
214

Dependent Session Protocols in Separation Logic from First
Principles (Functional Pearl)

JULES JACOBS, Radboud University Nijmegen, The Netherlands

JONAS KASTBERG HINRICHSEN, Aarhus University, Denmark

ROBBERT KREBBERS, Radboud University Nijmegen, The Netherlands

We develop an account of dependent session protocols in concurrent separation logic for a functional language
with message-passing. Inspired by minimalistic session calculi, we present a layered design: starting from
mutable references, we build one-shot channels, session channels, and imperative channels. Whereas previous
work on dependent session protocols in concurrent separation logic required advanced mechanisms such
as recursive domain equations and higher-order ghost state, we only require the most basic mechanisms to
verify that our one-shot channels satisfy one-shot protocols, and subsequently treat their specification as a
black box on top of which we define dependent session protocols. This has a number of advantages in terms
of simplicity, elegance, and flexibility: support for subprotocols and guarded recursion automatically transfers
from the one-shot protocols to the dependent session protocols, and we easily obtain various forms of channel
closing. Because the meta theory of our results is so simple, we are able to give all definitions as part of this
paper, and mechanize all our results using the Iris framework in less than 1000 lines of Coq.

CCS Concepts: • Software and its engineering → Parallel programming languages; • Theory of

computation→ Separation logic.

Additional Key Words and Phrases: message passing, concurrency, session types, separation logic.

ACM Reference Format:

Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. 2023. Dependent Session Protocols in Separation
Logic from First Principles (Functional Pearl). Proc. ACM Program. Lang. 7, ICFP, Article 214 (August 2023),
28 pages. https://doi.org/10.1145/3607856

1 INTRODUCTION

Message passing is a commonly used abstraction for concurrent programming, with languages
such as Erlang and Go having native support for it, and languages such as Java, Scala, Rust, and C#
having library support. Session types offer powerful type systems for message passing concurrency
[Honda 1993; Honda et al. 1998], and have been extended with a number of exciting features:

(1) Dependent protocols: The key ingredient of a session type system is the notion of a session
protocol, which describes what data should be exchanged. For example, the session protocol
!Z.!Z.?B.end expresses that two integers are sent, after which a Boolean is received, and
the channel is closed. In vanilla session types, protocols were meant to specify the types
of the exchanged data. They cannot be used to express that the right values are exchanged
(i.e., functional correctness), nor to express data-dependent protocols where the remaining
protocol can depend on prior messages.

Authors’ addresses: Jules Jacobs, Radboud University Nijmegen, The Netherlands, julesjacobs@gmail.com; Jonas Kastberg
Hinrichsen, Aarhus University, Denmark, hinrichsen@cs.au.dk; Robbert Krebbers, Radboud University Nijmegen, The
Netherlands, mail@robbertkrebbers.nl.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/8-ART214
https://doi.org/10.1145/3607856

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3607856
https://doi.org/10.1145/3607856
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607856&domain=pdf&date_stamp=2023-08-31

214:2 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

There have been two lines of work to extend session protocols with logical conditions to
remedy this shortcoming. Bocchi et al. [2010]; Toninho et al. [2011]; Zhou et al. [2020];
Thiemann and Vasconcelos [2020] develop type systems that combine concepts from the
theory of dependent and refinement types with session types. Lozes and Villard [2012];
Craciun et al. [2015]; Hinrichsen et al. [2020] develop program logics that combine concurrent
separation logic [O’Hearn 2004; Brookes 2004] with concepts from session types. Separation
logic (instead of a type system) is used to enforce affine use of a channel library, and Hoare
triple specifications (instead of typing rules) are provided for channel operations.

(2) Integration in functional languages:While session types were originally developed in
the context of c-calculus, a tempting direction is to combine session types with functional
programming. In such languages, session-typed channels are considered first-class data, and
can be stored in data types and sent over channels (similar to first-class mutable references
in ML). The GV family by Gay and Vasconcelos [2010]; Wadler [2012] extends linear lambda-
calculus with channels. The SILL family by Toninho et al. [2013]; Pfenning and Griffith [2015];
Toninho [2015] uses a monadic embedding of session types into an unrestricted language.

(3) Session channels as a library: Session types are typically a language feature, but a recent
trend is to embed channels with session types as a library in an existing language [Hu et al.
2008; Scalas and Yoshida 2016; Pucella and Tov 2008]. Often, either the host language or the
encoding supports substructural types, to enforce the affine use of session channels [Kokke
and Dardha 2021; Lindley and Morris 2016; Jespersen et al. 2015; Chen et al. 2022].

(4) Minimalistic calculi: Session-typed languages add a large number of additional constructs
to the types and expressions of their base languages. Already in the early days of session
types, Kobayashi [2002] showed that session types can be encoded into c-types; an approach
formalized by Dardha et al. [2012, 2017], and applied to GV-style languages by Jacobs [2022].

(5) Mechanization: The meta theory of session types is notorious for its complexity. There
exist various published broken proofs—including the failure of subject reduction for several
multiparty systems [Scalas and Yoshida 2019]. As a result, over the last 5 years there has
been an extensive amount of work on the mechanization of session types by among others
Thiemann [2019]; Rouvoet et al. [2020]; Hinrichsen et al. [2020, 2021]; Tassarotti et al. [2017];
Goto et al. [2016]; Ciccone and Padovani [2020]; Castro-Perez et al. [2020]; Gay et al. [2020];
Jacobs et al. [2022]; Castro-Perez et al. [2021].

To our knowledge, there is no prior work that combines all five features under a single roof. The
goal of this functional pearl is thus to do exactly that. We will develop an account of dependent
session protocols for a GV-style language in a concurrent separation logic. We start from first

principles, enabling us to take a minimalistic approach. Our results have been mechanized in the
Coq proof assistant using the Iris framework for concurrent separation logic [Jung et al. 2015,
2016; Krebbers et al. 2017a; Jung et al. 2018; Krebbers et al. 2018, 2017b]. In the remainder of the
introduction, we give a teaser of our approach and list some of our key insights.

Key idea #1: Implicit buffers through one-shot channels. The first step to formalizing a
language with message-passing concurrency is to decide on the semantics of channels. A common
approach is to use an asynchronous semantics where the sender enqueues the messages in a buffer,
from which the receiver dequeues them. In such a semantics, the receive operation can block if no
message is present, but the send operation will always succeed immediately. To model the notion
of a buffer, one typically incorporates a linked list in the formal definition of the language, and
extends the language with operations to send (enqueue) and receive (dequeue) messages.
To be minimalistic, we want to avoid having to explicitly model the notion of a linked list in

our semantics. Inspired by Kobayashi [2002]; Dardha et al. [2017]; Jacobs [2022] we build on top

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

Dependent Session Protocols in Separation Logic from First Principles (Functional Pearl) 214:3

Base lang (§2.1)

ref E

! ℓ

ℓ ← E

Specification (§3.1)

ℓ ↦→ E tokW

% ⊲ %

One-shot (§2.2)

new1 ()

send1 2 E

recv1 2

Specification (§3.2)

(Send,Q)

(Recv,Q)

2 base p

Subprotocols (§3.3)

? ⊑ @

2 p

Sessions (§2.3)

new ()

send 2 E

recv 2

close 2

wait 2

Specification (§3.4)

!G ⟨E⟩{% }. ?

?G ⟨E⟩{% }. ?

!end/?end

Imperative (§2.4)

new_imp ()

2.send(E)

2.recv()

2.close()

2.wait()

Specification (§3.5)

2
imp p

Guarded recursion (§4)

`G . ?

Self-dual end (§5)

sym_close 2 2
sym

p

send_close 2 2 scl p

Fig. 1. Layered design of our development.

of one-shot channels. These come with functions new1 (), which creates a new channel; send1 2 E ,
which send a message E on channel 2 (without blocking); and recv1 2 , which receives a message E
from 2 (blocks until a message has been sent). On top of the one-shot channels, we define regular
multi-shot session channels. For example, the send operation of session channels is defined as:

send 2 E ≜ let 2′ = new1 () in send1 2 (E, 2′); 2′

This operation not only sends the message E , but also creates a new channel 2′ for the remainder
of the communication, and sends the new channel paired with the message. While there is no
explicit notion of a buffer or linked-list in the semantics of one-shot channels, nor in the definition
of session channels, we will show that the buffer arises implicitly from the preceding definition.

Key idea #2: Dependent session protocols via one-shot protocols. Program logics for
message-passing concurrency typically come with a channel points-to connective 2 p, which
provides unique ownership of a channel endpoint 2 that has to obey to a protocol p. These protocols
typically have a sequenced structure, describing a dependent session of multiple exchanges. An
example of a dependent separation protocol in the Actris logic by Hinrichsen et al. [2020, 2022] is
! (= : N) ⟨=⟩. ! (< : N) ⟨<⟩{= ≤ <}. ?⟨< − =⟩. end. This protocol expresses that two natural numbers
= ≤ < are sent, and the difference< − = is returned.

Similar to our desire for avoiding the need to explicitly model the buffers that underpin channels
as linked lists, we would like to avoid having to inductively define such dependent session protocols.
In our system, the channel points-to connective for the one-shot channels is simply 2 (tag,Q),
where tag ∈ {Send,Recv} and Q is a predicate over the exchanged value. While our protocols
only describe a single message, dependent session protocols that can describe session channels
are simply defined as combinators. This is achieved by recursively using the channel points-to
connective for describing the channel continuation inside the base protocolQ . Due to Iris’s support
for impredicativity [Svendsen and Birkedal 2014], we can use its fixpoint combinator to define
recursive (and dependent) protocols by guarded recursion.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

214:4 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

Key idea #3: Layered session channel library design and verification. We implement
session channels in terms of one-shot channels, and our dependent session protocols as combinators
of one-shot protocols, but we wish to go further by layering our design—from below and above.
The layered design is shown in Fig. 1.

From below, we do not start with a language that has channels as primitive. We build on top
of a functional language with mutable references as found in languages of the ML family (with
allocation, deallocation, store and load). One-shot channels are implemented on top of primitive
mutable references, and verified using (Iris’s) separation logic rules for the verification of concurrent
programs with mutable shared-memory references. Building on top of a language with mutable
references has other tangible benefits. First, we can write and verify programs that transfer data by
reference. Second, we can define both functional versions of session channels (that return a new
endpoint) and imperative versions of channel endpoints (that mutate the channel).
From above, we demonstrate the flexibility of our solution by implementing multiple methods

for closing a session. Session types and protocols are often terminated with an explicit end-tag,
and it is non-trivial to extend the range of termination tags in settings where the protocols are
defined inductively. Since our session channels are defined as combinators on top of the one-shot
channels—that do not inherently include a method for closing—we can freely choose how to
close our channels, after the fact. Initially, we implement asymmetric closing, where one endpoint
initiates the closing of a channel (protocol !end), while the other waits and actually deallocates the
memory backing the channel (protocol ?end). We later provide two alternatives with a self-dual end
protocol: symmetrically closing the channel with a the same closing operation on both endpoints,
where the last call deallocated the channel, and a combined send-close operation, which sends a
last message but does not create a continuation channel.

Key idea #4: Mechanization using a subset of Iris. Our layered design proved beneficial for
the meta theory and mechanization of our results. We only need the usual points-to connective
ℓ ↦→ E for ownership of locations ℓ with value E in separation logic, a simple form of ghost state
(unique tokens), and Iris’s impredicative invariants. By comparison, the Actris logic by Hinrichsen
et al. [2020, 2022] relies on a non-trivial model of recursive protocols using the technique from
America and Rutten [1989] for solving recursive domain equations, and uses Iris’s mechanism for
higher-order ghost state [Jung et al. 2016] to define its channel points-to connective 2 p. Since
the meta theory of our results is so simple, we are able to give all definitions as part of this paper
(there is no appendix) and mechanize all our results in less than 1000 lines of Coq.

Contributions. This paper makes the following contributions:

• A layered implementation of higher-order shared-memory session channels, starting from
mutable references, on which we build one-shot channels, session channels, and imperative
channels (§2)
• A layered development of separation logic specifications for our channels. We start from a
small subset of Iris, developing specifications for one-shot channels, which are then treated
as a black box upon which we build high-level dependent separation protocols (§3)
• Support for subprotocols (§3.3) and guarded recursion (§4), which transfers automatically

from one-shot protocols to dependent session protocols.
• A demonstration of the extensibility obtained by building on first principles, through various
methods for closing session channels (§5)
• A small and intuitive mechanization in the Coq proof assistant, comprised of less than 1000
lines of Coq code (§7). The paper is annotated with mechanization icons (2) that link to the
relevant Coq code, and a cross-reference sheet is provided (§A).

