
Mathematical Structures in Computer Science (2022), 32, pp. 472–510
doi:10.1017/S0960129522000330

PAPER

Weakest preconditions in fibrations
Alejandro Aguirre1, Shin-ya Katsumata2,∗ and Satoshi Kura3

1Aarhus University, Åbogade 34, 8200 Aarhus N, Denmark, 2National Institute of Informatics, Chiyoda City 100-8361, Japan
and 3JSPS Research Fellow and National Institute of Informatics, Chiyoda City 100-8361, Japan
∗Corresponding author. Email: s-katsumata@nii.ac.jp

(Received 21 December 2020; revised 14 September 2022; accepted 14 September 2022;
first published online 28 October 2022)

Abstract
Weakest precondition transformers are useful tools in program verification. One of their key properties
is composability, that is, the weakest precondition predicate transformer (wppt for short) associated to
program f ; g should be equal to the composition of the wppts associated to f and g. In this paper, we
study the categorical structure behind wppts from a fibrational point of view. We characterize the wppts
that satisfy composability as the ones constructed from the Cartesian lifting of a monad. We moreover
show that Cartesian liftings ofmonads along lax slice categories bijectively correspond to Eilenberg–Moore
monotone algebras.We then instantiate our techniques by deriving wppts for commonplace effects such as
themaybemonad, the nonempty powerset monad, the counter monad, or the distributionmonad.We also
show how to combine them to derive the wppts appearing in the literature of verification of probabilistic
programs.

Keywords: Weakest precondition; strongest postcondition; Hoare logic; monad; fibration

1. Introduction
Dijkstra’s weakest precondition predicate transformer (wppt for short) (Dijkstra 1975) computes,
for an imperative program f and a predicate ψ on memory configurations, the weakest predi-
cate wp(f ,ψ) on memory configurations such that, for any memory configuration x satisfying
wp(f ,ψ), the execution of f from x yields a memory configuration satisfyingψ . When the imper-
ative program f always terminates and only updates memory configurations deterministically, the
behavior of f can be modeled as an endofunction [[f]] over the set M of memory configurations,
andwp(f ,ψ) is defined so that [[wp(f ,ψ)]] becomes the inverse image of [[ψ]]⊆M along [[f]]. One
of the key properties of predicate transformers that make them suitable for program verification
is composability: the weakest precondition wp(f ; g,ψ) of a composite program f ; g is equivalent
to the composition of the weakest preconditions of its components, that is, wp(f , wp(g,ψ)). This
allows us to inductively compute the weakest precondition predicate transformer of programs.

Following Dijkstra’s seminal work, wppts and their variants have been applied to program ver-
ification in different manners, such as computing expected values over outputs of probabilistic
programs McIver and Morgan (2005), estimating runtime Kaminski et al. (2016), or estimating
tail bounds of rewards over control-flow graphs Kura et al. (2019). The motivation of this paper is
to identify a mathematical structure behind these variations of wppt-like semantics. Toward this
goal, in this paper we set out to study wppts and their composability using fibrations. Roughly

© The Author(s), 2022. Published by Cambridge University Press

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330
https://orcid.org/0000-0001-7529-5489
mailto:s-katsumata@nii.ac.jp
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129522000330&domain=pdf
https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 473

speaking, a fibration is a functor p : P→C that exposes a relationship between a category P of
predicates and an underlying category Cmodeling computation - when pP= X holds, we regard
P ∈ P as a predicate over X ∈C; this viewpoint is shared with the categorical study of logical rela-
tions (Hermida 1993) and refinement types (Melliès and Zeilberger 2015). Fibrations are especially
suited to interpret predicate transformers and their composability thanks to the Cartesian lifting
property, which allows us to take the “inverse image” of Q ∈ P along a morphism f : X→ Y in C,
resulting an object f ∗Q ∈ P such that p(f ∗Q)= X. This is a categorical abstraction of the inverse
image operation.

The main challenge we address in this paper is to develop a categorical theory of weakest
precondition predicate transformer under the presence of computational effects modeled bymon-
ads.1 The main technical vehicle of this development is the lifting of a monad T along a fibration
p : P→C – it is a monad Ṫ on P such that p strictly preserves the monad structure to T. We
then regard a morphism f : P→ ṪQ in P as a Hoare triple P{f }Q. This induces a natural wppt
wp(f , P)� f ∗(ṪP) that characterizes the Hoare triple, but it does not satisfy composability in gen-
eral. This raises the question of when monadic computations do induce compositional weakest
precondition predicate transformers. In this paper, we answer to this question by introducing the
property called Cartesian-ness on monad liftings, and contribute to its understanding as follows:

(1) We show that the wppt defined by a monad lifting is composable if and only if the monad
lifting is Cartesian. This result establishes the tight connection between the composability
of wppts in monadic setting and the Cartesian-ness of liftings. This result tells us what
kind of formal structures are needed when giving compositional wppt-like semantics to
imperative programming languages.

(2) We relate strongest postcondition predicate transformers (sppts for short) as left adjoints to
wppts, and discuss when they are available and composable.

(3) We study Cartesian liftings of monads along domain fibrations (see Section 4.2) from lax
slice categories, which have as objects morphisms from an object of the base category to
an object � of generalized truth values. For this class of fibrations, there is a bijective
correspondence between Cartesian liftings of a monad T and Eilenberg-Moore monotone
algebras of T; this is exhibited through a 2-categorical embedding of the 2-category of cat-
egories with ordered objects to the 2-category of fibrations. The correspondence result
simplifies the task of exploring Cartesian liftings of monads along such fibrations and
makes it possible to enumerate all Cartesian liftings of some monads. We show examples
of Cartesian liftings of the following monads: the maybe monad, the nonempty powerset
monad, the counting monad, the distribution monad, and the indexed distribution monad
and some combinations of them. The wppts derived from Cartesian liftings of monads
coincide with weakest pre-expectation (McIver and Morgan 2005) and the higher moment
transformer (Kura et al. 2019).

(4) Computational effects are often modeled by monads composed via distributive laws. We
extend the correspondence given in (3) to the one between Cartesian liftings of composite
monads and pairs of Eilenberg-Mooremonotone algebras satisfying an extra coherence law
given in Beck (1969), Manes and Mulry (2007). This correspondence provides a modular
method to compute Cartesian liftings of composite monads.

(5) To compute the wppts of the programs containing effectful commands (such as probabilis-
tic choice and counting), we study the interaction between Plotkin and Power’s algebraic
operations (Plotkin and Power 2001), which are a categorical models of effectful commands,
and wppts studied in (3).

(6) Apart from domain fibrations, we illustrate a few examples of Cartesian liftings of monads
along relational fibrations. They are outside of the framework presented in Hasuo (2015)
and Hino et al. (2016). These examples are derived from a general construction of the
change-of-base of fibrations with (Cartesian) monad liftings.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

474 A. Aguirre et al.

(7) We demonstrate that categorical wppts can be used to derive predicate transformer seman-
tics. The derivation takes two steps: (1) we compose a categorical wppt wp and the standard
monadic semantics [[P]] :M→ TM of an imperative language and then (2) we represent
the composite as an inductive definition over programs. The derived inductive definition
gives a predicate-transformer semantics of the language. We illustrate this story by deriv-
ing Kaminski et al.’s expected runtime transformer (Kaminski et al. 2016) for the loop-free
fragment of a probabilistic programming language.

Differences with respect to conference version. This paper is an extension of an MFPS confer-
ence paper of the same title (Aguirre and Katsumata 2020). The increments with respect to the
conference paper are the following:

• We generalize our results from posetal fibrations toK-fibrations, for an arbitrary subcategory
K of the category of posets.

• We give a 2-categorical perspective of the lax slice construction in Section 4.2.
• We study liftings of strong monads and give sufficient and necessary conditions for the
liftings to be strong.

• We identify a general principle behind our presentation of liftings along relational fibrations
and show that (Cartesian) liftings of monads can be pulled back along a change-of-base with
monad opfunctors (Street 1972, Section 4).

• We study continuity properties of weakest precondition transformers and apply it to the
computation of the weakest precondition of while loops.

• We provide more extensive explanations and details of the proofs.

2. Preliminaries
Composition of functors and whiskering (Whiskering https://ncatlab.org/nlab/show/whiskering)
of functors and natural transformations are denoted by juxtaposition. The vertical and horizontal
compositions of natural transformations are denoted by � and ∗, respectively.Wewrite Pos for the
category of posets and monotone functions between them. The forgetful functor from Pos to Set
is denoted by U. Subcategories of Pos are ranged over K. A morphism f : X→ Y in K is called a
right adjoint if there is a monotone function g ∈ Pos(Y , X) such that g(y)≤ x ⇐⇒ y≤ f (x) holds
for any x ∈ X, y ∈ Y .

