.05938

10:28 Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper

Harrison Grodin, Yue Niu, Jonathan Sterling, and Robert Harper. 2024. agda-calf v2.0.0. https://doi.org/10.1145/3580425

Robert Harper, John C. Mitchell, and Eugenio Moggi. 1990. Higher-Order Modules and the Phase Distinction. In Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. Association for Computing
Machinery, San Francisco, California, USA, 341-354. https://doi.org/10.1145/96709.96744

C. A. R Hoare. 1961. Algorithm 64: Quicksort. Commun. ACM 4, 7 (July 1961), 321. https://doi.org/10.1145/366622.366644

C. A. R. Hoare. 1962. Quicksort. Comput. J. 5, 1 (Jan. 1962), 10-16. https://doi.org/10.1093/comjnl/5.1.10

Martin Hofmann. 1995. Extensional concepts in intensional type theory. Ph.D. Dissertation. University of Edinburgh,
Edinburgh.

J. M. E. Hyland. 1991. First steps in synthetic domain theory. In Category Theory, Aurelio Carboni, Maria Cristina Pedicchio,
and Guiseppe Rosolini (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 131-156.

Ambrus Kaposi, Andras Kovacs, and Thorsten Altenkirch. 2019. Constructing Quotient Inductive-inductive Types. Proceed-
ings of the ACM on Programming Languages 3, POPL (Jan. 2019), 2:1-2:24. https://doi.org/10.1145/3290315

G. A. Kavvos, Edward Morehouse, Daniel R. Licata, and Norman Danner. 2019. Recurrence Extraction for Functional
Programs through Call-by-Push-Value. Proceedings of the ACM on Programming Languages 4, POPL (Dec. 2019). https:
//doi.org/10.1145/3371083

Paul Blain Levy. 2003. Call-by-Push-Value: A Functional/Imperative Synthesis. Kluwer, Semantic Structures in Computation,
2.

Daniel R. Licata and Robert Harper. 2011. 2-Dimensional Directed Type Theory. Electronic Notes in Theoretical Computer
Science 276 (2011), 263-289. https://doi.org/10.1016/j.entcs.2011.09.026 Twenty-seventh Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXVII).

Maria Emilia Maietti. 2005. Modular correspondence between dependent type theories and categories including pretopoi and
topoi. Mathematical Structures in Computer Science 15, 6 (2005), 1089-1149. https://doi.org/10.1017/S0960129505004962

Per Martin-Lof. 1984. Intuitionistic type theory. Studies in Proof Theory, Vol. 1. Bibliopolis. iv+91 pages.

Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. 2022a. A Cost-Aware Logical Framework. Proceedings of
the ACM on Programming Languages 6, POPL (Jan. 2022). https://doi.org/10.1145/3498670 arXiv:2107.04663 [cs.PL]

Yue Niu, Jonathan Sterling, Harrison Grodin, and Robert Harper. 2022b. agda-calf. https://doi.org/10.1145/3462303

Ulf Norell. 2009. Dependently Typed Programming in Agda. In Proceedings of the 4th International Workshop on Types in
Language Design and Implementation (TLDI °09). Association for Computing Machinery, Savannah, GA, USA, 1-2.

Pierre-Marie Pédrot and Nicolas Tabareau. 2019. The Fire Triangle: How to Mix Substitution, Dependent Elimination, and
Effects. Proceedings of the ACM on Programming Languages 4, POPL (Dec. 2019). https://doi.org/10.1145/3371126

Wesley Phoa. 1991. Domain Theory in Realizability Toposes. Ph. D. Dissertation. University of Edinburgh.

Gordon D. Plotkin and John Power. 2002. Notions of Computation Determine Monads. In Proceedings of the 5th International
Conference on Foundations of Software Science and Computation Structures. Springer-Verlag, Berlin, Heidelberg, 342-356.

Ivan Radicek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian Zuleger. 2017. Monadic Refinements for Relational
Cost Analysis. Proc. ACM Program. Lang. 2, POPL, Article 36 (dec 2017), 32 pages. https://doi.org/10.1145/3158124

Vineet Rajani, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. 2021. A Unifying Type-Theory for Higher-Order (Amortized)
Cost Analysis. Proceedings of the ACM on Programming Languages 5, POPL (Jan. 2021). https://doi.org/10.1145/3434308

Emily Riehl and Michael Shulman. 2017. A type theory for synthetic co-categories. Higher Structures 1 (2017), 147-224.
Issue 1. arXiv:1705.07442 [math.CT] https://journals.mq.edu.au/index.php/higher_structures/article/view/36

Egbert Rijke. 2019. Classifying Types. Ph.D. Dissertation. Carnegie Mellon University. arXiv:1906.09435

Egbert Rijke, Michael Shulman, and Bas Spitters. 2020. Modalities in homotopy type theory. Logical Methods in Computer
Science 16 (Jan. 2020). Issue 1. https://doi.org/10.23638/LMCS-16(1:2)2020 arXiv:1706.07526 [math.CT]

Jonathan Sterling. 2021. First Steps in Synthetic Tait Computability: The Objective Metatheory of Cubical Type Theory. Ph.D.
Dissertation. Carnegie Mellon University. https://doi.org/10.5281/zenodo.6990769 Version 1.1, revised May 2022.

Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. 2019. Cubical Syntax for Reflection-Free Extensional Equality. In
4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 131), Herman Geuvers (Ed.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 31:1-31:25. https://doi.org/10.4230/LIPIcs. FSCD.2019.31 arXiv:1904.08562 [cs.LO]

Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. 2022. A Cubical Language for Bishop Sets. Logical Methods in Computer
Science 18 (March 2022). Issue 1. https://doi.org/10.46298/Imcs-18(1:43)2022 arXiv:2003.01491 [cs.LO]

Jonathan Sterling and Robert Harper. 2021. Logical Relations as Types: Proof-Relevant Parametricity for Program Modules.
J ACM 68, 6 (Oct. 2021). https://doi.org/10.1145/3474834 arXiv:2010.08599 [cs.PL]

Taichi Uemura. 2021. Abstract and Concrete Type Theories. Ph.D. Dissertation. Universiteit van Amsterdam, Amsterdam.
https://www.illc.uva.nl/cms/Research/Publications/Dissertations/DS-2021-09.text.pdf

Taichi Uemura. 2023. A general framework for the semantics of type theory. Mathematical Structures in Computer Science
(2023), 1-46. https://doi.org/10.1017/S0960129523000208

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

https://doi.org/10.1145/3580425
https://doi.org/10.1145/96709.96744
https://doi.org/10.1145/366622.366644
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3371083
https://doi.org/10.1145/3371083
https://doi.org/10.1016/j.entcs.2011.09.026
https://doi.org/10.1017/S0960129505004962
https://doi.org/10.1145/3498670
https://arxiv.org/abs/2107.04663
https://doi.org/10.1145/3462303
https://doi.org/10.1145/3371126
https://doi.org/10.1145/3158124
https://doi.org/10.1145/3434308
https://arxiv.org/abs/1705.07442
https://journals.mq.edu.au/index.php/higher_structures/article/view/36
https://arxiv.org/abs/1906.09435
https://doi.org/10.23638/LMCS-16(1:2)2020
https://arxiv.org/abs/1706.07526
https://doi.org/10.5281/zenodo.6990769
https://doi.org/10.4230/LIPIcs.FSCD.2019.31
https://arxiv.org/abs/1904.08562
https://doi.org/10.46298/lmcs-18(1:43)2022
https://arxiv.org/abs/2003.01491
https://doi.org/10.1145/3474834
https://arxiv.org/abs/2010.08599
https://www.illc.uva.nl/cms/Research/Publications/Dissertations/DS-2021-09.text.pdf
https://doi.org/10.1017/S0960129523000208

Decalf: A Directed, Effectful Cost-Aware Logical Framework 10:29

Matthijs Vakar. 2017. In Search of Effectful Dependent Types. Ph.D. Dissertation. University of Oxford. https://doi.org/10.
48550/arXiv.1706.07997 arXiv:1706.07997 [cs.LO]

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 10. Publication date: January 2024.

https://doi.org/10.48550/arXiv.1706.07997
https://doi.org/10.48550/arXiv.1706.07997
https://arxiv.org/abs/1706.07997

	Abstract
	1 Introduction
	1.1 Polarity, Call-By-Push-Value, and Compositional Cost Analysis
	1.2 A Phase Distinction Between Cost and Behavior
	1.3 Compositional Cost Analysis for Effectful Code
	1.4 decalf: a Directed, Effectful Cost-Aware Logical Framework
	1.5 Related Work

	2 The decalf type theory
	2.1 Presentation of decalf in a Logical Framework
	2.2 Dependent Call-By-Push-Value Structure
	2.3 Type Structure
	2.4 Reasoning About Extensional Properties Using the extensional phase
	2.5 Preorder Structure on Types
	2.6 Cost Monoid: Cost Structure of Programs
	2.7 Cost as an Effect in decalf

	3 Verification examples
	3.1 Pure Algorithms
	3.2 Effectful Algorithms
	3.3 Higher-Order Functions
	3.4 Parallelism

	4 A presheaf model of decalf
	4.1 Topos-Theoretic Preliminaries
	4.2 Synthetic Preorders in the Presence of an Interval
	4.3 A Synthetic Theory of Partially Discrete Preorders
	4.4 Well-Adapted Models
	4.5 Algebra Models of decalf in Synthetic Partially Discrete Preorder Theory
	4.6 A Presheaf Model of decalf in Augmented Simplicial Sets

	5 Conclusion
	6 Future Work
	Acknowledgments
	References