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

Dependent Session Protocols in Separation Logic from First Principles (Functional Pearl) 214:5

2 LAYERED IMPLEMENTATION OF CHANNELS

In this section we will implement message passing channels in terms of low-level operations. We
build these channels in several layers:

• We start by describing the base language and its low-level operations (§2.1).
• We then build a library of one-shot channels (§2.2).
• On top of this we build functional multi-shot session channels (§2.3).
• As a final layer, we have imperative session channels (§2.4).
• We show that linked lists (buffers) implicitly emerge (§2.5).

In the subsequent §3, we develop specifications and proof for each of the layers, and demonstrate
how to verify the correctness of the example.

2.1 Base Language

We use HeapLang, a low-level concurrent language that comes with the Iris separation logic
framework, as our base language. HeapLang has the purely functional operations that one would
expect, such as arithmetic and conditionals, and also includes products and sums. For the purpose
of this paper, the following operations on mutable memory locations are the most relevant:

ref E Allocate a new memory location that initially stores value E .
! ℓ Read the value from memory location ℓ .
ℓ ← E Write value E to location ℓ .
free ℓ Free the memory location ℓ .

HeapLang additionally includes a primitive for spawning a new thread:

fork {4} Run program 4 in a new thread.

The program 4 is allowed to refer to variables in the surrounding lexical context. The following is a
grammar of the most notable constructs that we will use:

4 ∈ Expr ::= ref 4 | ! 4 | 4 ← 4 | fork {4} | free 4 | match 4 with SomeG ⇒ 4; None⇒ 4 end |

G | 4 4 | _G.4 | assert(4) | for(G = 4..4) 4 | . . .

2.2 One-Shot Channels

At the base of our development lie one-shot channels, which communicate a single message from a
sender to a receiver. The API consists of the following operations:

new1 () Create and return a new one-shot channel 2 .
send1 2 E Send message E on channel 2 (non-blocking).
recv1 2 Receive message E from channel 2 (blocks until a message is sent).

The channels are one-shot; only one value is sent over the channel, after which point the channel
is deallocated as a part of recv1 2 .

Example of using one-shot channels. These channels enable us to set up a communication
between child and parent threads as in the following example:

prog_single ≜
let 2 = new1 () in

fork {let ; = ref 42 in send1 2 ;} ;

assert(!(recv1 2) = 42)

2

The main thread creates a one-shot channel 2 , which is shared between the main thread and a
forked-off thread. The forked-off thread then dynamically allocates a reference to 42, and sends

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/base.v.html#line-124

214:6 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

the location over the channel. Finally, the main thread receives the reference, reads it, and asserts
that the stored value is 42. To communicate several times, we could share several channels, but an
interesting alternative style that allows unbounded communication is to send a new channel along
with the message, as we shall see in §2.3.

In the HeapLang semantics, assert gets stuck if the condition is false. Safety (the fact that the
assert does not fail) crucially depends on the forked-off thread not modifying the reference after
it has sent it. This example is safe as the exclusive permission to write and read the reference first
belongs to the forked-off thread, after which it is transferred to the main thread. We verify this safe
transfer of ownership in §3.2. This goes beyond standard session types due to reference ownership
and the verification of the assert.

Implementation of one-shot channels. In our development, channels are not primitive but
implemented in terms of low-level mutable references. A channel is represented as a mutable
reference that initially contains the value None. To send a value E to the channel, we set the mutable
reference to Some E . To receive from the channel, we read the value of the mutable reference in
a loop, until we see the None change to Some E . We then deallocate the mutable reference, and
return E . This gives us the following implementation:

new1 () ≜ ref None 2

send1 2 E ≜ 2 ← Some E 2

recv1 2 ≜ match ! 2 with

| Some E ⇒ free 2; E

| None ⇒ recv1 2

end

2

This implementation shows that safety also depends on the fact that clients only call recv1 once,
and does not call send1 after a completed recv1. These would otherwise result in a double-free
and use-after-free, which get stuck in the HeapLang semantics.

HeapLang has a sequentially consistentmemorymodel. In aweakermemorymodel, the store/load
instructions should use release/acquire memory order options (or stronger). Similar to most lit-
erature on Iris—with the exception of papers specifically focused on weak memory [Mével and
Jourdan 2021; Kaiser et al. 2017; Dang et al. 2020]—we ignore these concerns.

2.3 Session Channels

A session channel facilitates sequences of messages between two channel endpoints, which is
useful for implementing client-server style concurrency. Session channels have the following API:

new () Create a new session channel.
send 2 4 Send message 4 on channel 2 , and return a continuation channel.
recv 2 Receive a pair (E, 2′) of the message E and continuation channel 2′.
close 2 Send termination message.
wait 2 Wait for the termination message and deallocate the channel.

In this section we demonstrate how one-shot channels can be used to implement session channels.
The session channels are obtained by allocating and exchanging a new one-shot channel whenever
a value is sent. The new one-shot channel is then used as a continuation of the session. The session

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/base.v.html#line-6
https://apndx.org/pub/mpy9/base.v.html#line-13
https://apndx.org/pub/mpy9/base.v.html#line-7

Dependent Session Protocols in Separation Logic from First Principles (Functional Pearl) 214:7

channels are implemented as follows:

new () ≜ new1 () 2

send 2 E ≜ let 2′ = new1 () in send1 2 (E, 2′); 2′ 2

recv 2 ≜ recv1 2 2

close 2 ≜ send1 2 () 2

wait 2 ≜ recv1 2 2

The new function allocates an initial one-shot channel and returns it as the session channel. The
send function allocates a new one-shot channel, and sends it along the original channel with the
given message E , after which the new channel is returned. The recv function receives the value
and continuation channel pair using the original one-shot channel receive function. The close
function sends a final termination flag, without allocating a new one-shot channel, to terminate
the session. The wait function receives the final termination flag, which deallocates the channel.

For session channels to be used safely—i.e., to not cause memory errors such as use-after-free or
double-free—it is crucial that channel endpoints are used in a dual way. That is, if there is a send on
one endpoint, there should be a matching receive on the other endpoint, and vice versa. Similarly, a
close should match up with a wait. We discuss other options for closing channels in §5.

Example of using session channels. An example of using the session channels is as follows:

prog_add ≜
let 2 = new () in

fork {let (;, 2) = recv 2 in ; ← (! ; + 2); let 2 = send 2 () in wait 2} ;

let ; = ref 40 in

let 2 = send 2 ; in let (_, 2) = recv 2 in close 2;

assert(! ; = 42)

2

Here, the main thread initially creates a session channel 2 , which is shared between the main thread
and forked-off ‘worker’ thread. The main thread dynamically allocates a reference to 40, after which
it sends the reference over the channel. The worker thread receives the reference, adds 2 to it, and
sends a flag back, to signal that the reference has been updated. The main thread receives the flag
and then reads the updated value stored in the reference, and asserts that it is 42. Finally, the main
thread sends the closing signal, which is received by the worker thread. Each operation on the
channel binds the channel continuation to an overshadowing name 2 , to intuitively capture that
they keep working on the same session.
Similar to the example presented in §2.1, this program is safe if the assert succeeds and there

are no memory errors due to improper use of the channel API. Intuitively, this example achieves
safe access to the reference ; via ownership delegation over the channel. We verify this in §3.4.

2.4 Imperative Channels

Although session channels are more convenient to use than one-shot channels, they still require
us to continuously pass around new channel references. On top of session channels we therefore
define imperative channels, which have a traditional imperative channel API:

new_imp () Create a new imperative channel, and return a pair (21, 22) of two endpoints.
2.send(E) Send message E on channel 2 . Return nothing.
2.recv() Receive a message from channel 2 . Return only the message.
2.close() Send termination message and close the channel.
2.wait() Wait for termination message and close the channel.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/session.v.html#line-4
https://apndx.org/pub/mpy9/session.v.html#line-6
https://apndx.org/pub/mpy9/session.v.html#line-5
https://apndx.org/pub/mpy9/session.v.html#line-10
https://apndx.org/pub/mpy9/session.v.html#line-9
https://apndx.org/pub/mpy9/session.v.html#line-195

214:8 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

let (21, 22) = new_imp () in

fork {

let (=, B) = 22.recv() in

for(8 = 1..=) B ← 22.recv() + ! B

22 .send(())

22 .wait()

}

let B = ref(0) in

21.send((100, B))

for(8 = 1..100) 21.send(8)

21.recv()

21.close()

assert(! B == 5050)

— create channel between main and worker 2

— start the worker thread
— receive count = and answer reference B
— sum = received numbers
— signal that we are done
— wait for closing signal

— mutable reference to store the sum
— we will send 100 numbers to be summed into B
— send the numbers 1..100
— wait until the worker is done
— send closing signal
— assert that the received answer is correct

Fig. 2. An example program using the imperative channels.

4 5 6 7 8 9

22

worker thread

21

main thread

6
s

Fig. 3. The heap structure emerging from the example in Fig. 2, a�er the first 9 values [1, . . . , 9] have been

sent, and the first 3 [1, 2, 3] have been received and summed in the shared location B . The boxes with a number

= and next pointer ℓ indicate that the memory location contains Some(=, ℓ), and the empty box on the right

indicates that the memory location contains None.

We implement imperative channels in terms of session channels by storing a session channel in
a mutable reference:

new_imp () ≜ let 2 = new () in (ref 2, ref 2) 2

2.send(E) ≜ 2 ← send (! 2) E 2

2.recv() ≜ let (E, 2′) = recv ! 2 in 2 ← 2′; E 2

2.close() ≜ close (! 2); free 2 2

2.wait() ≜ wait (! 2); free 2 2

2.5 Emerging Linked List Buffers

We demonstrate the imperative API with the example from Fig. 2. The example creates a channel
to communicate between the main thread and the forked-off ‘worker’ thread. The main thread
allocates a reference B and sends the message (100, B) to the worker thread, which indicates that
the main thread is going to send 100 further number messages to the worker thread. The worker
thread receives each of these numbers, and mutates B to keep track of their sum. Finally, the worker
thread sends an empty acknowledgment message () to the main thread, indicating that it is done

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/imp.v.html#line-106
https://apndx.org/pub/mpy9/imp.v.html#line-4
https://apndx.org/pub/mpy9/imp.v.html#line-10
https://apndx.org/pub/mpy9/imp.v.html#line-6
https://apndx.org/pub/mpy9/imp.v.html#line-12
https://apndx.org/pub/mpy9/imp.v.html#line-14

Dependent Session Protocols in Separation Logic from First Principles (Functional Pearl) 214:9

with B and will not mutate B further. The main thread closes the session by sending the closing
signal, which the worker thread waits for. The main thread then reads the value of the sum from B ,
and asserts that it is correctly computed.
The linked structures that emerge during execution are displayed in Fig. 3. In the picture, the

main thread has sent the numbers [1, . . . , 9], while the worker thread has so far only received
[1, 2, 3]. At run time, the worker thread will have a reference to 22, which points to the head of a
linked list structure. When the worker thread receives the next message (4), it updates 22 to point
to the next linked list element, and adds the value of the message to B . The main thread also has a
reference to B , but it will not use it until the worker thread has sent the completion signal back,
to avoid race conditions. Instead, the main thread is still busy working on the other end of the
linked list. Each time the main thread sends a message, it allocates a new memory location, puts its
message into the tail, and updates the tail of the existing linked list to point to the new location.
This emergence of the linked list occurs because the send operation allocates a new one-shot
channel, represented as a memory location, and sends it along with the message. At a lower level
of abstraction, this results in a linked list buffer of messages, where each message is a pair of a
value and a continuation channel.

If the worker thread were to catch up with the main thread, it would wait until it sees a message.
When the main thread is done, it tries to receive a message using the last linked list node it has
created, which is initially still empty. When the client reaches that node, it puts the acknowledgment
() into it, signaling that the main thread may now read from B .1 More generally, the threads switch
roles when the polarity of the protocol changes: the thread that used to consume list cells now
creates new list cells, and vice versa.
Note that the emergence of the buffer as a bi-directional linked list is somewhat implicit. We

have built several layers of channels, but at no point did we have to think about the linked-list
run-time structure as a whole. We will see a similar phenomenon when doing the proofs: we never
need to think about the run-time structure as a whole. Instead, we will develop specifications in a
layered way, following the layers of the implementation.
In the remainder of this paper, we will develop specifications for these different layers (corre-

sponding to § 2.1 to 2.4), and prove the correctness of the channel implementations with respect to
these specifications. We can then use the specifications to verify this example in §3.5.

3 LAYERED SPECIFICATIONS AND VERIFICATION

As the reader may have noticed, the implementations in the preceding section are untyped. Rather
than assigning types to the channel APIs, we will provide separation logic specifications. These
allow us to prove functional correctness of programs that make use of the channel API. We prove
partial correctness, which guarantees that if a program satisfies a separation logic specification
with trivial precondition, then the program is safe, i.e., does not get stuck in the semantics due to
run-time type errors, use-after-free or double-free bugs, or failing assert expressions. In terms of
session types, our result should be compared with type safety and session fidelity. As is standard in
papers that use Iris, we do not prove deadlock freedom or termination (which would only be true
when assuming a fair scheduler as the spin-loop in recv1 could otherwise trivially loop).