2.1 Monads and Distributive Laws
We briefly recall here some definitions about monads. For a more detailed account see e.g.
MacLane (1998, Section VI). Let C be a category. A monad is a triple (T, η,μ) of a functor
T : C→C and two natural transformations η : Id⇒ T (the unit) and μ : T2⇒ T (the multipli-
cation) such that μ � ηT= idT =μ � Tη and μ � μT=μ � Tμ.

The Kleisli lifting of f : X→ TY is a morphism f # : TX→ TY defined as f # �μY ◦ Tf . A monad
may be equivalently given by a triple (T, η, (_)#), replacing themultiplication with the Kleisli lifting
(_)# :C(X, TY)→C(TX, TY); see Moggi (1991).

The Kleisli category CT of a monad (T, η,μ) is a category whose objects are the objects of C
and whose homsets are defined by CT(X, Y)�C(X, TY). The composition of morphisms in CT
is denoted by • and is defined from the composition ◦ in C as g • f � g# ◦ f . Following Moggi
(1991), we regard morphisms in CT as abstract representations of programs causing computa-
tional effects. There exists an adjunction L
 R : C→CT such that R ◦ L= T, called the Kleisli
resolution of T.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 475

An Eilenberg–Moore (EM for short) algebra of a monad (T, η,μ) is a pair (X, o) of an object
X ∈C and a morphism o : TX→ X such that o ◦ ηX = idX and o ◦ To= o ◦μX .

Let (T, ηT,μT) and (S, ηS,μS) be monads on C. A distributive law (Beck 1969) of S over T is a
natural transformation α : ST→ TS such that

ηTS= α � SηT α � SμT =μTS � Tα � αT TηS = α � ηST α � μST= TμS � αS � Sα.
The distributive law yields the monad

(
TS, ηT ∗ ηS, (μT ∗μS) � (TαS)) over the composite func-

tor. We denote this monad by T ◦α S.

2.2 Fibrations
Dijkstra’s weakest precondition predicate transformer manipulates predicates over memory con-
figurations. In the abstract study of predicate transformers, however, it is convenient to extend
the concept of predicates so that they can be defined over arbitrary objects on a category. For this
abstract and general treatment of predicates, we leverage the notions of fibered category theory (see
e.g. Jacobs 1999). Before introducing these concepts, we give an informal account of them.

Given a category C (with objects ranging over X, Y , Z and morphisms ranging over f , g, h)
we aim to define predicates over its objects by introducing a category P (with objects ranging over
P,Q, R andmorphisms ranging over dotted letters ḟ , ġ, ḣ) and a functor p : P→C. We understand
this general situation as follows:

• An object in P is a predicate over some object in C, which is recorded by the functor
p : P→C. That is, pP= X means that P ∈ P is a predicate over X ∈C.

• A morphism ḟ : P→Q in P is a witness of the fact that the underlying morphism pḟ : pP→
pQ in C “preserves” these predicates, that is, pḟ maps elements satisfying the predicate P to
those satisfying the predicate Q. In particular, if ḟ : P→Q satisfies pḟ = idX , then ḟ witnesses
that P implies Q.

The inverse image of an object X ∈C under the functor p : P→C forms a category denoted by
PX , known as the fiber category above X. Formally, an object of PX is a P-object P such that
pP= X, and a morphism from P to Q in PX is a morphism ḟ : P→Q in P such that pḟ = idX .
Intuitively, objects of this category are predicates overX, andmorphisms of this category represent
implication relations between them.

When defining weakest precondition predicate transformers, the strength of predicates is com-
pared by an order relation, so we focus our attention on posetal fibrations. Recall that the weakest
precondition predicate transformer collects all thememory configurations that entail the postcon-
dition. Set-theoretically, this operation is called inverse image, and fibrations offer a more general
and flexible treatment of the inverse image operation. Roughly speaking, a fibration is a functor
p : P→C such that for any morphism f : X→ Y in C and P ∈ PY , we can find the inverse image
f ∗P ∈ PX of P along f . The formal definition of a posetal fibration follows.

• For objects P,Q ∈ P and a morphism f : pP→ pQ in C, we define the set Pf (P,Q) of
morphisms in P above f by Pf (P,Q)� {ḟ ∈ P(P,Q) | pḟ = f }.

• A morphism ḟ : P→Q in P is Cartesian if for any R ∈ P and morphism h : pR→ pP inC, the
postcomposition of ḟ , regarded as a function of type Ph(R, P)→ Ppḟ ◦h(R,Q), is a bijection.
This is the universal property of Cartesian morphisms. A Cartesian morphism ḟ : P→Q in
P abstractly represents the situation that P is an inverse image of Q along pḟ .

• A functor p : P→C is a fibration if for any morphism f : X→ Y in C and Q ∈ PY , there is
an object P ∈ PX and a Cartesian morphism ḟ : P→Q in Pf called the Cartesian lifting of f
with Q.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

476 A. Aguirre et al.

• A fibration p : P→C is posetal if each fiber category PX is a poset. In any posetal fibration,
the Cartesian lifting of a morphism f : X→ Y inC with Q ∈ PY uniquely exists; we therefore
denote it by f Q and its domain by f ∗Q. We note that posetal fibrations are faithful. Therefore,
a morphism ḟ : P→Q in P is Cartesian if and only if P= (pḟ)∗Q.

• In a posetal fibration p : P→C, the assignment Q �→ f ∗Q ∈ PP for a morphism f : X→ Y in
C extends to a monotone function of type PY → PX , which we call the reindexing functor (we
use the word functor for the compatibility with the existing terminology). The assignment
f �→ f ∗ furthermore satisfies (idX)∗ = idPX and (g ◦ f)∗ = f ∗g∗.

• Let K be a subcategory of Pos. A functor p : P→C is a K-fibration if each fiber category PX
belongs toK, and each reindexing functor f ∗ belongs toK as a morphism.

A convenient way to obtain K-fibrations is by the Grothendieck construction (in fact every
K-fibration is isomorphic to one obtained in this way). Let F :Cop→K be a functor. The
Grothendieck construction applied to F yields a category

∫
F defined by the data below:

• An object is a pair (X, x) of an object X ∈C and an element x ∈ FX.
• A morphism from (X, x) to (Y , y) is a morphism f : X→ Y in C such that x≤ Ff (y) in the
poset FX belonging toK.

The forgetful functor GF :
∫
F→C defined by GF(X, x)� X and GF(f)� f is a K-fibration; see

e.g. Jacobs (1999).
Toward defining the 2-category of K-fibrations, we introduce a few concepts. Let p : P→C

and q :Q→D beK-fibrations.

• A K-functor is a pair of functors (F :C→D, Ḟ : P→Q) such that Fp= qḞ, and the restric-
tion of Ḟ to each fiber, written ḞX : PX →QFX , belongs toK. It is called fibered if Ḟ preserves
Cartesian morphisms; this requirement is equivalent to requiring that the equality Ḟ(f ∗P)=
(Ff)∗(ḞP) holds for any object P ∈ P and morphism f : X→ pP in C.

• Let (F, Ḟ), (G, Ġ) : p→ q beK-functors. A natural transformation from the former to the lat-
ter is a pair of natural transformations α : F→G and α̇ : Ḟ→ Ġ such that αp= qα̇. It is called
Cartesian if α̇P is a Cartesian morphism above αpP for each P ∈ P.

Definition 1. We define a chain of 2-categoriesK-Fib0 ⊃K-Fib⊃K-Fibc by the following table.

2-Category 0-Cell 1-Cell 2-Cell

K-Fib0 K-fibration K-functor natural transformation
K-Fib K-fibration fiberedK-functor natural transformation
K-Fibc K-fibration fiberedK-functor Cartesian natural transformation

The following lemma characterizes (Cartesian) natural transformations between (fibered)
K-functors.

Lemma 2. Let p : P→C and q :Q→D be K-fibrations. Then the mapping (α, α̇) �→ α gives the
following bijections:

� :K-Fib0(p, q)((F, Ḟ), (G, Ġ))∼= {α : F→G | ∀P ∈ P . ḞP≤ α∗pP(ĠP)}, (1)

�c :K-Fibc(p, q)((F, Ḟ), (G, Ġ))∼= {α : F→G | ∀P ∈ P . ḞP= α∗pP(ĠP)}. (2)

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 477

We write �,�c for the above bijections from left to right, respectively. We will use them later
in Section 4.1.

Proof. We show (1); (2) is proved similarly. Let α : F→G be a natural transformation such that
ḞP≤ α∗pP(ĠP). It suffices to exhibit a unique natural transformation α̇ : Ḟ→ Ġ such that αp= qα̇.
Define α̇P by

α̇P � ḞP ≤ �� α∗pP(ĠP)
αpP(ĠP) �� ĠP .