In this section we first present the Iris separation logic that we use to verify our implementation
(§3.1). We then show how we verified the one-shot channel implementation using Iris primitives
(§3.2), and layer subprotocols on top of it (§3.3).We verify dependent separation protocol [Hinrichsen

1In §5.2 we will see a different way of closing the channel, which does not require this acknowledgment.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

214:10 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

Iris propositions:

%,& ∈ iProp ::= True | False | % ∧& | % ∨& | (Propositional logic)

∀G . % | ∃G . % | G = ~ | (Higher-order logic with equality)

% ∗& | % −∗ & | ℓ ↦→ E | {% } 4 {Q} | (Separation logic)

% | tokW | ⊲ % | . . . (Invariants, ghost state, and step indexing)

Separation logic:

Ht-frame

{% } 4 {F. &}

{% ∗ '} 4 {F. & ∗ '}

Ht-val

{True} E {F.F = E}

Ht-fork

{% } 4 {True}

{% } fork {4} {True}

Heap manipulation:

Ht-alloc

{True} ref E {ℓ . ℓ ↦→ E}

Ht-load

{ℓ ↦→ E} ! ℓ {F. (F = E) ∗ ℓ ↦→ E}

Ht-store

{ℓ ↦→ E} ℓ ← F {ℓ ↦→ F }

Ht-free

{ℓ ↦→ E} free ℓ {True}

Invariants*, ghost state, and step indexing:

Ht-inv-alloc

{ % ∗&} 4 {Q}

{⊲ % ∗&} 4 {Q}

Ht-inv-open-close

4 is atomic {⊲ % ∗&} 4 {F. ⊲ % ∗ '}

{ % ∗&} 4 {F. '}

Ht-later-frame

4 is not a value {% } 4 {F. &}

{% ∗ ⊲'} 4 {F. & ∗ '}

Ht-later-timeless

' is timeless {% ∗ '} 4 {F. &}

{% ∗ ⊲'} 4 {F. &}

Ht-ghost-alloc

{% ∗ ∃W . tokW } 4 {Q}

{% } 4 {Q}

Tok-excl

tokW ∗ tokW

False
---∗

Löb

⊲ % −∗ %

%
---□

Fig. 4. The grammar and a selection of rules of Iris.

*Iris uses masks to prevent opening the same invariant twice during a single step, as that is unsound [Jung

et al. 2018]. We omit details about this mechanism because we only open at most one invariant at every step.

et al. 2020, 2022] specifications of our session channel implementation directly on top of our one-
shot specifications (§3.4). Finally, we verify our imperative channel implementation in terms of the
session channel specifications (§3.5).

3.1 The Iris Separation Logic

To specify and verify the channel implementations and example clients, we use the Iris separation
logic. Fig. 4 shows the grammar and a selection of rules of the subset of Iris that we use. Iris provides a
program logic for HeapLangwith Hoare-triples {% } 4 {Q} , which express that given the precondition
(% : iProp), the program (4 : Expr) is safe to execute, and yields the postcondition (Q :Val→ iProp).
We often write {% } 4 {F. &} ≜ {% } 4 {_F. &} and {% } 4 {&} ≜ {% } 4 {_F. F = () ∗ &} .

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

Dependent Session Protocols in Separation Logic from First Principles (Functional Pearl) 214:11

Protocols: ? ∈ Prot ≜ {Send,Recv} × (Val→ iProp) 2

Dual: (Send,Q) ≜ (Recv,Q) (Recv,Q) ≜ (Send,Q) 2

Points-to: 2 base ? ∈ iProp where ? ∈ Prot and 2 ∈Val 2

New: {True} new1 () {2. 2 base ? ∗ 2 base ?} 2

Send: {2 base (Send,Q) ∗ Q E} send1 2 E {True} 2

Receive: {2 base (Recv,Q)} recv1 2 {Q} 2

Fig. 5. Separation logic specifications for one-shot channels.

Iris is a separation logic [O’Hearn et al. 2001], meaning that propositions assert ownership over
resources, such as references. This is made precise by the separation logic connectives, such as the
separating conjunction % ∗ & , which describes that the propositions % and & holds for separate
parts of the heap. In particular, this lets us derive exclusivity of references; it is impossible to
separately own the same reference: ℓ ↦→ E ∗ ℓ ↦→ F −∗ False. Here −∗ is the “separating implication”
connective. It acts similarly to the regular implication, but for separation logic.
Separation logic facilitates modular verification, by virtue of the framing rule Ht-frame, which

states that we can verify programs 4 in the presence of separate resources '. Non-structured
concurrency is supported by the Ht-fork rule. Finally, Iris enjoys the conventional rules for mutable
references Ht-alloc, Ht-load, Ht-store, and Ht-free, which respectively allow allocating, reading,
updating, and freeing mutable references.
We use Iris’s impredicative invariants % , ghost state tokens tokW , and later modality ⊲ % . We

further discuss the meaning and importance of these connectives throughout the section.

3.2 One-Shot Channels

In Fig. 5 we show separation logic specifications for the one-shot channel implementation from
§2.2. These specifications make use of one-shot protocols that describe the protocol for a one-shot
channel. As a one-shot channel communicates a value, the protocol will carry a predicate describing
which values are allowed to be communicated with that channel. Additionally, the protocol says
whether we are allowed to send or receive. Therefore, we represent one-shot protocols as a pair
(tag,Q) where tag ∈ {Send,Recv} and Q ∈ Val → iProp. The predicate Q is a separation logic
predicate, so that protocols can express transfer of ownership.

To link protocols to actual channels, we shall define a channel points-to predicate 2 base (tag,Q).
The channel points-to provides unique ownership of one end of the channel and says that channel
2 satisfies protocol (tag,Q). The channel points-to is analogous to the normal points-to ℓ ↦→ E of
separation logic, in the sense that a points-to assertion is required to verify an invocation of a
channel operation. The definition can be found in Fig. 6, but we will first discuss how it is used in
the Hoare rules for the channel operations.

When we create a new channel using new1 (), we may choose the protocol predicateQ , and we
get two channel points-tos: 2 base (Send,Q) and 2 base (Recv,Q). Note that we get both channel
points-tos for the same channel 2 , because the same memory location is used for both ends of the
channel, and the two channel points-tos represent ownership of the two ends of the channel, which
give two different views of the same memory location. As we shall see in §3.2, this is achieved by
moving the ownership of the primitive heap points-to of the memory location into an invariant,

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/base.v.html#line-22
https://apndx.org/pub/mpy9/base.v.html#line-41
https://apndx.org/pub/mpy9/base.v.html#line-37
https://apndx.org/pub/mpy9/base.v.html#line-54
https://apndx.org/pub/mpy9/base.v.html#line-62
https://apndx.org/pub/mpy9/base.v.html#line-73

214:12 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

which allows us to share it. In accordance with session types, and to state the specification of
new1 () in a symmetric manner (Fig. 5), we introduce the dual function on protocols, given by

(Send,Q) ≜ (Recv,Q) and (Recv,Q) ≜ (Send,Q).
Once we have the two channel-point-to predicates we may give one of them to another thread,

and keep one of them in the current thread. This way we ensure that two threads use the protocol
to agree on how the channel will be used.

We may then use the send1 and recv1 operations to perform the communication. The send1 2 E
operation requires ownership of 2 base (Send,Q) as well as Q E in its precondition. Dually, the
recv1 2 operation requires ownership of 2 base (Recv,Q) in its precondition. Its postcondition
guarantees that recv1 2 returns a value E that satisfiesQ E . With these specifications we can verify
the example presented in §2.2 with the following protocol:

psingle ≜ (Send, _(E :Val). ∃(ℓ : Loc). E = ℓ ∗ ℓ ↦→ 42) 2

This protocol expresses that the exchanged value E is a location ℓ . We transfer the ownership of the
exchanged reference ℓ along with the message. With this, we can symbolically apply the one-shot
channel specifications, and finally assert that the value read from the received reference is 42.

Verifying the implementation with respect to the specification. We now prove that the
one-shot channel implementation satisfies its specification. To do this, we define the channel points-
to 2 base ? in terms of Iris logic primitives (namely, ordinary points-to, ghost state and invariants).
We then prove that the specifications for new1,send1 and recv1 follow from the rules of Iris. We
first present the two key concepts from Iris needed for our proof: ghost state and invariants.

Ghost state. Ghost state is logical state that we can use to logically coordinate between parallel
threads. Compared to the standard approach to ghost state in concurrency verification [Owicki
and Gries 1976], ghost state in Iris is not part of the program text. It is introduced and manipulated
solely in proofs. Just as the physical heap keeps track of the values of memory locations, Iris has
a ghost heap that keeps track of the values of ghost locations. In our case we only need the very
simplest form of ghost state: we need pure ownership over ghost heap locations; we do not need
to store further information in the ghost locations. Given the ghost location W , we have the ghost
resource tokW , which is analogous to ℓ ↦→ (), i.e., a location that points to a unit value. It may seem
a bit puzzling that ghost locations that do not store any interesting contents can be helpful in a
proof. The key is that ghost locations have the same exclusivity as memory locations. That is, we
have the Tok-excl rule that says it is impossible to have ownership of two ghost locations with
the same name: tokW ∗ tokW −∗ False. We shall see why this is useful in a moment. Finally, we can
always allocate new pieces of ghost state, using the Ht-ghost-alloc rule.

Invariants. The points-to resource ℓ ↦→ E is an affine resource, and cannot be duplicated. This
is a problem for verifying concurrent programs, where we would like to use the same memory
location from multiple threads: when we fork off a child thread, we would like to keep ownership
over the memory location in both the main thread and the child thread.
To solve this issue, concurrent separation logic has the notion of invariants. At any moment in

the proof where we have ownership over % ∈ iProp, we can choose to establish % as an invariant,
denoted % ∈ iProp. This is formally described by the Ht-inv-alloc rule. The advantage of an
invariant is that it can be freely duplicated, i.e., % −∗ % ∗ % . In turn, we cannot directly access
the % inside the invariant. Instead, we can only temporarily access it when the program takes an
atomic step, such as a memory load ! ℓ or store ℓ ← E . After the atomic step has happened, we must
immediately put % back into the invariant. This is formally described by the Ht-inv-open-close rule,
where the resources ⊲ % are the resources that are temporarily removed from the invariant. In the

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/base.v.html#line-130

Dependent Session Protocols in Separation Logic from First Principles (Functional Pearl) 214:13

precondition of the rule, we obtain access to the resources ⊲ % taken out of the invariant, and in the
postcondition we have to give back the resources ⊲ % , which represents putting them back into the
invariant. The proposition % inside an invariant is typically a disjunction of several states, where
the states may assert ownership over memory locations using ℓ ↦→ E , and may assert that E has
certain properties in that state. A state may also assert ownership over ghost resources.
Iris’s invariants are impredicative [Svendsen and Birkedal 2014], which effectively lets us nest

invariants inside of invariants, because % ∈ iProp for every % ∈ iProp, including % = & . Nesting
of invariants is critical for the verification of our session channels, as will be covered in §3.4. To
maintain soundness of the Iris logic, resources % extracted from an invariant % are guarded by a
later modality ⊲ % [Nakano 2000; Appel et al. 2007]. This later can be seen in the Ht-inv-open-close

rule. Resources ⊲ % behind a later modality can only be used after the program does the next step of
execution. This is formally expressed by the Ht-later-frame rule, which states that one can frame
resources under a later, if the program has not terminated. Another means of stripping laters is
if the guarded resources are timeless (Ht-later-timeless). Pure propositions, reference ownership
(ℓ ↦→ E) and ghost ownership (tokW) are timeless, which means when we open an invariant, we can
immediately remove the later from these connectives.