It routine to check that α̇ is a natural transformation satisfying αp= qα̇. Moreover, the faithfulness
of q guarantees its uniqueness.

3. Dijkstra Structures and Weakest Precondition Predicate Transformers
A fibration p : P→C allows us to define an abstract form of inverse images for morphisms in C.
However, effectful computations are instead modeled as morphisms f : X→ TY for some monad
T, following Moggi (1991). To write logical specifications for such computations, we will lift T to a
monad Ṫ over P, which will map predicates over Y to predicates over TY . We will call such a triple
(p : P→C, T, Ṫ) a Dijkstra structure.

In this section, we present Dijkstra Structures and show how to use them to define an abstract
notion of weakest precondition transformer for effectful computations (Section 3.1). We will
then identify the subclass of Dijkstra Structures for which the transformer composes exactly
(Section 3.2). We then study how Dijskstra Structures behave under change-of-base (Section
3.3). Then we define a variant of Dijkstra structures for strong monads (Section 3.4), which
allows us to prove soundness of frame-like rules. Finally, we study the dual situation of strongest
postconditions (Section 3.5).

3.1 Dijkstra Structures
Let C be a category and T a monad over it. We aim to model the statement that a computation
represented as a morphism f : X→ Y in the Kleisli category CT satisfies a specification given by
a precondition and a postcondition, which are predicates over X and Y , respectively. Since the
codomain of f is TY , we first need to construct a predicate over TY from a predicate over Y . For
this purpose, we define a lifting of T into a monad Ṫ over P.

Definition 3. Let p : P→C be aK-fibration and (T, η,μ) be a monad onC. A monad (Ṫ, η̇, μ̇) on
P is called a K-lifting of T (along p) if (T, Ṫ) is a K-functor from p to p, and pṪ= Tp, pη̇= ηp and
pμ̇=μp holds. We say that theK-lifting is Cartesian if

• (T, Ṫ) is a fiberedK-functor from p to p, and
• η̇P and μ̇P are respectively Cartesian above ηpP and μpP for any P ∈ P. This is equivalent to
having that P= η∗pP(ṪP) and ṪṪP=μ∗pPṪP for any object P ∈ P.

The concept of monad lifting is not new; it appeared as a semantic counterpart of logical rela-
tions for monads (Filinski 1996, 2007; Goubault-Larrecq et al. 2008; Katsumata 2005; Katsumata
et al. 2018). Hermida considered the comonadic case earlier than these works (Hermida 1993,
Chapter 5). The definition of Cartesian lifting of monad makes sense when p is a non-posetal
fibration. When C is a category with pullbacks, a monad T on C is Cartesian (see e.g. Leinster
2004, Section 4.1) if and only if the evident lifting T→ :C→→C→ of T to the arrow categoryC→
along the codomain fibration cod :C→→C is Cartesian.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

478 A. Aguirre et al.

The tuple consisting of a K-fibration p, a monad T, and its K-lifting Ṫ along p provides us a
setting in which we can define the Hoare triple and the weakest precondition predicate transformer
(wppt for short) associated to it. In this paper, we package these data into one, and call it aDijkstra
structure.

Definition 4 (Dijkstra Structure). For a subcategoryK of Pos, a (resp. Cartesian)K-Dijkstra struc-
ture is a tuple (p, T, Ṫ) of aK-fibration p : P→C, a monad T onC and a (resp. Cartesian)K-lifting
Ṫ of T along p. WhenK= Pos, we simply call it a Dijkstra structure.

A (resp. Cartesian)K-Dijkstra structure is precisely a monad inK-Fib0 (resp.K-Fibc).

Definition 5. Let (p : P→C, T, Ṫ) be aK-Dijkstra structure. Below X, Y range over C-objects.

(1) For a morphism f : X→ TY in C and objects P ∈ PX ,Q ∈ PY , we define the Hoare triple
P{f }Q by

P{f }Q� ∃ḟ ∈ P(P, ṪQ) . pḟ = f . (3)

Such ḟ is unique because p is faithful.
(2) For a morphism f : X→ TY inC, we define theweakest precondition predicate transformer

wp(f ,−) ∈K(PY , PX) by

wp(f ,Q)� f ∗(ṪQ). (4)

Since p is a fibration, Hoare triples and the wppt are linked by the following equivalence:

P≤wp(f ,Q)⇐⇒ P{f }Q.
We remark that for each morphism f , wp(f , _) is a morphism in K. Therefore, if morphisms

inK are required to preserve order-theoretic structures, so does wp(f , _). For instance, whenK is
the category CLat∧ of complete lattices and functions preserving all meets, the wppt of a CLat∧-
Dijkstra structure preserves arbitrary meets in its second argument: wp(f ,

∧
i Pi)=

∧
i wp(f , Pi).

In the context of program verification, such a wppt is called conjunctive.

3.2 Composability of the Weakest Precondition Predicate Transformers
The Hoare triple and the wppt in our categorical setting are more general than the standard ones
since we can supply any P-object andCT-morphism to the wppt. This liberation allows us to relate
the composability of the wppt and the Cartesian-ness of Ṫ. Since wp takes a Kleisli morphism as an
argument, the composability should be discussed with respect to the Kleisli composition.

Theorem 6. Let (p : P→C, T, Ṫ) be aK-Dijkstra structure. We have inequalities

wp(ηpP, P)≥ P, wp(f • g, P)≥wp(g, wp(f , P)) (5)

for any f , g, P of appropriate type; here, η and • are the unit and the Kleisli composition of T,
respectively. Moreover, inequalties in (5) become equalities if and only if the K-Dijkstra structure
is Cartesian.

Proof. Let (p : P→C, T, Ṫ) be aK-Dijkstra structure. Then the unit η̇P : P→ ṪP of Ṫ is above ηpP.
Therefore

wp(ηpP, P)= η∗pP(ṪP)≥ P.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 479

If η̇P is Cartesian, this inequality becomes an equality. Next, themultiplication μ̇P : ṪṪP→ ṪP of Ṫ
is aboveμpP. Therefore ṪṪP≤μ∗pPṪP holds; this becomes an equality if μ̇P is Cartesian.Moreover,
for any object X ∈C, P ∈ P and morphism f : X→ pP in C, we have Ṫ(f ∗P)≤ (Tf)∗(ṪP); this
becomes an equality if Ṫ is fibered. From these, we obtain the following inequality, which becomes
an equality if μ̇P is Cartesian and Ṫ is fibered.

(f • g)∗(ṪP)= (μ ◦ Tf ◦ g)∗(ṪP)= g∗((Tf)∗(μ∗(ṪP)))
≥ g∗((Tf)∗(ṪṪP))≥ g∗(Ṫ(f ∗(ṪP))=wp(g, wp(f , P)).

We have thus proved inequalities (5), and if the assumed K-Dijkstra structure is Cartesian, these
inequalities become equalities.

We conversely assume

P = wp(ηpP, P)= η∗pP(ṪP), (6)

g∗Ṫ(f ∗ṪP)=wp(g, wp(f , P)) = wp(f • g, P)= g∗(Tf)∗μ∗pPṪP. (7)

Below let X= pP. (6) implies that η̇P is Cartesian. By putting g = idTTX and f = idTX in (7), we
obtain ṪṪP=μ∗X(ṪP), hence μ̇P is Cartesian. Let h : Y→ X be a morphism in C. By putting
g = idTX and f = ηX ◦ h : Y→ TX in (7), we obtain Ṫ(h∗P)= Ṫ(h∗η∗XṪP)= (Th)∗(ṪP), hence Ṫ
is fibered.

Therefore, for a Cartesian K-Dijkstra structure (p : P→C, T, Ṫ), the following assignments of
posets inK and monotone functions inK become a functor Wp : (CT)op→K:

Wp(X)� PX , Wp(f)�wp(f , _).
Then the Grothendieck construction G applied to Wp yields theK-fibration that is isomorphic to
the evident functor from PṪ to CT.

Theorem 7. Let (p : P→C, T, Ṫ) be a Cartesian K-Dijkstra Structure. We take Kleisli resolutions
(L
 R :CT→C, η, ε) of T and (L̇
 Ṙ : PṪ→ P, η̇, ε̇) of Ṫ. We define the functor pT,Ṫ : PṪ→CT by

pT,ṪP� pP, pT,Ṫf � pf .

(1) We have an isomorphism pT,Ṫ ∼=GWp inK-Fibc.
(2) We have an isomorphism p∼=GWp◦L inK-Fibc.
(3) ((L, L̇), (R, Ṙ), (η, η̇), (ε, ε̇)) is an adjunction inK-Fibc.