The one-shot channel invariant. To verify the one-shot channels, we need to define the
connective 2 base ? , whose key ingredient is an invariant. To explain the invariant, we start with a
key observation. The one-shot channel can be in three different states: (1) no message has been
sent (ℓ ↦→ None), (2) a message has been sent but not received (ℓ ↦→ Some E), and (3) the message
has been both sent and received (ℓ has been deallocated). These states are reflected in the invariant
chan_inv W1 W2 ℓ Q defined in Fig. 6. The arguments W1 and W2 are two ghost locations, whereas ℓ is
the physical memory location where the channel is located, andQ is the predicate associated with
the protocol. The invariant captures each state with a separate disjunct. By virtue of the exclusion
of the ghost resources, it is then possible to exclude possible states, based on local ghost ownership.
In particular, if one owns tokW1, the invariant must be in the first state (as the other states assert
ownership of the token). Similarly, if one owns tokW2, the invariant cannot be in the final state.
The proof then follows by letting the sender own tokW1 and the receiver own tokW2, to let them
locally determine which state the invariant is in, by the exclusivity rule of the ghost resources.
More formally, with the invariant in place, we can define the channel points-to 2 base (tag,Q),

as presented in Fig. 6. The definition captures (1) that 2 is a reference (2 = ℓ), (2) that the invariant
is established (chan_inv W1 W2 ℓ Q), (3) that the endpoint has ownership of either tokW1 or tokW2,
if they are the sender or receiver, respectively. The later modalities (⊲) in the definition of 2 base ?

are needed to support infinite protocols via guarded recursion (§4).
Initially, when creating a channel, we establish the invariant in the first state, using the Ht-inv-

alloc rule. We then duplicate the invariant, and create 2 base (Send,Q) and 2 base (Recv,Q) using
the two copies of the invariant, as well as tokW1 and tokW2, respectively, which are created by two
applications of the Ht-ghost-alloc rule.

When the sender wants to send their message E , they temporarily open the invariant using the
Ht-inv-open-close rule, and determine that they are in the first state, based on their tokW1 token.
They then get ownership over the reference ℓ ↦→ None. The sender then modifies the location to
contain the sent value Some E , and transfers the ownership back into the invariant. The sender also
puts the token tokW1 into the invariant, as well as the resourcesQ E captured by the protocol. The
invariant is restored in the second state.

When the receiver wants to receive, it temporarily opens up the invariant, using the Ht-inv-open-
close rule, to get ownership over the reference. It reads the location, and if the value is None, it
determines that it is in the first state, and so it loops. Once a value Some E is read, it is determined that

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

214:14 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

chan_inv W1 W2 ℓ Q ≜ (ℓ ↦→ None︸ ︷︷ ︸
(1) initial state

) ∨ (∃E . ℓ ↦→ Some E ∗ tokW1 ∗ Q E
︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (tokW1 ∗ tokW2
︸ ︷︷ ︸

(3) final state

) 2

2 base (tag,Q) ≜ ∃W1, W2, ℓ . ⊲(2 = ℓ) ∗ chan_inv W1 W2 ℓ Q ∗ ⊲

{
tokW1 if tag = Send

tokW2 if tag = Recv
2

Fig. 6. The channel invariant and channel points-to definition.

we are in the second state, and so the receiver deallocates the reference. The receiver additionally
takes theQ E resource out of the invariant, and re-establishes the invariant by putting its token
tokW2 into the invariant, which restores it in the third state.
The rule for new1 is then proven as follows. We obtain ownership over the location ℓ ↦→ None

because new1 allocates the reference. We also allocate two new ghost locations tokW1 and tokW2
obtaining the identifiers W1 and W2. We establish the invariant using the first disjunct, by putting
ℓ ↦→ None into the invariant, and allocate it with the Ht-inv-alloc rule. We then duplicate the
invariant, and create 2 base (Send,Q) and 2 base (Recv,Q) using the two copies of the invariant,
as well as tokW1 and tokW2, respectively.

3.3 Subprotocols

We define a subprotocol relation on dependent separation protocols as introduced by Actris [Hinrich-
sen et al. 2022], analogous to subtyping on session types [Gay and Hole 2005]. Whereas subtyping
between session types is established by subtyping between the messages, the subprotocol relation
between protocols is established by implications between the separation logic predicates.2

The subprotocol relation is denoted ? ⊑ @ where ?, @ are protocols, and is defined as follows:

(tag1,Q1) ⊑ (tag2,Q2) ≜

∀E . Q2 E −∗ Q1 E if tag1 = tag2 = Send

∀E . Q1 E −∗ Q2 E if tag1 = tag2 = Recv

False if tag1 ≠ tag2

2

This relation is reflexive and transitive, and ? ⊑ @ iff @ ⊑ ? . We layer subprotocols on top of our
specification for one-shot channels by defining a new channel points-to 2 ? that is explicitly
closed under subprotocols:

2 ? ≜ ∃@. ⊲(@ ⊑ ?) ∗ 2 base @ 2

We do not use a superscript on 2 ? because we consider it to be the main channel points-to,
whereas we view 2 base @ as an internal notion. This channel points-to satisfies a subsumption

like rule: (2 ?) ∗ ⊲(? ⊑ @) −∗ (2 @), which is proved by transitivity of ⊑. The use of the later
modality (⊲) is discussed in §4. 2

We can prove versions of the specifications for new1, send1, and recv1 for . These proofs are
straightforward, because we can prove these specifications using the existing specifications for
base from Fig. 5, by using ? ⊑ @ at appropriate points to convert aQ1 E intoQ2 E or vice versa. In

2Similarly to asynchronous subtyping [Mostrous et al. 2009; Mostrous and Yoshida 2015], the Actris subprotocols also
enjoy asynchronous subtyping, which allow swapping sends in front of receives. Actris supports this due to its two-buffer
semantics. As the semantics of our session channels, as built on single shot channels, corresponds to a single-buffer semantics,
asynchronous subtyping is unsound in our setting. Our notion of subprotocols therefore focuses on the implication between
separation logic predicates, and does not allow swapping sends in front of receives.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/base.v.html#line-31
https://apndx.org/pub/mpy9/base.v.html#line-37
https://apndx.org/pub/mpy9/sub.v.html#line-7
https://apndx.org/pub/mpy9/sub.v.html#line-34
https://apndx.org/pub/mpy9/sub.v.html#line-40

Dependent Session Protocols in Separation Logic from First Principles (Functional Pearl) 214:15

Protocols: (!G ⟨E⟩{% }. p | ?G ⟨E⟩{% }. p | !end | ?end) ∈ Prot 2

Dual: !G ⟨E⟩{% }. p = ?G ⟨E⟩{% }. p ?G ⟨E⟩{% }. p = !G ⟨E⟩{% }. p 22

!end = ?end ?end = !end p = p 222

New: {True} new () {2. 2 p ∗ 2 p} 2

Send: {2 (!G ⟨E⟩{% }. p) ∗ % C } send 2 (E C) {2′ . 2′ (p C)} 2

Receive: {2 (?G ⟨E⟩{% }. p)} recv 2 {F. ∃~, 2′ . F = (E ~, 2′) ∗ 2′ (p ~) ∗ % ~} 2

Close: {2 !end} close 2 {True} 2

Wait: {2 ?end} wait 2 {True} 2

Fig. 7. Dependent Separation Protocols and session channel specifications

particular, we apply this conversion in the send rule just before sending the message, and in the
receive rule just after receiving the message. We also trivially have (2 base ?) −∗ (2 ?), which is
used to prove the new1 rule for . 2222

3.4 Session Channels

Now that we have established the specifications for the one-shot channels, we move on to the next
layer: multi-shot session channels. A prominent approach to specifying and verifying multi-shot
channels is the concept of session types [Honda 1993], which lets a user ascribe session channel
endpoints with a sequence of obligations to send or receive messages of certain types. More
recently, the session type approach has been adopted in the separation logic setting [Craciun et al.
2015; Hinrichsen et al. 2022]. One such adaptation is Dependent Separation Protocols [Hinrichsen
et al. 2022]. Rather than ascribing types to each exchange, dependent separation protocols ascribe
logical variables, physical values, and propositions. The dependent separation protocols and the
specifications for the session channels can be seen in Fig. 7.

The dependent separation protocols consists of four constructors: !G ⟨E⟩{% }. p, ?G ⟨E⟩{% }. p, !end,
and ?end. The first two constructors describe the permission to send or receive the logical variable G ,
the value E , and the resources % , respectively, after which they follow the protocol tail p. Here,
G binds into all of the remaining constituents. We often omit the binder when it is of the unit
type: e.g., ! ⟨E⟩{% }. p. We similarly often omit the proposition if it is True: e.g., !G ⟨E⟩. p. The last
two constructors specify that the protocol has ended, meaning that no further operations can be
made on the channel, and the channel can be closed. We further detail alternative specifications for
closing and deallocation in §5.
The protocols are subject to the same notion of duality, as presented in § 3.2. The dual of a

protocol is the same sequence of obligations, where the polarity has been flipped, i.e., all sends (!)
become receives (?), and vice versa, as made precise by the rules of the figure. Finally, we use the
same channel endpoint ownership 2 p as for the one-shot channels, as the dependent separation
protocols share the same type as the one-shot protocols, as will be seen momentarily.
The dependent separation protocols can be used to specify and verify session channels. As an

example, the following dependent separation protocol specifies the interactions of the prog_add
example from §2.3:

prot_add ≜ ! ((ℓ, G) : Loc × Z) ⟨ℓ⟩{ℓ ↦→ G}. ?⟨()⟩{ℓ ↦→ G + 2}. !end 2

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/base.v.html#line-22
https://apndx.org/pub/mpy9/session.v.html#line-167
https://apndx.org/pub/mpy9/session.v.html#line-173
https://apndx.org/pub/mpy9/session.v.html#line-163
https://apndx.org/pub/mpy9/session.v.html#line-165
https://apndx.org/pub/mpy9/base.v.html#line-87
https://apndx.org/pub/mpy9/session.v.html#line-28
https://apndx.org/pub/mpy9/session.v.html#line-41
https://apndx.org/pub/mpy9/session.v.html#line-32
https://apndx.org/pub/mpy9/session.v.html#line-59
https://apndx.org/pub/mpy9/session.v.html#line-52
https://apndx.org/pub/mpy9/sub.v.html#line-37
https://apndx.org/pub/mpy9/sub.v.html#line-47
https://apndx.org/pub/mpy9/sub.v.html#line-55
https://apndx.org/pub/mpy9/sub.v.html#line-63
https://apndx.org/pub/mpy9/session.v.html#line-206

214:16 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

The protocol says that one must first send a reference to a number (captured by the logical variable
(ℓ, G) : Loc × Z)), along with the ownership of the reference ℓ ↦→ G . Afterwards, the updated
reference can be reacquired, followed by the protocol termination. The dual of the protocol is
?((ℓ, G) : Loc × Z) ⟨ℓ⟩{ℓ ↦→ G}. ! ⟨()⟩{ℓ ↦→ G + 2}. ?end.

The notion of duality is used in the specification for new. The specification states that we obtain
separate exclusive ownership of the returned endpoint 2 , one with a freely picked protocol p and the
other with its dual p. This mimics the intuition from the one-shot channel, in which one endpoint
had to release the specified resources, while the other could acquire them. The specification for
send states that in order to send, the channel endpoint must have a sending protocol, and we must
give up the specified resources % C , for a specific instantiation C of the variable G . Additionally,
the sent value must correspond to the protocol, for the variable instantiation E C . As a result, the
returned channel endpoint follows the protocol tail 2′ p C , for the same variable instantiation.
Conversely, the specification for recv states that we can receive if the channel endpoint has a
receiving protocol. As a result we obtain an instance of the logical variable ~, and the resources
specified by the protocol & ~. Additionally, the returned value is exactly the one specified by the
protocol E ~, and the new endpoint follows the protocol tail 2′ p ~. The prog_add example can
now be verified using the prot_add protocol. 2

Verification of the session channel specifications. The definitions of the dependent sepa-
ration protocols and the specification rules presented in Fig. 7 are derived directly on top of the
one-shot channel definitions and specifications. In particular, the type of dependent separation
protocols is the same as the one for the one-shot channel protocols, namely Prot. The definition of
the receiving protocol is as follows:

recv_prot (g : Type) (E : g →Val) (% : g → iProp) (p : g → Prot) : Prot ≜

(Recv, _(A :Val). ∃(G : g), (2 :Val) . A = (E G, 2) ∗ % G ∗ 2 p G)

?(G : g) ⟨E⟩{% }. p ≜ recv_prot g (_G. E) (_G . %) (_G . p)

2

The recv_prot constructor takes four arguments, and constructs a receiving one-shot channel
protocol. In particular the constructor takes the type of its logical variable g , the exchanged value E ,
the exchanged proposition % , and the protocol tail p. The latter three arguments all abstract over
the protocol variable, which is existentially quantified in the protocol body. The second projection
captures that the actual exchanged value is a tuple of the value specified by the protocol (E G), and the
continuation (2). It additionally includes ownership of the resources specified by the protocol (% G),
and finally a one-shot channel ownership, of the continuation with the protocol tail (2 (p G)).
The notation ?(G : g) ⟨E⟩{% }. p then simply lets us instantiate the receiving constructor, without
explicitly repeating the variable abstraction for the three constituents.

The duality function of the session channels is the same as the one for the one-shot channel. We
define the sending constructor in terms of the receiving one, using the duality function as follows:

!G ⟨E⟩{% }. p ≜ ?G ⟨E⟩{% }. p 2

To specify the close and wait operations we define two session protocols:

?end ≜ (Recv, _A . A = ()) 2

!end ≜ ?end 2

Finally, the channel endpoint ownership 2 p is identical to the one for the one-shot channels,
as the type of the protocols are the same, they simply carry channel continuations now. This
immediate reuse of the one-shot ownership is made possible by the higher-order nature of Iris. In
particular, the internal invariant of the endpoint ownership refers to the session protocols, which

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/session.v.html#line-208
https://apndx.org/pub/mpy9/session.v.html#line-17
https://apndx.org/pub/mpy9/session.v.html#line-20
https://apndx.org/pub/mpy9/session.v.html#line-24
https://apndx.org/pub/mpy9/session.v.html#line-26

Dependent Session Protocols in Separation Logic from First Principles (Functional Pearl) 214:17

internally includes a nested endpoint ownership, and so on. By virtue of the step-indexing of Iris,
this is sound as we always take a step for each unfolding of the nested invariants.

With these definitions the soundness of the session channel specifications (Fig. 7) follow almost
immediately from the sound specifications of the one-shot channel operations send1 and recv1.

Subprotocols for session protocols. We have a notion of subprotocols for one-shot protocols
(§3.3), but what about dependent session protocols? Because we have defined session protocols as
particular forms of one-shot protocols, we get the appropriate notion of subprotocols for session
protocols for free. The following lemmas for session subprotocols (and the imperative derivation
on top of them) are already true and easily derived from the subprotocol rules in §3.3:

∀G1. Q1 G1 −∗ ∃G2 . (E1 G1 = E2 G2) ∗ Q2 G2 ∗ ⊲(p1 G1 ⊑ p2 G2)

?G1 ⟨E1⟩{Q1}. p1 ⊑ ?G2 ⟨E2⟩{Q2}. p2
2

∀G2. Q2 G2 −∗ ∃G1 . (E2 G2 = E1 G1) ∗ Q1 G1 ∗ ⊲(p1 G1 ⊑ p2 G2)

!G1 ⟨E1⟩{Q1}. p1 ⊑ !G2 ⟨E2⟩{Q2}. p2
2

At a high level, these lemmas state that a session protocol is a subprotocol of another, if for each
logical message in the first protocol, there exists an appropriate logical message in the second
protocol, such that we have a separating implication between separation logic assertions, and the
tails of the protocols are in a subprotocol relationship. The stated lemmas are somewhat stronger
than this high-level description; for instance, the user of the lemmas gets access to the assertion
Q1 G1 before having to provide the corresponding logical message G2 for the other protocol. As
an example, this strengthening allows one to perform a form of framing of resources within a
protocol: if a resource is provided by an earlier send and needed by a later receive, we can frame
these two resources (i.e., remove both from the protocol by canceling them out). This property can
be illustrated by the following rules:

!G ⟨E⟩{% }. ?G ⟨F⟩{&}. p ⊑ !G ⟨E⟩{% ∗ '}. ?G ⟨F⟩{& ∗ '}. p 2

?G ⟨E⟩{% ∗ '}. !G ⟨F⟩{& ∗ '}. p ⊑ ?G ⟨E⟩{% }. !G ⟨F⟩{&}. p 2

3.5 Imperative Channels

Because our session channels create new pointers at each step, they return new channels, and are
thus inconvenient to work with. For that reason, we have our final layer: the imperative channels
from §2.4. These channels put a session channel in a mutable reference, so that we can use the
same mutable reference throughout and use mutating operations to change the reference to a new
session channel upon send and receive operations. To handle these channels, we introduce a new
channel points-to 2 imp

p. The specifications for the imperative channels can be found in Fig. 8.
We note a couple of differences with respect to the session channels:

• The new_imp operation returns a pair of channels now, so the points-to connectives in the
postcondition are for the two components of the pair.
• The send operation does not return a value. The new channel points-to in the postcondition
refers to the original channel instead.
• The recv operation only returns one value—the message. The channel points-to in the
postcondition once again refers to the original channel.

Verifying the imperative channel specifications. To verify the session channels we first
define a new connective for channel endpoint ownership:

2
imp

p ≜ ∃(ℓ : Loc), (2′ :Val). 2 = ℓ ∗ ℓ ↦→ 2′ ∗ 2′ p 2

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/session.v.html#line-66
https://apndx.org/pub/mpy9/session.v.html#line-77
https://apndx.org/pub/mpy9/session.v.html#line-85
https://apndx.org/pub/mpy9/session.v.html#line-96
https://apndx.org/pub/mpy9/imp.v.html#line-21

214:18 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

Points-to: 2
imp

? ∈ iProp where ? ∈ Prot and 2 ∈Val 2

New: {True} new_imp () {F. ∃21, 22. F = (21, 22) ∗ 21
imp

? ∗ 22
imp

?} 2

Send: {2
imp
(!G ⟨E⟩{% }. p) ∗ % C } 2.send(E C) {2

imp
(p C)} 2

Receive: {2
imp
(?G ⟨E⟩{% }. p)} 2.recv() {F. ∃~. F = E ~ ∗ 2

imp
(p ~) ∗ % ~} 2

Close: {2
imp

!end} 2.close() {True} 2

Wait: {2
imp

?end} 2.wait() {True} 2

Fig. 8. Separation logic specifications for imperative channels.

The new imperative channel ownership connective 2 imp
p simply lifts the original connective

2′ p to assert ownership of a mutable reference.
With this definition in hand, verifying the specification is trivial. We simply use the Iris rule

for allocating, reading, and updating the reference, along with the specifications for the original
channel endpoint ownership, to resolve the operations on the channel.

Because the new channel-points-to is defined in terms of the old one, the results of subprotocols
easily lift to the imperative channels. 2

Verifying the example. We now explain how these specifications can be used to verify the
example from Fig. 2. The example starts by allocating a new channel, so we use the specification
for new_imp. In order to use this specification, we have to choose the session protocol p. We use
the following protocol:

prot_sum′ G = ≜ if = = 0 then (?⟨()⟩{B ↦→ G}. !end) 2

else (! (~ : N) ⟨~⟩. prot_sum′ (G + ~) =)

prot_sum ≜ ! ((=, B) : N × Loc) ⟨(=, B)⟩{B ↦→ 0}. prot_sum′ 0 = 2

The protocol prot_sum says that we will first send the pair (=, B) of a number and a location, and
the assertion that B ↦→ 0. We then continue with the protocol prot_sum′ 0 =, which is recursively
defined. Its first argument keeps track of the sum of the messages sent so far, and the second
argument keeps track of how many messages we still have to send. When the counter = = 0, we
stop sending and instead receive a unit value, as well as the assertion that B ↦→ G , i.e., the sum of
the messages sent.

After the channel allocation, we have 21
imp

prot_sum and 22
imp

prot_sum. We verify the first
interaction using the first step of prot_sum. We prove the loops correct using induction: the main
thread does induction on 100, and the child thread induction on the received message = (which will
be 100, but the child thread does not know this). After the final synchronization, the ownership
over B has been transferred back to the main thread. According to the protocol, the location B points
to the value 1 + 2 + · · · + 100, which is equal to 5050 by mathematical reasoning. 2
As the reader can see, the reasoning about the pointer structure of the buffers is completely

encapsulated in the higher-level session specifications. The nondeterminism present due to the
asynchronous semantics of the send operation does not need to be reasoned about explicitly:
although the depth of the linked list buffer changes non-deterministically according to the thread
scheduling of the sends and receives, the proof does not explicitly reason about this at all.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/imp.v.html#line-21
https://apndx.org/pub/mpy9/imp.v.html#line-24
https://apndx.org/pub/mpy9/imp.v.html#line-50
https://apndx.org/pub/mpy9/imp.v.html#line-39
https://apndx.org/pub/mpy9/imp.v.html#line-71
https://apndx.org/pub/mpy9/imp.v.html#line-61
https://apndx.org/pub/mpy9/imp.v.html#line-81
https://apndx.org/pub/mpy9/imp.v.html#line-127
https://apndx.org/pub/mpy9/imp.v.html#line-134
https://apndx.org/pub/mpy9/imp.v.html#line-184

Dependent Session Protocols in Separation Logic from First Principles (Functional Pearl) 214:19

4 GUARDED RECURSION

Aswe have seen in the example in §3.4, we can already create some recursive protocols by employing
recursion over natural numbers (or other inductively-defined data types in Coq). Recursion over
natural numbers lets us verify the example from Fig. 2 where one side sends a number =, and then
sends = further messages. Although recursion on inductive types is powerful, it does not allow
us to create protocols for truly infinite interactions with services that run forever. We can create
protocols that support truly infinite interactions with Iris’s operator for guarded recursion.
Iris models guarded recursion via step-indexing [Appel and McAllester 2001; Ahmed 2004],

meaning that separation logic propositions iProp are internally monotone predicates of a natural
number 8 , the step index. Intuitively, the meaning of such a proposition is given by taking the limit
to ever higher step indices. This allows us to model infinite protocols as a step-indexed protocol
of unboundedly increasing depth. Iris does not expose the step index to the user of the logic, so
we cannot define protocols by direct recursion over 8 . Instead, Iris provides a logical account of
step-indexing [Appel et al. 2007; Dreyer et al. 2011] through the later modality ⊲ % [Nakano 2000],
and a guarded recursion operator `G .� G for constructing recursive predicates. The � G must be
contractive in the sense that recursive occurrences of G in � must only occur under a later ⊲. This
ensures that creating such a recursive predicate does not result in any logical paradoxes. Our
protocols Prot ≜ (Send | Recv) × (Val→ iProp) contain separation logic predicates over values, so
we can make direct use of Iris’s guarded recursion mechanism to define recursive protocols.

The reader may have noticed that we have already inserted the later modality ⊲ in certain places
in our definitions, such as in the definition of 2 base ? (§3.2). This is to make sure that 2 base ? is
contractive in ? , which in turn means that !G ⟨E⟩{% }. p and ?G ⟨E⟩{% }. p are contractive in p. 2We
are therefore able to take guarded fixpoints of protocols, to create unbounded or infinite protocols,
such as the following recursive variant of prot_add:

prot_add_rec ≜ `p. ! ((ℓ, G) : Loc × Z) ⟨ℓ⟩{ℓ ↦→ G}. ?⟨()⟩{ℓ ↦→ G + 2}. p 2

A second component of guarded recursion is Iris’s support for Löb induction. Löb induction allows
us to verify unbounded or infinitely recursive programs that use recursive protocols. Ordinary in-
duction only gives us an induction hypothesis for recursive calls where some measure is decreasing,
and hence only works for terminating loops. Löb induction, on the other hand, gives us an induction
hypothesis for any recursive call (not necessarily decreasing), but this induction hypothesis will be
guarded under a later (⊲). These laters maintain logical consistency, but the resources guarded by
them may only be accessed after the next primitive program step. In this manner, Löb induction
allows us to verify partial correctness of a program that sends a stream of messages in an infinite
tail-recursive loop, by instantiating the channel with the preceding recursive protocol.

The recursive protocols combined with Löb induction allow us to verify recursive programs such
as the following recursive variant of the prog_add program from §2.3:

prog_add_rec ≜
let (21, 22) = new_imp () in

fork {(rec f 21 = let ; = 21.recv() in ; ← (! ; + 2); 21.send(()); 5 21) 21} ;

let ; = ref 38 in

22.send(;); 22 .recv(); 22.send(;); 22 .recv();

assert(! ; = 42); 22

2

Here, rec f G = 4 is a recursive function, where the recursive occurrence is bound to 5 . Verifying the
program is straightforward. Notably, the main thread unfolds the recursive protocol prot_add_rec
twice, to verify its code. The forked-off thread is resolved using Löb induction. It unfolds the

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/base.v.html#line-107
https://apndx.org/pub/mpy9/session.v.html#line-239
https://apndx.org/pub/mpy9/session.v.html#line-225

214:20 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

recursive protocol once, verifies one iteration, after which it uses the Löb induction hypothesis to
verify the recursive call. 2

Similar to Actris [Hinrichsen et al. 2022, §9.1], recursion is not only permitted via the tail p,
but also via the proposition % in the protocols ?G ⟨E⟩{% }. p and !G ⟨E⟩{% }. p, making it possible to
construct recursive protocols such as `p. ! 2 ⟨2⟩{2 p}. !end. We are allowed to construct such
protocols because 2 p is contractive in p. Also similar to Actris [Hinrichsen et al. 2022, §6.4], we
can use Löb induction to prove that an infinitely recursive protocol is a subprotocol of another. The
later modalities (⊲) in the rules for subprotocols (page 17) make it possible to remove a later from the
Löb induction hypothesis. The same approach applies to protocols such as `p. ! 2 ⟨2⟩{2 p}. !end
because the subsumption rule (2 ?) ∗ ⊲(? ⊑ @) −∗ (2 @) contains a later modality.