Proof. (1, 2) Routine. We note that the reindexing functor of the fibration pT,Ṫ is wp(f , _). (3)
We first show that (L, L̇), (R, Ṙ) are 1-cells in K-Fibc. A) Equations pT,ṪL̇= Lp and pṘ= RpT,Ṫ
easily follow from Ṫ being a lifting of T along p. B) We show the fiberedness of L̇ and Ṙ, that is,
L̇(f ∗P)=wp(Lf , L̇P) and Ṙ(wp(f , P))= (Rf)∗(ṘP). By the Cartesianness of Ṫ, we have

L̇(f ∗P)= f ∗P= f ∗η∗(ṪP)=wp(Lf , L̇P),
Ṙ(wp(f , P))= Ṫ(f ∗(ṪP))= (Tf)∗(ṪṪP)= (Tf)∗μ∗(ṪP)= (μ ◦ Tf)∗(ṪP)= (Rf)∗(ṘP).

(C)We show that the restrictions of L̇, Ṙ to fibers belong toK. The restriction L̇X : PX → (PṪ)LX is
the identity morphism, hence belongs to K. The restriction ṘY : (PṪ)Y → PRY coincides with ṪY ,
which belongs toK.

We next show that (η, η̇) and (ε, ε̇) are 2-cells inK-Fibc. The proof proceeds as follows:
P= η∗pPṪP= η∗pPṘL̇P L̇ṘQ= ṪQ= id∗TpT,ṪQṪQ=wp(εpT,ṪQ,Q).

It is routine to check that ((L, L̇), (R, Ṙ), (η, η̇), (ε, ε̇)) forms an adjunction inK-Fibc.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

480 A. Aguirre et al.

Recent work (Aguirre et al. 2021) presents a noncomposable predicate transformer to rea-
son about relational pre-expectations of probabilistic programs. This noncomposability can be
associated to the fact that the monad lifting used in the work is not Cartesian. Their rela-
tional pre-expectation operator coincides with our categorical wppt in the Dijkstra structure
(p : EPMet→ Set, Dω, K), where p is the forgetful functor from the category of extended pseu-
dometric spaces, which is a posetal fibration, Dω is the countable probability distribution monad
(see Example 40 for the finite case), and K is the Kantorovich metric construction:

K(X, d)� (DωX, dK), dK(μ1,μ2)� inf
μ∈
(μ1,μ2)

E(x,y)∼μ[d(x, y)].

Here
(μ1,μ2) is the set of probabilistic couplings betweenμ1,μ2, and E denotes the expectation;
see Aguirre et al. (2021, Definition 2.2) for details. Since it fails to satisfy the composability, we
conclude that the Dijkstra structure is not Cartesian.

3.3 Change-of-base of Dijkstra Structures
In fibrational category theory, the change-of-base is a convenient method to introduce a fibration
over a category. This method takes a fibration p : P→C and a functor F :D→C as parameters
and performs the following pullback in the (large) category CAT of categories and functors:

F∗P ��

F∗p
��

��
P

p
��

D
F

�� C

We explicitly specify the pullback category F∗P as follows: an object is a pair (X ∈D, P ∈ P) of
objects such that FX= pP, and a morphism from (X, P) to (Y ,Q) is a pair of morphisms (f , ḟ) ∈
D(X, Y)× P(P,Q) such that Ff = pḟ . The first projection functor F∗p is called the change-of-base
of p along F and is again a fibration (Jacobs 1999, Lemma 1.5.1). The inverse image of (Y ,Q) ∈ F∗P
along a morphism f : X→ Y in D is given by (X, (Ff)∗Q). When p : P→C is a K-fibration, so is
F∗p : F∗P→D, and each homset of F∗P satisfies

F∗P((X, P), (Y ,Q))∼= {f ∈D(X, Y) | P≤ (Ff)∗Q}.
We therefore replace homsets of F∗P with the right-hand side when p is aK-fibration.

Example 8. Let Pred(Set) be the category of predicates over Set. This has as objects pairs (P, X)
of sets such that P⊆ X, and as morphisms from (P, X) to (Q, Y) functions f : X→ Y such that
for every x ∈ P, f (x) ∈Q. The evident forgetful functor p mapping (P, X) to X defines a posetal
fibration known sometimes as the subobject fibration.

Now consider the functor ×: Set2→ Set. The change-of-base construction induced by p and
× constructs a fibration with total category BRel(Set), defined by the data below:

• Objects are triples (P, X1, X2) of sets such that P⊆ X1 × X2.
• Morphisms from (P, X1, X2) to (Q, Y1, Y2) are pairs of morphisms f1 : X1→ Y1, f2 : X2→ Y2
such that for all (x1, x2) ∈ P, (f1(x1), f2(x2)) ∈Q.

The fibration is given by the forgetful functor (×)∗pmapping (P, X1, X2) to (X1, X2).
In Section 10 we will see a generalization of this construction for a general base categoryC and

a general truth-value object�.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 481

We now apply the change-of-base method to Dijkstra structures. Since Dijkstra structures are
fibrations withmonads, we naturally expect that the functor, along which we take a pullback, inter-
acts with the monad of a Dijkstra structure. We describe this interaction by the monad opfunctor
axioms given by Street (Street 1972, Section 4).

Definition 9. A monad morphism from a monad (S, ηS,μS) on D to a monad (T, ηT,μT) on C

is a pair of a functor F :D→C and a natural transformation α : FS→ TF satisfying the following
axioms:

α � (FηS)= ηTF, α � (FμS)= (μTF) � (Tα) � (αS). (8)

The following theorem extends the change-of-base method to Dijkstra structures along monad
morphism. It preserves Cartesianness of Dijkstra structures.

Theorem 10. Let (p : P→C, T, Ṫ) be a (resp. Cartesian) K-Dijkstra structure, S be a monad on a
category D and (F :D→C, α : FS→ TF) be a monad morphism from S to T. We define a monad
(Ṡ, ηṠ,μṠ) on F∗P by

Ṡ(X, P)� (SX, α∗X(ṪP)), Ṡf � Sf , ηṠ(X,P) � ηSX , μṠ(X,P) �μSX .

Then the tuple (F∗p : F∗P→D, S, Ṡ) is a (resp. Cartesian)K-Dijkstra structure.

Proof. Let (p : P→C, T, Ṫ) be a K-Dijkstra structure and F∗p : F∗P→D be the K-fibration
obtained by the change-of-base of p along F.

We first verify that f ∈ F∗P((X, P), (Y ,Q)) implies Ṡf ∈ F∗P(Ṡ(X, P), Ṡ(Y ,Q)).
α∗X(ṪP)≤ α∗X(Ṫ((Ff)∗Q))≤ α∗X(TFf)∗(ṪQ)= (FSf)∗α∗Y (ṪQ).

We next verify that ηṠ(X,P) ∈ F∗P((X, P), Ṡ(X, P)) and μṠ(X,P) ∈ F∗P(Ṡ(Ṡ(X, P)), Ṡ(X, P)).

P≤ (ηTFX)
∗(ṪP)= (FηSX)

∗α∗X(ṪP),
α∗SX(Ṫ(α∗X(ṪP)))≤ α∗SX(TαX)∗(ṪṪP)≤ α∗SX(TαX)∗(μTFX)∗(ṪP)= (FμSX)

∗α∗X(ṪP).

Now assume that the K-Dijkstra structure (p, T, Ṫ) is Cartesian. Then the last two inequalities
become equalities. Moreover,

Ṡ(f ∗(Y ,Q))= Ṡ(X, (Ff)∗Q)= (SX, α∗X(Ṫ((Ff)∗Q)))
= (SX, α∗X(TFf)∗(ṪQ))= (SX, (FSf)∗α∗Y (ṪQ))= (Sf)∗(Ṡ(Y ,Q)).

Therefore Ṡ is fibered. The functor Ṡ is aK-lifting of S, because its restriction ṠX : F∗PX → F∗PSX
to the fiber over X ∈D is the composite of α∗X and Ṫ∗X , both of which belong to K. This concludes
that (F∗p, S, Ṡ) is a CartesianK-Dijkstra structure.

We will see examples of change-of-base of Dijkstra structures in Section 10.

3.4 Dijkstra Structures with Strengths
In Moggi’s theory of monadic models of computational effects (Moggi 1991),monad strengths are
an important ingredient, since they allow us to sequence effectful computations with a common
context. Below we discuss an extension of Dijkstra structures with strengths.

Let (C, 1,×) be a category with finite products and (T, η,μ) be a monad on it. We first
recall the concept of strength on T (Moggi 1991, Definition 3.2). It is a natural transformation
θX,Y : X× TY→ T(X× Y) satisfying four axioms (below αX,Y ,Z : (X× Y)× Z→ X× (Y × Z) is
the associator):

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

482 A. Aguirre et al.

T(π2) ◦ θ1,X = π2 TαX,Y ,Z ◦ θX×Y ,Z = θX,Y×Z ◦ (X× θY ,Z) ◦ αX,Y ,TZ
ηX×Y = θX,Y ◦ (X× ηY) μX×Y ◦ TθX,Y ◦ θX,TY = θX,Y ◦ (X×μY).

Let f : X→ TY be a morphism in C and Z ∈C be an object. The strength allows us to extend
the domain and codomain of the effectful computation represented by f with Z. The extension is
given as follows:

Z ·θ f � θZ,Y ◦ (idZ × f) ∈C(Z× X, T(Z× Y)).

Intuitively, the morphism Z ·θ f takes an input (z, x) from the extended input space Z× X, applies
the effectful computation f to x, and returns the result (z, v), where v is the value part of the
computation f (x). The input z is directly forwarded to the output.

To extend the concept of strength to Dijkstra structures, we first set-up the concept of finite
products on Dijkstra structures. We define finite products on a posetal fibration p : P→C to be
the following data:

(1) a pair of terminal objects 1 in C and 1̇ in P such that p1̇= 1, and
(2) a pair of binary product functors (×) :C2→C and (×̇) : P2→ P such that (×̇) preserves

Cartesian morphisms and p strictly preserves binary products in the following sense:

(f × g)∗(P ×̇Q)= f ∗P ×̇ g∗Q p(P ×̇Q)= pP× pQ, pπP,Q
i = πpP,pQ

i .

A pair of a posetal fibration and finite products on it is denoted by p : (P, 1̇, ×̇)→ (C, 1,×). We
remark that every fiber of p has finite meets, and reindexing functors preserve these meets.2 The
top element of PX is !∗X 1̇ ∈ PX , and themeet of P,Q ∈ PX is given by P ∧Q� 〈idX , idX〉∗ ◦ (P ×̇Q),
and the binary product (×̇) satisfies P ×̇Q= π∗1 P ∧ π∗2Q. A logical analogy of the binary product
(×̇) on P is to take the conjunction φ(i)∧ψ(j) of unary predicates φ(i) and ψ(j) and regard it as
a binary predicate.

We define a Dijkstra structure with finite products to be a tuple of a Dijkstra structure (p, T, Ṫ)
and a finite product (1, 1̇,×, ×̇) on p. We write (p : (P, 1̇, ×̇)→ (C, 1,×), T, Ṫ) for such a tuple.

Definition 11. A strength on a Dijkstra structure (p : (P, 1̇, ×̇)→ (C, 1,×), T, Ṫ) with finite prod-
ucts is a pair (θ , θ̇) of a strength θ on T and a strength θ̇ on Ṫ such that pθ̇P,Q = θpP,pQ holds for any
P,Q ∈ P. We say that the strength (θ , θ̇) is Cartesian if each component of θ̇ is Cartesian.

Again, Dijkstra structures with strengths are considered in the context of logical relations for
strong monads (Filinski 1996, 2007; Goubault-Larrecq et al. 2008; Katsumata 2005; Katsumata
et al. 2018). Since we are considering posetal fibrations, a natural transformation θ̇ is a strength
on Ṫ if it is above a strength on T. We formally state this property as follows.

Lemma 12. Let (p : (P, 1̇, ×̇)→ (C, 1,×), T, Ṫ) be a Dijkstra structure with finite products. Then
A strength (θ , θ̇) on (p, T, Ṫ) bijectively corresponds to a strength θ on T satisfying the inequality
P ×̇ ṪQ≤ θ∗pP,pQṪ(P ×̇Q). Moreover, when the strength is Cartesian, the inequality becomes the
equality.

A strength on a Dijkstra structure with finite products is related to the reasoning principle
behind the frame rule, which we informally explain below. Let f be an imperative program over a
program variable context
, and suppose that it satisfies a Hoare triple
 � φ{f }ψ ; it is explicitly
annotated with the context
 for the program f and pre/post conditions φ,ψ . Let ρ be another
assertion over a program variable context� that is disjoint from
. Then the frame rule allows us

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 483

to derive a Hoare triple on the program f when executed in the extended program variable context

,�:

 � φ{f }ψ �� ρ

,�� (ρ ∧ φ){f }(ρ ∧ψ)

The frame rule can be expressed in a general Dijkstra structure with finite products (see item
(2) below) whose base monad has a strength. We show that the soundness of the frame rule is
equivalent to the existence of a strength on the Dijkstra structure with finite products.

Proposition 13. Let (p : (P, 1̇, ×̇)→ (C, 1,×), T, Ṫ) be a Dijkstra structure with finite products and
θ be a strength of T. The following are equivalent:

(1) There exists a strength θ̇ on Ṫ such that (θ , θ̇) is a strength of the Dijkstra structure.
(2) P{f }Q implies (R ×̇ P){pR ·θ f }(R ×̇Q) for any P,Q, R ∈ P and morphism f : pP→ TpQ in C.
(3) R ×̇wp(f ,Q)≤wp(pR ·θ f , (R ×̇Q)) holds for any P,Q, R ∈ P and morphism f : pP→ TpQ

in C.

Furthermore, (θ , θ̇) in (1) is Cartesian if and only if the inequality in (3) is an equality.

Proof. Assume f : X→ TY . We first prove (1) implies (3). Let Z= pR. Note that θ̇ : R ×̇ ṪQ→
Ṫ(R ×̇Q) is above θZ,Y : Z× TY→ T(Z× Y). Therefore, R ×̇ TQ≤ θ∗Z,Y (Ṫ(R ×̇Q)), and we have
an equality if θ̇ is Cartesian. Then

R ×̇wp(f ,Q)= R ×̇ f ∗ṪQ= (idZ × f)∗(R ×̇ ṪQ)≤ (idZ × f)∗θ∗Z,Y Ṫ(R ×̇Q)
= (θZ,Y ◦ (idZ × f))∗Ṫ(R ×̇Q)= (Z ·θ f)∗Ṫ(R ×̇Q)=wp(Z ·θ f , (R ×̇Q))

We then show that (3) implies (1). By definition, wp(Z ·θ idTY , (R ×̇Q))= θ∗Z,Y Ṫ(R ×̇Q) and
by (3) we have an inclusion R ×̇wp(idTY ,Q)= R ×̇ ṪQ≤ θ∗Z,Y Ṫ(R ×̇Q) in the fiber above Z× TY .
From Lemma 12, we obtain a strength (θ , θ̇) for the Dijkstra structure. If R ×̇ ṪQ= θ∗Z,Y Ṫ(R ×̇Q),
then the strength (θ , θ̇) is Cartesian.

We now show that (3) implies (2). From (3), we get (R ×̇wp(f ,Q)){Z ·θ f }(R ×̇Q) By
assumption, also P{f }Q, so P≤wp(f ,Q). From all this, it follows that (R ×̇ P){Z ·θ f }(R ×̇Q)

Finally, we show that (2) implies (3). By definition,
wp(f ,Q){f }Q =⇒ (R ×̇wp(f ,Q)){Z ·θ f }(R ×̇Q) =⇒ R ×̇wp(f ,Q)≤wp(Z ·θ f , (R ×̇Q)).

3.5 Strongest Postcondition Predicate Transformers
We turn our attention to strongest postcondition predicate transformers. In Hoare logic, the
strongest postcondition with respect to a program f and a precondition φ is a formula ψ such
that (1) φ{f }ψ holds, and (2) if φ{f }ξ holds, then ψ must entail ξ .

We formulate the concept of strongest postcondition in a K-Dijkstra structure (p : P→
C, T, Ṫ). The strongest postcondition with respect to a morphism f : X→ TY in C and an object
P ∈ PX is an object S ∈ PY such that for any Q ∈ PY , S≤Q if and only if P{f }Q. If such S exists,
it is uniquely determined by f and P, hence we write it by sp(f , P). To summarize, we obtain the
three-way equivalence:

sp(f , P)≤Q ⇐⇒ P{f }Q ⇐⇒ P≤wp(f ,Q). (9)
This exhibits that the sppt corresponds to the left adjoint of the wppt, leading us to the following
definition.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

484 A. Aguirre et al.

Definition 14. We say that a K-Dijkstra structure (p : P→C, T, Ṫ) admits the strongest post-
condition predicate transformer (sppt for short) if for any morphism f : X→ TY in C, wp(f , _) ∈
K(PY , PX) is a right adjoint. Its associated left adjoint is denoted by sp(f , _) ∈ Pos(PX , PY).

We note that the sppt sp(f , _) does not need to belong toK. From this definition, ifK is a sub-
category of Pos such that every morphism in K is a right adjoint, then any K-Dijkstra structure
admits the sppt. A typical example of such K is the subcategory CLat∧ of Pos consisting of com-
plete lattices and meet-preserving functions. Since every morphism in CLat∧ is a right adjoint,
any CLat∧-Dijkstra structure admits the sppt.