Making recursion and Löb induction interact properly requires careful placement of later modali-
ties in the definitions of the channel points-to connectives. For example, to prove the subsumption
rule (2 ?) ∗ ⊲(? ⊑ @) −∗ (2 @) for other forms of channel closure in §5, we need to consider
the case that ? = end and @ ≠ end. We only obtain ⊲ False from ⊲(? ⊑ @), instead of an immediate
contradiction (⊲ False is not equivalent to False). Due to the later modalities in 2 ? , however,
⊲ False is sufficient to complete the proof.3

5 SELF-DUAL END

In the preceding sections, we had separate close and wait operations, with dual !end and ?end

protocols. In this section we investigate alternative operations to deallocate or close a channel,
which result in a self-dual end protocol. We have two different options for achieving this:

• Symmetric close. Define one close operation, with protocol end, that both sides call, which
dynamically determines who deallocates the channel (§5.1)
• Send-close. Define a combined send-close operation that sends the last message and closes
the channel. The other side performs a recv that obtains no continuation channel (§5.2).

5.1 Symmetric Close

Suppose that we want only one sym_close operation, that both sides of the channel call. Because
the channel consists of one memory location, we need to dynamically decide which caller gets to
free the memory. We use compare-and-swap to achieve this effect:

sym_close 2 ≜ if CAS(2, None, Some()) then () else free 2 2

To see how this works, consider two parallel close operations on the same channel: sym_close 2 ∥
sym_close 2 . The thread that does its CAS first will successfully set 2 from None to Some(), and
return () from its sym_close. The second thread will then fail its CAS, since the value stored in 2 is
no longer None. It will then go to the else branch and free 2 .

To verify this version of close, we need to make a change to our notion of protocols. So far, our
protocols have all been one-shot protocols ? ∈ Prot ≜ (Send | Recv) × (Val → iProp) under the
hood; even the protocols !end, ?end ∈ Prot. For the symmetric sym_close, this does not work. We
now have to explicitly distinguish end in the protocols:

@ ∈ Protend ::= end | ? where ? ∈ Prot 2

We also need to extend duality with end ≜ end and subprotocols with end ⊑ end. 22 With this
additional protocol, we have the following specification for sym_close:

Close operation: {2
sym

end} sym_close 2 {True} 2

3It also relies on ⊲ False ⊢ '
N
for any ' and N, see https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/897.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/session.v.html#line-243
https://apndx.org/pub/mpy9/sym_close.v.html#line-10
https://apndx.org/pub/mpy9/sym_close.v.html#line-18
https://apndx.org/pub/mpy9/sym_close.v.html#line-37
https://apndx.org/pub/mpy9/sym_close.v.html#line-116
https://apndx.org/pub/mpy9/sym_close.v.html#line-41
https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/897

Dependent Session Protocols in Separation Logic from First Principles (Functional Pearl) 214:21

Because our set of protocols has been extended, we need an extended channel points-to sym , which
we define as follows:

2
sym

@ ≜

{
∃W1, W2, ℓ . ⊲(2 = ℓ) ∗ end_inv W1 W2 ℓ ∗ ⊲(tokW1) if @ = end

2 @ if @ ∈ Prot
2

Here, the following protocol is stored inside our invariant:

end_inv W1 W2 ℓ ≜ (ℓ ↦→ None︸ ︷︷ ︸
before close

) ∨ (ℓ ↦→ Some() ∗ (tokW1 ∨ tokW2)
︸ ︷︷ ︸

one side has closed

) ∨ (tokW1 ∗ tokW2
︸ ︷︷ ︸

fully closed

) 2

Like the one-shot send-receive protocol, this protocol uses two tokens tokW1 and tokW2, which
belong to the two 2 sym

end assertions. Initially, the invariant states that the location ℓ points to
None. When one side has successfully closed, the invariant states that ℓ points to Some(), and the
invariant has collected the token of the side that has called close first (because this is nondetermin-
istic, the invariant uses a disjunction tokW1 ∨ tokW2). When both sides have closed, the invariant
has both tokens, and no memory points-to (because the memory location has been deallocated).
As before, we add later modalities (⊲) in front of 2 = ℓ and tokW1 to support infinite protocols
via guarded recursion (§4). With these definitions, we can prove the Hoare specification for the
symmetric sym_close in a similar way we verified send1 and recv1. 2

5.2 Send-Close

From an operational point of view, the previous two methods for channel closing are a tiny bit
disappointing, because for the last step, a memory location is allocated but not used to communicate
any useful message. In this section we develop a channel closing mechanism where the close
operation is integrated with the last message send.
This may sound strange at first sight, but upon investigating how channel closing typically

works in examples, it hopefully starts to make more sense. Consider an example where party A is
communicating a stream of messages to another party B, and A may at every point decide to end
the stream. This can be accomplished by sending an additional Boolean along with each message,
which determines whether this is the last message or not. When it is the last message, the sender
does not allocate a continuation channel, and sends () in place of the continuation channel. When
the receiver receives a message, they have to inspect the Boolean to determine whether they got a
continuation channel or not. This saves one memory allocation and synchronization compared to
the previous methods. Similarly, in the example of Fig. 2, we can eliminate the last interaction and
synchronization by integrating the final acknowledgment with the closing of the channel.

While this saving is minor, we argue in favor of it for aesthetic reasons. If one wants to implement
the one-shot API on top of the previous session channel API (i.e., the other way around compared to
what we have done so far), then a single shot communication would involve one real communication
and then one extra allocation and communication to close the channel. We now present a channel
closing mechanism with which one can implement one-shot channels on top of session channels
with no additional synchronizations or allocations. Therefore, with this channel closing mechanism,
session channels become a purely logical layer over one-shot channels. The implementation of this
closing mechanism is very simple, namely the following send_close operation:

send_close 2 E ≜ send1 2 (E, ()) 2

There is no corresponding wait operation for the other side: as send_close simply does not
allocate a continuation channel, the other side can use recv, which already deallocates the memory

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/sym_close.v.html#line-34
https://apndx.org/pub/mpy9/sym_close.v.html#line-20
https://apndx.org/pub/mpy9/sym_close.v.html#line-41
https://apndx.org/pub/mpy9/send_close.v.html#line-9

214:22 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

location. For the specification and verification of send_close, we use the same Protend protocols:

@ ∈ Protend ::= end | ? where ? ∈ Prot 2

We extend duality with end ≜ end and subprotocols with end ⊑ end. As before, we define a new
channel points-to, this time for the send-close version:

2 scl @ ≜

{
⊲(2 = ()) if @ = end

2 @ if @ ∈ Prot
2

For the end protocol, the channel points-to asserts that there is no channel, i.e., the channel is a unit
value instead of a pointer to a memory location (this could also be implemented as a null pointer).

These are the specifications for the channel operations with send_close:

New: {True} new () {2. 2 scl ? ∗ 2 scl ?} 2

Send: {2 scl (!G ⟨E⟩{% }. p) ∗ % C } send 2 (E C) {2′ . 2′ scl p C } where p C ≠ end 2

Send-close: {2 scl (!G ⟨E⟩{% }. p) ∗ % C } send_close 2 (E C) {True} where p C = end 2

Receive: {2 scl (?G ⟨E⟩{% }. p)} recv 2 {F. ∃~, 2′ . F = (E ~, 2′) ∗ 2′ scl p ~ ∗ % ~} 2

The send operation now requires that the tail p C is not end, whereas the send_close operation
requires that p C is end. The specification of recv does not concern itself with end. Instead, the
received message E ~ will contain information about whether the protocol ended or not (such as a
Boolean, as described previously). Using logical reasoning about the message, we can then conclude
whether the tail protocol p C is end or not. If it is, then we obtain 2′ = (), and we do not need to do
anything. If it is not end, we obtain 2′ scl p ~ and can continue the protocol.
Unlike close with symmetric channel closing from §5.1, the send_close operation has been

defined in terms of send1. The proofs of the specifications therefore also follow straightforwardly
from the specifications of send1 and recv1, unlike the proofs for symmetric channel closing.

6 OTHER SUPPORTED FEATURES

In this section, we briefly discuss some other features of our framework. Similar to Actris, we get
these features for free by building on top of Iris:

Delegation and channel passing. We support delegation, i.e., sending channels over channels
as messages, due to Iris’s support for impredicative (i.e., nested) invariants. This allows the channel
points-to resource to be used in a protocol such as ! 2 ⟨2⟩{2 @}. ? This protocol enables us to
send a channel 2 as well as its associated channel points-to 2 @ over another channel, which
then allows the receiver to use the received channel 2 at protocol @.

Choice protocols. We support choice protocols, where a thread can choose between multiple
different continuation protocols. This can be encoded as a special case of dependent session
protocols, where the sender makes the choice by sending a Boolean value, and the continuation
protocol is chosen based on the value of the Boolean: ?1 ⊕ ?2 ≜ !1 ⟨1⟩{True}. if 1 then ?1 else ?2.

Shared memory. Channels are not the only way to communicate information between threads:
we can also use shared memory directly. We can use all of the features of Iris to reason about shared
memory, we can send mutable references as messages over channels (as in Fig. 2), and we can store
channels in mutable references.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/send_close.v.html#line-15
https://apndx.org/pub/mpy9/send_close.v.html#line-17
https://apndx.org/pub/mpy9/send_close.v.html#line-119
https://apndx.org/pub/mpy9/send_close.v.html#line-138
https://apndx.org/pub/mpy9/send_close.v.html#line-152
https://apndx.org/pub/mpy9/send_close.v.html#line-129

Dependent Session Protocols in Separation Logic from First Principles (Functional Pearl) 214:23

Locks and shared sessions. We support the combination of locks with channel communication.
For instance, we can use a lock to protect a channel endpoint, which can then be used by multiple
threads. This is useful for implementing shared sessions, where multiple threads can send and
receive messages on the same channel endpoint, which is common in client-server protocols.

7 MECHANIZATION

The implementations of channels (§2), the proof that they satisfy their separation logic specifications
(§3), the different methods for closing channels (§5), and the verification of all the examples have
been fully mechanized using the Coq proof assistant [Coq Team 2021], making use of the Iris
separation logic framework.

The mechanization follows the layered design as presented in Fig. 1. The layered design allows
our proofs to be simpler compared to previous work on Actris [Hinrichsen et al. 2020]. Only
the proofs for one-shot operations new1, send1, recv1 (and the symmetric sym_close) involve
concurrent separation logic concepts such as ghost state and invariants. All the other proofs are
done on top of these specifications, treating the one-shot operations as a black box.

Our protocol definitions are simple compared to Actris. We do not need to solve an intricate re-
cursive domain equation [Hinrichsen et al. 2022, §9.7]. At no point do we have to reason about more
than one cell in the buffer structure; the multi-shot session protocols simply emerge automatically
using composition. Despite this simplification to the Actris model, the different extensions such
as subprotocols, guarded recursion, and the different forms of channel closing work seamlessly
together. For instance, we can show that an infinitely recursive protocol is a subprotocol of another
infinitely recursive protocol, by using guarded recursion and Löb induction.
In total, our Coq mechanization consists of less than 1000 lines of Coq code (including the

verification of all examples). The mechanization is referenced throughout the paper by 2-symbols.
The mechanization has also been archived on Zenodo [Jacobs et al. 2023].

8 RELATED WORK

The origins of our line of work trace back to session types. More directly, our work is inspired by
encodings of session types in terms of one-shot synchronization in particular [Kobayashi 2002;
Dardha et al. 2017; Jacobs 2022]. Our work is also directly related to dependent protocols and
program logics for session protocols. Most notable is the work on Actris [Hinrichsen et al. 2020,
2022], which introduced the notion of dependent separation protocols, which we use to specify our
session channels. We go over each of these points in more detail below.