Like the case of wppts, sppts in general do not satisfy the composability. They do so if and only
if theK-Dijkstra structure is Cartesian:

Theorem 15. Let (p : P→C, T, Ṫ) be a K-Dijkstra structure admitting the sppt. We have
inequalities

sp(ηX , P)≤ P, sp(f • g, P)≤ sp(f , sp(g, P)), (10)

for any f , g, P of appropriate type. Moreover, both inequalities in (10) become equalities if and only
if theK-Dijkstra structure is Cartesian.

Proof. (10) easily follows by taking the adjoint mate of (5) in Theorem 6. Next, assume that
inequalities in (10) are equalities. We show that inequalities in (5) become equalities. From the
assumption, we obtain

wp(ηX , P)= sp(ηX , wp(ηX , P))≤ P,

and

sp(f , sp(g, wp(f • g, P)))= sp(f • g, wp(f • g, P))≤ P,

which implies wp(f • g, P)≤wp(g, wp(f , P)). These are the other direction of (5), hence proved.
The converse is proven similarly.

Therefore, for a Cartesian Dijkstra structure (p : P→C, T, Ṫ) admitting sppts, the functor
pT,Ṫ : PṪ→CT between Kleisli categories defined in Theorem 7 is a posetal bifibration (a pose-
tal fibration such that each reindexing functor is a right adjoint; see Jacobs (1999, Definition 9.1.1)
for the definition).

4. Dijkstra Structures on Lax Slice Categories
In the setting of an arbitrary posetal fibration, we are unaware of a general way of construct-
ing Cartesian liftings of monads. However, in the specific case of a domain fibration from a lax
slice category (introduced in Section 4.2), there is a recipe for constructing Cartesian liftings. We
discuss this construction in this section, and visit examples in Sections 5–9.

A lax slice category is constructed from an object� in a categoryC and a partial order≤X given
to each homset C(X,�). We call the pair (�,≤) an ordered object in C (Definition 16). Then the
lax slice category C/�� is defined by the following data: an object is a morphism into �, and a

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 485

morphism from f to g is a morphism h : dom(f)→ dom(g) with the following inequality:

X

f ���
��

��
��

h ��

≤X

Y

g
����
��
��
�

�

The domain functor extracting the domain part of this diagram, which is denoted by dC,� :
C/��→C, becomes a posetal fibration; we hence call it a domain fibration.3 In Theorem 26,
we show that a Cartesian lifting of a monad T on C along dC,� bijectively corresponds to an
Eilenberg–Moore monotone algebra on �. This correspondence significantly reduces the search
space for Cartesian liftings. Specially, whenC= Set and� and T� are both finite, it is possible to
enumerate all such algebras. We carry out this enumeration for some monads in Section 5.

We also seek for a principle behind the correspondence between structures on dC,� and struc-
tures on �. We present it as a biequivalence result (Theorem 25) between the 2-category CO(K)
of ordered objects (Definition 21) and the 2-category K-Fibg of K-fibrations with split generic
objects (Definition 24), the latter of which is a full sub-2-category of K-Fib (the left of (11)). A
similar result holds when 2-cells of K-Fibg and K-Fib are restricted to Cartesian ones; 2-cells of
CO(K) are also restricted accordingly (the right of (11)).

CO(K) ≡ �� K-Fibg �
� �� K-Fib COc(K) ≡ �� K-Fibc,g �

� �� K-Fibc . (11)

This biequivalence is working behind the proof of lifting-algebra correspondence (Theorem 25).
The same proof strategy is employed for establishing a correspondence between (1) liftings of
distributive laws and distributive laws satisfying certain axioms with respect to Eilenberg–Moore
monotone algebra pairs (Theorem 27) and (2) liftings of monad strengths and strengths satisfying
a certain inequality with respect to an Eilenberg–Moore monotone algebras (Theorem 29).

In Section 4.4, we discuss the interaction between wppts of a Cartesian Dijkstra structure of the
form (d�,C, T, Ṫ) and algebraic operations of T in the sense of Plotkin and Power (2001).

4.1 Ordered Objects
With the goal of having fibers with a partial order structure, we consider slices over ordered
objects, defined below:

Definition 16. An ordered object in a category C is a pair of an object � and an assignment of a
partial order≤X to the homsetC(X,�) for each X ∈C. These partial orders should be such that, for
any morphism f : Y→ X in C, i≤X j implies i ◦ f ≤Y j ◦ f .

Equivalently, an ordered object is a pair of an object � and a functor A :Cop→ Pos such that
U ◦A=C(_,�), where U : Pos→ Set is the forgetful functor. The object � corresponds to the
set of truth values, and a morphism i : X→� in C corresponds to an �-valued predicate on X.
The order ≤X compares the strength of predicates: i≤X jmeans that i implies j.

To impose further conditions on the partial order, we parameterize Definition 16 by a
subcategoryK of Pos.

Definition 17. We say that an ordered object (�,≤) in a category C belongs to K if each poset
(C(X,�),≤X) belongs toK, and for any morphism f : X→ Y inC, the function _ ◦ f is a morphism
from (C(Y ,�),≤Y) to (C(X,�),≤X)) inK.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

486 A. Aguirre et al.

Example 18. A typical way to give an ordered object in Set is to take a poset (�,≤) and define
the partial order≤X on the homset Set(X,�) to be the pointwise order. Examples in Sections 5–8
all use domain fibrations arising from this kind of ordered object. Moreover, if the poset (�,≤)
belongs to a subcategory K of Pos, and K has small powers4 of (�,≤), then the ordered object
(�,≤X) belongs toK.

Example 19. Generalizing the previous example, letC be a category with finite limits. An internal
partial order is a monomorphism m : R��×� satisfying reflexivity, transitivity, and antisym-
metry expressed diagrammatically; see Lane and Moerdijk (1994, Section IV.8). For each X ∈C,
the following binary relation ≤X over C(X,�) becomes a partial order:

f ≤X g ⇐⇒ ∃h : X→ R . 〈f , g〉 =m ◦ h,
Then (�,≤X) becomes an ordered object in C. To summarize, an internal partial order in C

induces an ordered object in C.

Example 20. Not every ordered object arises in the way given in Example 19. In categories with-
out finite limits (such as Kleisli categories of monads), we cannot have an internal partial order,
but we can still have ordered objects. For example, the Kleisli category of the finite probability
distribution monad D (Example 40) over Set does not have finite products, but there is an ordered
object {⊥,�} (a two-point set) whose order is defined by

f ≤X g ⇐⇒ ∀x ∈ X . f (x)(�)≤ g(x)(�).

When C comes with a Pos-enrichment, that is, an assignment of a partial order �X,Y to each
homset C(X, Y) making the composition monotone, any object � ∈C determines an ordered
object (�,�_,�). However, it is not desirable to restrict our attention to such ordered objects in
Pos-enriched categories, because there can be cases where the order �X,� is not adequate for
comparing strength of predicates on X. For instance, the category Set may be seen as a Pos-
enriched category by considering the discrete order on each homset. However, the ordered object
(�,=_,�) based on this enrichment only gives the discrete order on �-valued predicates, which
is not very useful. Therefore we need freedom to give an ordered object independently from the
Pos-enrichment on a category.

4.2 Lax Slice Construction
LetC be a category and (�,≤) be an ordered object inC belonging to a subcategoryK of Pos. We
define the lax slice category C/�� by the following data:

• An object is a morphism in C whose codomain is�.
• A morphism from i to j is a morphism h : dom(i)→ dom(j) in C such that i≤dom(i) j ◦ h.

The domain functor dC,� :C/��→C is defined by

dC,�i� dom(i), dC,�(f)� f .

It is a K-fibration, and the fiber category (C/��)X at X ∈C is the poset (C(X,�),≤X). The
pullback of i : X→� along h : Y→ X is given by h∗i= i ◦ h.

We further investigate the 2-categorical nature of the construction of lax slice categories. We
introduce the following 2-categoriesCO(K) andCOc(K) whose 0-cells are categories with ordered
objects belonging to a subcategoryK of Pos.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 487

Definition 21. Let K be a subcategory of Pos. The 2-category CO(K) is defined by the following
data.

• A 0-cell is a tuple (C,�,≤) consisting of a category C and an ordered object (�,≤) in C

belonging toK.
• A 1-cell from (C,�,≤) to (D,�,≤) is a pair of a functor F :C→D and a morphism o : F�→
� in D such that o ◦ F_ is a monotone function belonging toK in the following sense:

∀X ∈C . o ◦ F_ ∈K((C(X,�),≤X), (D(FX,�),≤FX)). (12)
The identity 1-cell and the composition of 1-cells are defined by

id(C,�,≤) � (IdC, id�), (F, o) ◦ (G, o′)� (F ◦G, o ◦ Fo′).
• For 1-cells (F, o), (G, o′) : (C,�,≤)→ (D,�,≤), a 2-cell from the former to the latter is a
natural transformation α : F→G such that o≤ o′ ◦ α�.

Definition 22. We define a subcategory COc(K) of CO(K) by restricting 2-cells from (F, o) to
(G, o′) to natural transformations α : F→G such that o= o′ ◦ α�.

We extend the lax slice construction to 2-functors. We first mention a few facts:

• For a 1-cell (F, o) ∈CO(K)((C,�,≤), (D,�,≤)), let Fo :C/��→D/�� be the functor
defined by

Fo(i)� o ◦ Fi, Fo(f)� Ff .

From (12) it follows that (F, Fo) is a fiberedK-functor from dC,� to dD,�.
• There is a bijective correspondence between 2-cells in CO(K) andK-Fib:

CO(K)((C,�,≤), (D,�,≤))((F, o), (G, o′)) (13)
= {α : F→G | o≤ o′ ◦ α�} (14)
= {α : F→G | ∀i . Foi≤ α∗dom(i)(Go′ i)} (15)
∼=K-Fib(dC,�, dD,�)((F, Fo), (G,Go)). (16)

The equality between (14) and (15) is by
(∀i . Foi≤ α∗dom(i)(Go′ i)) ⇐⇒ (∀i . o ◦ Fi≤ o′ ◦Gi ◦ αdom(i) = o′ ◦ α� ◦ Fi)

⇐⇒ o≤ o′ ◦ α�,
and the bijection from (15) to (16) is �−1 given in (1). A similar bijective correspondence
between 2-cells of COc(K) andK-Fibc also holds by using �−1c instead of�−1:

COc(K)((C,�,≤), (D,�,≤))((F, o), (G, o′))
∼=K-Fibc(dC,�, dD,�)((F, Fo), (G,Go)).

From these, we define 2-functors LK :CO(K)→K-Fib and LK,c :COc(K)→K-Fibc by

LK(C,�,≤)� dC,� :C/��→C, LK(F, o)� (F, Fo), LK(α)��−1(α)
LK,c(C,�,≤)� dC,� :C/��→C, LK,c(F, o)� (F, Fo), LK,c(α)��−1c (α).

The verification of this being a 2-functor is routine, and omitted.

Theorem 23. Let K be a subcategory of Pos. The 2-functors LK and LK,c are local isomorphisms,
that is, each hom-functor is an isomorphism.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

488 A. Aguirre et al.

Proof. We first prove the case of LK; the proof of the case LK,c is similar. It suffices to show that
each hom-functor:

LK :CO(K)((C,�,≤), (D,�,≤))→K-Fib(dC,�, dD,�)
is bijective on objects, because full faithfulness is already guaranteed by (13)–(16). Let (F, Ḟ) :
dC,�→ dD,� be a 1-cell inK-Fib. We show that (F, Ḟ(id�)) ∈CO(K) is the unique 1-cell yielding
(F, Ḟ). We first show the functor equality FḞ(id�) = Ḟ :C/��→D/��.

FḞ(id�)i= Ḟ(id�) ◦ Fi= (Fi)∗(Ḟ(id�))= Ḟ(i∗(id�))= Ḟi,
FḞ(id�)h= Fh= Ḟh.

Therefore, (F, Ḟ(id�)) is a 1-cell in CO(K). Next, let (F, o) ∈CO(K) be a 1-cell such that (F, Fo)=
(F, Ḟ). Then Ḟ(id�)= Fo(id�)= o, hence (F, o)= (F, Ḟ(id�)). This proves that LK is bijective on
objects.

We characterize the image of LK and LK,c. Let p : P→C be aK-fibration. A split generic object
� ∈ P is such that for any object P ∈ P, there exists a uniquemorphism χ : pP→ p� in P such that
P= χ∗� (Jacobs 1999, Definition 5.2.1). Note that split generic objects are mutually isomorphic.

Definition 24. We writeK-Fibg (resp.K-Fibc,g) for the 2-category obtained by restricting 0-cells of
K-Fib (resp.K-Fibc) toK-fibrations having split generic objects.

Theorem 25. For any replete subcategory K of Pos, CO(K) (resp. COc(K)) is biequivalent to
K-Fibg (resp.K-Fibc,g).

Proof. We first show that LK is essentially surjective on 0-cells. Let p : P→C be a K-fibration
with a split generic object� ∈ P. We first extract an ordered object inC belonging toK. From the
definition of split generic object, the function (−)3∗� :C(X, p�)→Obj(PX) is a bijection; we
write �X for its inverse. We put a partial order on C(X, p�) by: f ≤X g ⇐⇒ f ∗�≤ g∗�. Then
the bijection becomes an isomorphism between (C(X, p�),≤X) and PX in Pos, which further
becomes an isomorphism in K because K is replete. Then for any morphism f : X→ Y in C, the
composite of the following morphisms inK is equal to _ ◦ f :

(C(Y , p�),≤X)
(_)∗� �� PY

f ∗ �� PX
�X �� (C(X, p�),≤Y)

Therefore, p� is an ordered object in C belonging to K. It is then routine to show that dC,p� :
C/�p�→C is isomorphic to p : P→C inK-Fibg . The case of LK,c is proved similarly.

4.3 CharacterizingK-Dijkstra Structures on Domain Fibrations
Recall that a CartesianK-Dijkstra structure is precisely amonad inK-Fibc. The local isomorphism
theorem (Theorem 23) implies the following characterization of Cartesian K-Dijkstra structures
on domain fibrations.

Theorem 26. Let (C,�,≤) ∈COc(K) be a 0-cell. Then there is a bijective correspondence between

(1) A CartesianK-Dijkstra structure whoseK-fibration is dC,� :C/��→C.
(2) A pair of a monad T on C and an EM monotone T-algebra (o,�) belonging to K (when

K= Pos, we omit “belonging toK”), that is, an EM algebra such that o ◦ T_ satisfies (12).

Proof. Let (C,�,≤) ∈COc(K) be a 0-cell and (T, Ṫ), (μ, μ̇), (η, η̇) be a monad on dC,� in the
2-categoryK-Fibc. FromTheorem 23, there exists a unique 1-cell (T, o) and 2-cells η,μ inCOc(K)

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 489

whose images by LK,c coincide with (T, Ṫ), (μ, μ̇), (η, η̇), respectively. It is then routine to check
that ((T, o), η,μ) is a monad on (C,�,≤) in COc(K). By unraveling the definition, the monad
consists of an ordinary monad (T, η,μ) on C and an EM T-algebra o : T�→� such that o ◦ T_
belongs toK in the sense of (12).

In many situations, monads for modeling computational effects are composites of simpler
monads through distributive laws. We extend our lifting theory of monads to composite monads.
Let T, S bemonads onC and α : ST→ TS be a distributive law (see Section 2).We are interested in
EM monotone T ◦α S-algebras, which give Cartesian liftings of T ◦α S. EM algebras of composite
monads are studied in Beck (1969, Section 2), Manes and Mulry (2007, Theorem 2.4.3). Below we
mildly extend these results.

Theorem 27. Let (C,�,≤) ∈COc(K) be a 0-cell, T, S be monads on C and α : ST→ TS be a
distributive law. There is a bijective correspondence between each two of:

(1) An EM monotone T ◦α S-algebra (o,�) belonging toK.
(2) A pair of an EM monotone T-algebra (t,�) belonging to K and an EM monotone S-algebra

(s,�) belonging toK satisfying

s ◦ St= t ◦ Ts ◦ α�. (17)

(3) A triple (Ṫ, Ṡ, α̇) where Ṫ, Ṡ are, respectively, Cartesian liftings of T, S along dC,�, and α̇ :
ṠṪ→ ṪṠ is a distributive law above α whose components are Cartesian.

Proof. The bijection between (2) and (3) is proved in the same way as Theorem 26. We show
a bijective correspondence between (1) and (2). Let (o,�) be an EM monotone T ◦α S-algebra
belonging to K. Then it is routine to show that t� o ◦ TηS� : T�→� and s� o ◦ ηTS� : S�→�

are both EM algebras. To show that t, s are monotone and belong to K, observe that functions
on the left-hand side below are equal to composite monotone functions on the right-hand side
belonging toK:

t ◦ T_= (C(X,�),≤X)
o◦TS_ �� (C(TSX,�),≤TSX)

_◦TηSX �� (C(TX,�),≤TX)

s ◦ S_= (C(X,�),≤X)
o◦TS_ �� (C(TSX,�),≤TSX)

_◦ηSTX �� (C(SX,�),≤SX)
Conversely, let t : T�→�, s : S�→� be EMmonotone algebras belonging toK. Then it is rou-
tine to show that o� t ◦ Ts is an EM T ◦α S-algebra, provided that t, s satisfies (17). Moreover, o is
a monotone and belongs to K because the function on the left-hand side below is the composite
monotone function on the right-hand side, which belongs toK:

o ◦ TS_= (C(X,�),≤X)
s◦S_ �� (C(SX,�),≤SX) t◦T_ �� (C(TSX,�),≤TSX).