One-shot channels. The encoding of session channels in terms of sequenced one-shot channels
originated in the c-calculus. This encoding sends a continuation channel in each message, so that
the communication can continue. Kobayashi [2002] showed that session types can be encoded into
c-types, and Dardha et al. [2012, 2017] later extended Kobayashi [2002]’s approach. Jacobs [2022]
presented a bidirectional version in a _-calculus.
Similar one-shot primitives have also been used in the implementation of message passing

libraries, such as in the work of Scalas and Yoshida [2016]; Padovani [2017]; Kokke and Dardha
[2021]; Niehren et al. [2006]. Our implementation of session channels in terms of one-shot channels
uses a similar strategy.
Unlike this earlier work, which is either untyped or type-based, we use session protocols in

separation logic to verify (partial) functional correctness. Our one-shot channels are not primitive
and not built-in to the language, but implemented in terms of low-level memory operations. We take
inspiration from the preceding work and subsequently build session channels on top of one-shot
channels, and we build session protocols on top of one-shot protocols.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

214:24 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

Dependent protocols and session logics. Bocchi et al. [2010] and Toninho et al. [2011] both
developed version of (multi-party) session types which incorporate logical binders into the protocols,
alongside a first-order decidable assertion language for specifying properties about them. Later,
Toninho and Yoshida [2018] and Thiemann and Vasconcelos [2020] expanded on this work by
allowing similar binders determine the structure of the remaining protocol, similar to what we
do in §2.4. Compared to our work, their assertion languages are limited in the sense that they
cannot describe the delegation of resources (e.g., sending a reference to another thread). Later
work [Craciun et al. 2015; Costea et al. 2018] addressed the issue of specifying resource delegation,
through the development of a session logic, based in separation logic. Their logic allows ascribing
channel endpoints with protocols, which in turn can specify resources to be shared, such as other
channel endpoints. Compared to our work, they do not support binders, which for one means that
they cannot specify protocols referring the dynamically allocated references, like we do in §2.2.
Actris protocols support both binders, delegation, and protocols referring to dynamically allocated
references and ghost resources [Hinrichsen et al. 2020], as our protocols do.

Actris. Actris introduced a shared-memory implementation of higher-order session channels,
and the notion of dependent separation protocols for the verification ofmessage passing concurrency
using program logics, mechanized on top of Iris. Our work focuses primarily on developing a
framework in the style of Actris, but with a focus on layered design, elegance, and simplicity. This
results in the following key differences between Actris and our work:

• Actris channels implement bi-directional communication using a pair of buffers that are
protected by a lock. Our one-shot channels are implemented directly using load and store
memory operations, and our session channels and imperative channels are implemented in
terms of one-shot channels.
• As a result of this, Actris’s dependent separation protocols are defined by solving an intricate
recursive domain equation. By contrast, our definition of Prot ≜ (Send | Recv) × (Val →
iProp) is itself non-recursive, yet Actris-style dependent separation protocols can be defined
as inhabitants of Prot, and automatically support recursive protocols.
• Our notion of subprotocols for one-shot channels is very simple and non-recursive, but
automatically lifts to (recursive) session protocols, because session protocols are defined
as one-shot protocols. Actris’s notion of subprotocols is recursive and more complicated
than ours, but also stronger: Actris’s implementation of channels with a pair of buffers
admits swapping sends over receives (akin to asynchronous subtyping [Mostrous et al.
2009; Mostrous and Yoshida 2015]). Such a transformation is not sound for our single-buffer
implementation of channels.
• We achieve a simpler approach by making use of nested invariants, but Actris’s solution gave
rise to the “Actris ghost theory” [Hinrichsen et al. 2022, §9.4] for reasoning about session
protocols in a way that is disconnected from specific implementations. The Actris ghost
theory has been used to develop specifications based on dependent session protocols for
distributed systems [Gondelman et al. 2023].
• Actris contains a number of convenience features, such as multi-binders and associated
tactics, to ease verification of message passing programs in Coq. While such features can
be integrated in our Coq development, we preferred to keep the protocols (and verification
thereof) simpler, to focus on the layering of channel variants. Even so, our single-binders can
simulate multi-binders using tuples, as has been demonstrated throughout the paper.
• While Actris relies on a garbage collector for channel deallocation, we present several
manually memory managed solutions for channel closing.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

Dependent Session Protocols in Separation Logic from First Principles (Functional Pearl) 214:25

In short, Actris has more features (asynchronous subtyping, ghost theory) and a more convenient
implementation in Coq (multi-binders, tactics), but our design achieves the key feature of Actris
(dependent separation protocols) in a conceptually simpler and layered manner: once we have
defined and verified one-shot channels (which are quite simple and require only the simplest form
of ghost resources to verify), we treat them as a black box and develop Actris-style protocols with
relative ease and without any further use of ghost state or invariants.
An application of Actris is the verification of the soundness of a session type system via the

method of semantic typing [Hinrichsen et al. 2021]. Since our separation logic specifications for
session channels are the same as Actris’s, a similar result could be achieved with our development.

Imperative session channels. Related to §2.4, there has also been work on type systems for
imperative channels, which free the user from having to thread channel variables through their
program Saffrich and Thiemann [2022b,a]. The advantage of a type system compared to a program
logic is that type checking is automatic, but an advantage of a program logic is its ability to verify
functional correctness. Hinrichsen et al. [2021] combines advantages of both approaches via the
method of semantic typing in Iris, which allows one to combine separation logic verification for
intricate parts of the program, and type checking for the rest.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and artifact reviewers for their helpful comments. This work
was supported in part by a Villum Investigator grant (no. 25804), Center for Basic Research in
Program Verification (CPV).

A COQ REFERENCE

base.v
2 Definition chan_inv, p.14
2 Definition dual, p.11
2 Definition is_chan0, p.11, p.14
2 Definition new1, p.6
2 Definition prog_single, p.5
2 Definition prot, p.11, p.15
2 Definition prot_single, p.12
2 Definition recv1, p.6
2 Definition send1, p.6
2 Instance is_chan0_contractive, p.19
2 Lemma dual_dual, p.15
2 Lemma new1_spec0, p.11
2 Lemma recv1_spec0, p.11
2 Lemma send1_spec0, p.11

imp.v
2 Definition close_imp, p.8
2 Definition is_chan_imp, p.17, 18
2 Definition new_imp, p.8
2 Definition prog_imp, p.8
2 Definition prot_sum, p.18
2 Definition recv_imp, p.8
2 Definition send_imp, p.8

2 Definition wait_imp, p.8
2 Fixpoint prot_sum’, p.18
2 Lemma close_imp_spec, p.18
2 Lemma new_imp_spec, p.18
2 Lemma prog_imp_spec, p.18
2 Lemma recv_imp_spec, p.18
2 Lemma send_imp_spec, p.18
2 Lemma subprot_is_chan_imp, p.18
2 Lemma wait_imp_spec, p.18

send_close.v
2 Definition is_chan’, p.22
2 Definition prot’, p.22
2 Definition send_close, p.21
2 Lemma new_spec’, p.22
2 Lemma recv_spec’, p.22
2 Lemma send_close_spec’, p.22
2 Lemma send_spec’, p.22

session.v
2 Definition close, p.7
2 Definition close_prot, p.16
2 Definition new, p.7
2 Definition prog_add, p.7
2 Definition prog_add_rec, p.19

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/base.v.html#line-31
https://apndx.org/pub/mpy9/base.v.html#line-41
https://apndx.org/pub/mpy9/base.v.html#line-37
https://apndx.org/pub/mpy9/base.v.html#line-6
https://apndx.org/pub/mpy9/base.v.html#line-124
https://apndx.org/pub/mpy9/base.v.html#line-22
https://apndx.org/pub/mpy9/base.v.html#line-130
https://apndx.org/pub/mpy9/base.v.html#line-7
https://apndx.org/pub/mpy9/base.v.html#line-13
https://apndx.org/pub/mpy9/base.v.html#line-107
https://apndx.org/pub/mpy9/base.v.html#line-87
https://apndx.org/pub/mpy9/base.v.html#line-54
https://apndx.org/pub/mpy9/base.v.html#line-73
https://apndx.org/pub/mpy9/base.v.html#line-62
https://apndx.org/pub/mpy9/imp.v.html#line-12
https://apndx.org/pub/mpy9/imp.v.html#line-21
https://apndx.org/pub/mpy9/imp.v.html#line-4
https://apndx.org/pub/mpy9/imp.v.html#line-106
https://apndx.org/pub/mpy9/imp.v.html#line-134
https://apndx.org/pub/mpy9/imp.v.html#line-6
https://apndx.org/pub/mpy9/imp.v.html#line-10
https://apndx.org/pub/mpy9/imp.v.html#line-14
https://apndx.org/pub/mpy9/imp.v.html#line-127
https://apndx.org/pub/mpy9/imp.v.html#line-71
https://apndx.org/pub/mpy9/imp.v.html#line-24
https://apndx.org/pub/mpy9/imp.v.html#line-184
https://apndx.org/pub/mpy9/imp.v.html#line-39
https://apndx.org/pub/mpy9/imp.v.html#line-50
https://apndx.org/pub/mpy9/imp.v.html#line-81
https://apndx.org/pub/mpy9/imp.v.html#line-61
https://apndx.org/pub/mpy9/send_close.v.html#line-17
https://apndx.org/pub/mpy9/send_close.v.html#line-15
https://apndx.org/pub/mpy9/send_close.v.html#line-9
https://apndx.org/pub/mpy9/send_close.v.html#line-119
https://apndx.org/pub/mpy9/send_close.v.html#line-129
https://apndx.org/pub/mpy9/send_close.v.html#line-152
https://apndx.org/pub/mpy9/send_close.v.html#line-138
https://apndx.org/pub/mpy9/session.v.html#line-10
https://apndx.org/pub/mpy9/session.v.html#line-26
https://apndx.org/pub/mpy9/session.v.html#line-4
https://apndx.org/pub/mpy9/session.v.html#line-195
https://apndx.org/pub/mpy9/session.v.html#line-225

214:26 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

2 Definition prot_add, p.15
2 Definition prot_add_rec, p.19
2 Definition recv, p.7
2 Definition recv_prot, p.16
2 Definition send, p.7
2 Definition send_prot, p.16
2 Definition wait, p.7
2 Definition wait_prot, p.16
2 Lemma close_prot_dual, p.15
2 Lemma close_spec, p.15
2 Lemma new_spec, p.15
2 Lemma prog_add_rec_spec, p.20
2 Lemma prog_add_spec, p.16
2 Lemma recv_prot_dual, p.15
2 Lemma recv_spec, p.15
2 Lemma send_prot_dual, p.15
2 Lemma send_spec, p.15
2 Lemma subprot_frame_recv, p.17
2 Lemma subprot_frame_send, p.17
2 Lemma subprot_recv, p.17

2 Lemma subprot_send, p.17
2 Lemma wait_prot_dual, p.15
2 Lemma wait_spec, p.15

sub.v
2 Definition is_chan, p.14
2 Definition subprot, p.14
2 Lemma is_chan0_is_chan, p.15
2 Lemma new1_spec, p.15
2 Lemma recv1_spec, p.15
2 Lemma send1_spec, p.15
2 Lemma subprot_is_chan, p.14

sym_close.v
2 Definition dual’, p.20
2 Definition end_inv, p.21
2 Definition is_chan’, p.21
2 Definition prot’, p.20
2 Definition subprot’, p.20
2 Definition sym_close, p.20
2 Lemma sym_close_spec, p.20, 21

REFERENCES

Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph. D. Dissertation. Princeton University.
Pierre America and Jan J. M. M. Rutten. 1989. Solving Reflexive Domain Equations in a Category of Complete Metric Spaces.

JCSS (1989). https://doi.org/10.1007/3-540-19020-1_13
Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-Carrying

Code. TOPLAS (2001). https://doi.org/10.1145/504709.504712
Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. 2007. A very modal model of a

modern, major, general type system. In POPL. https://doi.org/10.1145/1190216.1190235
Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. 2010. A Theory of Design-by-Contract for Distributed

Multiparty Interactions. In CONCUR. https://doi.org/10.1007/978-3-642-15375-4_12
Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR. https://doi.org/10.1007/978-3-540-

28644-8_2
David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida. 2021. Zooid: A DSL for Certified Multiparty

Computation: From Mechanised Metatheory to Certified Multiparty Processes. In PLDI. https://doi.org/10.1145/3453483.
3454041

David Castro-Perez, Francisco Ferreira, and Nobuko Yoshida. 2020. EMTST: Engineering the Meta-theory of Session Types.
In TACAS. https://doi.org/10.1007/978-3-030-45237-7_17

Ruofei Chen, Stephanie Balzer, and Bernardo Toninho. 2022. Ferrite: A Judgmental Embedding of Session Types in Rust. In
ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2022.22

Luca Ciccone and Luca Padovani. 2020. A Dependently Typed Linear c -Calculus in Agda. In PPDP. https://doi.org/10.1145/
3414080.3414109

The Coq Team. 2021. The Coq Proof Assistant. https://doi.org/10.5281/zenodo.4501022
Andreea Costea, Wei-Ngan Chin, Shengchao Qin, and Florin Craciun. 2018. Automated Modular Verification for Relaxed

Communication Protocols. In APLAS. https://doi.org/10.1007/978-3-030-02768-1_16
Florin Craciun, Tibor Kiss, and Andreea Costea. 2015. Towards a Session Logic for Communication Protocols. In ICECCS.

https://doi.org/10.1109/ICECCS.2015.33
Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2020. RustBelt meets relaxed memory. POPL

(2020). https://doi.org/10.1145/3371102
Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2012. Session types revisited. In PPDP. https://doi.org/10.1145/

2370776.2370794

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://apndx.org/pub/mpy9/session.v.html#line-206
https://apndx.org/pub/mpy9/session.v.html#line-239
https://apndx.org/pub/mpy9/session.v.html#line-5
https://apndx.org/pub/mpy9/session.v.html#line-17
https://apndx.org/pub/mpy9/session.v.html#line-6
https://apndx.org/pub/mpy9/session.v.html#line-20
https://apndx.org/pub/mpy9/session.v.html#line-9
https://apndx.org/pub/mpy9/session.v.html#line-24
https://apndx.org/pub/mpy9/session.v.html#line-165
https://apndx.org/pub/mpy9/session.v.html#line-59
https://apndx.org/pub/mpy9/session.v.html#line-28
https://apndx.org/pub/mpy9/session.v.html#line-243
https://apndx.org/pub/mpy9/session.v.html#line-208
https://apndx.org/pub/mpy9/session.v.html#line-167
https://apndx.org/pub/mpy9/session.v.html#line-32
https://apndx.org/pub/mpy9/session.v.html#line-173
https://apndx.org/pub/mpy9/session.v.html#line-41
https://apndx.org/pub/mpy9/session.v.html#line-96
https://apndx.org/pub/mpy9/session.v.html#line-85
https://apndx.org/pub/mpy9/session.v.html#line-66
https://apndx.org/pub/mpy9/session.v.html#line-77
https://apndx.org/pub/mpy9/session.v.html#line-163
https://apndx.org/pub/mpy9/session.v.html#line-52
https://apndx.org/pub/mpy9/sub.v.html#line-34
https://apndx.org/pub/mpy9/sub.v.html#line-7
https://apndx.org/pub/mpy9/sub.v.html#line-37
https://apndx.org/pub/mpy9/sub.v.html#line-47
https://apndx.org/pub/mpy9/sub.v.html#line-63
https://apndx.org/pub/mpy9/sub.v.html#line-55
https://apndx.org/pub/mpy9/sub.v.html#line-40
https://apndx.org/pub/mpy9/sym_close.v.html#line-37
https://apndx.org/pub/mpy9/sym_close.v.html#line-20
https://apndx.org/pub/mpy9/sym_close.v.html#line-34
https://apndx.org/pub/mpy9/sym_close.v.html#line-18
https://apndx.org/pub/mpy9/sym_close.v.html#line-116
https://apndx.org/pub/mpy9/sym_close.v.html#line-10
https://apndx.org/pub/mpy9/sym_close.v.html#line-41
https://doi.org/10.1007/3-540-19020-1_13
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.5281/zenodo.4501022
https://doi.org/10.1007/978-3-030-02768-1_16
https://doi.org/10.1109/ICECCS.2015.33
https://doi.org/10.1145/3371102
https://doi.org/10.1145/2370776.2370794
https://doi.org/10.1145/2370776.2370794

Dependent Session Protocols in Separation Logic from First Principles (Functional Pearl) 214:27

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2017. Session types revisited. Inf. Comput. (2017). https://doi.org/10.
1016/j.ic.2017.06.002

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical step-indexed logical relations. LMCS (2011). https:
//doi.org/10.1109/LICS.2009.34

Simon J. Gay and Malcolm Hole. 2005. Subtyping for session types in the pi calculus. Acta Informatica (2005). https:
//doi.org/10.1007/s00236-005-0177-z

Simon J. Gay, Peter Thiemann, and Vasco T. Vasconcelos. 2020. Duality of Session Types: The Final Cut. In PLACES.
https://doi.org/10.4204/EPTCS.314.3

Simon J. Gay and Vasco Thudichum Vasconcelos. 2010. Linear Type Theory for Asynchronous Session Types. JFP (2010).
https://doi.org/10.1017/S0956796809990268

Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal. 2023. Verifying Reliable
Network Components in a Distributed Separation Logic with Dependent Separation Protocols. ICFP (2023). https:
//doi.org/10.1145/3607859

Matthew A. Goto, Radha Jagadeesan, Alan Jeffrey, Corin Pitcher, and James Riely. 2016. An Extensible Approach to Session
Polymorphism. MSCS (2016). https://doi.org/10.1017/S0960129514000231

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris: Session-Type Based Reasoning in Separation
Logic. POPL (2020). https://doi.org/10.1145/3371074

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2022. Actris 2.0: Asynchronous Session-Type Based
Reasoning in Separation Logic. LMCS (2022). https://doi.org/10.46298/lmcs-18(2:16)2022

Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengtson. 2021. Machine-checked semantic
session typing. In CPP. https://doi.org/10.1145/3437992.3439914

Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR. https://doi.org/10.1007/3-540-57208-2_35
Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for

Structured Communication-Based Programming. In ESOP. https://doi.org/10.1007/BFb0053567
Raymond Hu, Nobuko Yoshida, and Kohei Honda. 2008. Session-Based Distributed Programming in Java. In ECOOP.

https://doi.org/10.1007/978-3-540-70592-5_22
Jules Jacobs. 2022. A Self-Dual Distillation of Session Types. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2022.23
Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. 2022. Connectivity graphs: a method for proving deadlock freedom

based on separation logic. POPL (2022). https://doi.org/10.1145/3498662
Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. 2023. Dependent Session Protocols in Separation Logic from

First Principles (Archived Artifact). https://doi.org/10.5281/zenodo.7993904
Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. 2015. Session types for Rust. In ICFP.

https://doi.org/10.1145/2808098.2808100
Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In ICFP. https://doi.org/10.

1145/2951913.2951943
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. JFP (2018). https://doi.org/10.1017/
S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. https://doi.org/10.1145/2676726.
2676980

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak Memory:
Reasoning About Release-Acquire Consistency in Iris. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

Naoki Kobayashi. 2002. Type Systems for Concurrent Programs. https://doi.org/10.1007/978-3-540-40007-3_26
Wen Kokke and Ornela Dardha. 2021. Deadlock-free session types in linear Haskell. In Haskell Symposium. https:

//doi.org/10.1145/3471874.3472979
Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,

and Derek Dreyer. 2018. MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Logic.
ICFP (2018). https://doi.org/10.1145/3236772

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017a. The Essence of
Higher-Order Concurrent Separation Logic. In ESOP. https://doi.org/10.1007/978-3-662-54434-1_26

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017b. Interactive Proofs in Higher-Order Concurrent Separation Logic.
In POPL. https://doi.org/10.1145/3009837.3009855

Sam Lindley and J. Garrett Morris. 2016. Embedding session types in Haskell. In Haskell Symposium. https://doi.org/10.
1145/2976002.2976018

Étienne Lozes and Jules Villard. 2012. Shared Contract-Obedient Endpoints. In ICE. https://doi.org/10.4204/EPTCS.104.3

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1145/3607859
https://doi.org/10.1145/3607859
https://doi.org/10.1017/S0960129514000231
https://doi.org/10.1145/3371074
https://doi.org/10.46298/lmcs-18(2:16)2022
https://doi.org/10.1145/3437992.3439914
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.4230/LIPIcs.ECOOP.2022.23
https://doi.org/10.1145/3498662
https://doi.org/10.5281/zenodo.7993904
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1007/978-3-540-40007-3_26
https://doi.org/10.1145/3471874.3472979
https://doi.org/10.1145/3471874.3472979
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.4204/EPTCS.104.3

214:28 Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers

Glen Mével and Jacques-Henri Jourdan. 2021. Formal verification of a concurrent bounded queue in a weak memory model.
ICFP (2021). https://doi.org/10.1145/3473571

Dimitris Mostrous and Nobuko Yoshida. 2015. Session typing and asynchronous subtyping for the higher-order c -calculus.
Inf. Comput. (2015). https://doi.org/10.1016/j.ic.2015.02.002

DimitrisMostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global Principal Typing in Partially Commutative Asynchronous
Sessions. In ESOP. https://doi.org/10.1007/978-3-642-00590-9_23

Hiroshi Nakano. 2000. A modality for recursion. In LICS. https://doi.org/10.1109/LICS.2000.855774
Joachim Niehren, Jan Schwinghammer, and Gert Smolka. 2006. A concurrent lambda calculus with futures. Theor. Comput.

Sci. (2006). https://doi.org/10.1016/j.tcs.2006.08.016
Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR. https://doi.org/10.1007/978-3-540-

28644-8_4
Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures.

In CSL. https://doi.org/10.1007/3-540-44802-0_1
Susan S. Owicki and David Gries. 1976. Verifying Properties of Parallel Programs: An Axiomatic Approach. CACM (1976).

https://doi.org/10.1145/360051.360224
Luca Padovani. 2017. A simple library implementation of binary sessions. JFP (2017). https://doi.org/10.1017/

S0956796816000289
Frank Pfenning and Dennis Griffith. 2015. Polarized Substructural Session Types. In FoSSaCS. https://doi.org/10.1007/978-3-

662-46678-0_1
Riccardo Pucella and Jesse A. Tov. 2008. Haskell session types with (almost) no class. In Haskell Symposium. https:

//doi.org/10.1145/1411286.1411290
Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. 2020. Intrinsically-Typed Definitional Interpreters

for Linear, Session-Typed Languages. In CPP. https://doi.org/10.1145/3372885.3373818
Hannes Saffrich and Peter Thiemann. 2022a. Polymorphic Typestate for Session Types. CoRR (2022). https://doi.org/10.

48550/arXiv.2210.17335
Hannes Saffrich and Peter Thiemann. 2022b. Relating Functional and Imperative Session Types. LMCS (2022). https:

//doi.org/10.46298/lmcs-18(3:33)2022
Alceste Scalas and Nobuko Yoshida. 2016. Lightweight Session Programming in Scala. In ECOOP. https://doi.org/10.4230/

LIPIcs.ECOOP.2016.21
Alceste Scalas and Nobuko Yoshida. 2019. Less is more: multiparty session types revisited. POPL (2019). https://doi.org/10.

1145/3290343
Kasper Svendsen and Lars Birkedal. 2014. Impredicative concurrent abstract predicates. In ESOP. https://doi.org/10.1007/978-

3-642-54833-8_9
Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for Concurrent Termination-Preserving

Refinement. In ESOP. https://doi.org/10.1007/978-3-662-54434-1_34
Peter Thiemann. 2019. Intrinsically-Typed Mechanized Semantics for Session Types. In PPDP. https://doi.org/10.1145/

3354166.3354184
Peter Thiemann andVasco T. Vasconcelos. 2020. Label-dependent session types. POPL (2020). https://doi.org/10.1145/3371135
Bernardo Toninho. 2015. A Logical Foundation for Session-Based Concurrent Computation. Ph. D. Dissertation. Carnegie

Mellon University and New University of Lisbon.
Bernardo Toninho, Luís Caires, and Frank Pfenning. 2011. Dependent session types via intuitionistic linear type theory. In

PPDP. https://doi.org/10.1145/2003476.2003499
Bernardo Toninho, Luís Caires, and Frank Pfenning. 2013. Higher-Order Processes, Functions, and Sessions: A Monadic

Integration. In ESOP. https://doi.org/10.1007/978-3-642-37036-6_20
Bernardo Toninho and Nobuko Yoshida. 2018. Depending on Session-Typed Processes. In FOSSACS. https://doi.org/10.

1007/978-3-319-89366-2_7
Philip Wadler. 2012. Propositions as Sessions. In ICFP. https://doi.org/10.1145/2364527.2364568
Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. 2020. Statically verified refinements

for multiparty protocols. OOPSLA (2020). https://doi.org/10.1145/3428216

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 214. Publication date: August 2023.

https://doi.org/10.1145/3473571
https://doi.org/10.1016/j.ic.2015.02.002
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1016/j.tcs.2006.08.016
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/360051.360224
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.48550/arXiv.2210.17335
https://doi.org/10.48550/arXiv.2210.17335
https://doi.org/10.46298/lmcs-18(3:33)2022
https://doi.org/10.46298/lmcs-18(3:33)2022
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3290343
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3371135
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1007/978-3-319-89366-2_7
https://doi.org/10.1007/978-3-319-89366-2_7
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/3428216

	Abstract
	1 Introduction
	2 Layered Implementation of Channels
	2.1 Base Language
	2.2 One-Shot Channels
	2.3 Session Channels
	2.4 Imperative Channels
	2.5 Emerging Linked List Buffers

	3 Layered Specifications and Verification
	3.1 The Iris Separation Logic
	3.2 One-Shot Channels
	3.3 Subprotocols
	3.4 Session Channels
	3.5 Imperative Channels

	4 Guarded Recursion
	5 Self-Dual End
	5.1 Symmetric Close
	5.2 Send-Close

	6 Other Supported Features
	7 Mechanization
	8 Related Work
	Acknowledgments
	A Coq Reference
	References