We note that the condition (17) appears in Beck (1969, Section 2). This theorem says that to
identify a lifting of T ◦α S, it suffices to identify a pair of EMmonotone T- and S-algebras satisfying
(17).

We next apply the local isomorphism theorem (Theorem 23) to characterize strengths on
CartesianDijkstra structures whose fibrations are domain fibrations.We first identify the situation
when domain fibrations have finite products.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

490 A. Aguirre et al.

Proposition 28. Let (C,�,≤) ∈COc(Pos) be a 0-cell. The following are equivalent:

(1) The domain fibration dC,� :C/��→C has finite products (1, 1̇,×, ×̇).
(2) C has finite products (1,×), and there are morphisms � : 1→�,m :�2→� such that

�◦!X and m ◦ 〈_, _〉 give finite meets in the poset (C(X,�),≤X).

Theorem 29. Let (C,�,≤) ∈COc(Pos) be a 0-cell, and suppose that dC,� :C/��→C has finite
products (1, 1̇,×, ×̇). We write m :�2→� for the meet morphism that exists by Proposition 28.
Let (dC,�, T, Ṫ) be a Cartesian Dijkstra structure and let o : T�→� be the EMmonotone T-algebra
corresponding to Ṫ. There is a bijective correspondence between:

(1) a strength on the Cartesian Dijkstra structure, and
(2) a strength θ on T such that m ◦ (id× o)≤ o ◦ Tm ◦ θ�,�.

Proof. Let (θ , θ̇) be a strength on a Cartesian Dijkstra structure. From Lemma 12, and the assump-
tion that both ×̇ and T are fibered, the strength bijectively corresponds to the 2-cell (θ , θ̇) in
Pos-Fib such that θ is a strength on T.

dC,� × dC,� (Id×T,Id×Ṫ) ��

(×,×̇)
��

⇓(θ ,θ̇)

dC,� × dC,�

(×,×̇)
��

dC,�
(T,Ṫ)

�� dC,�

(C2, (�,�),≤2) (Id×T,(id,o)) ��

(×,m)
��

⇓θ

(C2, (�,�),≤2)

(×,m)
��

(C,�,≤)
(T,o)

�� (C,�,≤)

By the local isomorphism theorem, such a 2-cell bijectively corresponds to a 2-cell in CO(Pos)
(see the right diagram above) where θ is a strength of T. This is equivalent to that θ is a strength
on T satisfyingm ◦ (id× o)≤ o ◦ Tm ◦ θ .

4.4 Algebraic Operations andWeakest Precondition Predicate Transformer
Various program constructs that cause computational effects can be naturally modeled by Plotkin
and Power’s algebraic operations (Plotkin and Power 2001). They frequently occur in the monadic
semantics of effectful programs. In this section, we give a wppt semantics of algebraic operations
in the Cartesian Dijkstra structures whose fibrations are domain fibrations.

In this section we fix a Cartesian category (C, 1,×), an ordered object (�,≤) inC belonging to
a subcategoryK of Pos, and a strong monad (T, η,μ, θ).

Definition 30. A morphism g :A→ TB in C is called generic effect (Plotkin and Power 2001).
For an EM T-algebra o : TX→ X, we define the following operation op(o, g) :C(Y ,A)×C(Y ×
B, X)→C(Y , X) by

op(o, g)(a, b)� o ◦ T(b) ◦ θY ,B ◦ 〈idY , g ◦ a〉.
We specifically write α(g)X for op(μX , g) and call it the algebraic operation corresponding to g.

The first and second arguments of op(o, g) are, respectively, called a parameter and an argu-
ment. The above definition of algebraic operation is different from the original one presented in
Plotkin and Power (2001). Originally, an algebraic operation corresponding to a generic effect
g :A→ TB is a certain natural transformation αX :A× (B⇒ TX)→ TX. In this paper, we present
it as an operation on morphisms in a Cartesian category.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 491

Proposition 31. Let o : T�→� be an EM monotone T-algebra belonging to K. Then for any
generic effect g :A→ TB and morphism a : Y→A, we have

op(o, g)(a, _) ∈K((C(Y × B,�),≤Y×B), (C(Y ,�),≤Y)).

Proof. Notice that op(o, g)(a, _) is the composite of the following morphisms inK:

(C(Y × B,�),≤Y×B)
o◦T_ �� (C(T(Y × B),�),≤T(Y×B)) _◦〈idY ,g◦a〉 �� (C(Y ,�),≤Y).

The following theorem helps us (in Section 7) to compute the wppt of programs involving
algebraic operations:

Theorem 32. Let o : T�→� be an EM monotone T-algebra belonging to K and (dC,�, T, To) be
the corresponding CartesianK-Dijkstra structure. Then the following equality holds for any generic
effect g :A→ TB and morphism a : Y→A, b : Y × B→ TX, i : X→�:

wp(α(g)X(a, b), i)= op(o, g)(a, wp(b, i)).

Proof. The equation easily follows from the EM axiom o ◦μ� = o ◦ To:
wp(α(g)X(a, b), i)= o ◦ Ti ◦μX ◦ T(b) ◦ θ ◦ 〈id, g ◦ a〉

= o ◦μ� ◦ T2i ◦ T(b) ◦ θ ◦ 〈id, g ◦ a〉
= o ◦ To ◦ T2i ◦ T(b) ◦ θ ◦ 〈id, g ◦ a〉
= op(o, g)(a, wp(b, i)).

When C has distributive finite coproducts, we can make algebraic operations to take tuples of
morphisms as arguments. Below we look at the case n= 2. We write 2 for the coproduct 1+ 1.
For the setting above, it is useful to define an operator β : C(X, Y)×C(X, Y)→C(X× 2, Y):

β(b1, b2)� [b1 ◦ rX , b2 ◦ rX] ◦ distY ,1,1 (18)

where rX : X× 1→ X is the right unitor and distX,Y ,Z ◦ X× (Y + Z)→ X× Y + X× Z is the
distributive law of the product over the coproduct. Then we can show:

Corollary 33. Let o : T�→� be an EM monotone T-algebra belonging to K and (dC,�, T, To) be
the corresponding Cartesian K-Dijkstra structure. For any generic effect g :A→ T2 and morphism
a : Y→A, b1, b2 : Y→ TX, i : X→�, the following equality holds:

wp(α(g)X(a, β(b1, b2)), i)= op(o, g)(a, β(wp(b1, i), wp(b2, i))).

Proof. The key step is checking that wp(β(b1, b2), i)= β(wp(b1, i), wp(b2, i)). Indeed,
wp(β(b1, b2), i)= o ◦ Ti ◦ [b1 ◦ r, b2 ◦ r] ◦ dist

= [o ◦ Ti ◦ b1 ◦ r, o ◦ Ti ◦ b2 ◦ r] ◦ dist
= β(wp(b1, i), wp(b2, i)).

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

492 A. Aguirre et al.

5. Dijkstra Structures on dSet,2

We apply the techniques developed in the previous sections to concrete settings. We first consider
the lax slice category with the poset 2= {⊥≤�}, viewed as an ordered object in Set (Example 18).
We identify an object i : X→ 2 in Set/�2 as a pair (X, P) of sets such that P⊆ X. The fibration
dSet,2 : Set/�2→ Set is isomorphic to the subobject fibration (see e.g. Jacobs 1999, Chapter 0) of
Set.

Example 34. (Hasuo 2015, Section 2.3) As a warm-up exercise, we consider Cartesian liftings of
themaybe monad (a.k.a. partiality monad)M along dSet,2. Its functor part is defined byMX� X+
{∗}, where {∗} denotes the singleton set. In this example, we leave implicit the coproduct injection
ιi : Xi→ X1 + X2 to improve readability.

There are exactly two EMmonotone M-algebras tot, par over 2:

tot(x)=� ⇐⇒ x=�
par(x)=� ⇐⇒ (x=�∨ x=∗).

They induce Cartesian liftings Mtot,Mpar of M along dSet,2. The following table describes how
the liftings are defined on objects and how the Hoare triple statements are interpreted in the
corresponding Cartesian Dijkstra structures using these liftings:

o Lifting Mo, object part (X, P){f }(Y ,Q) in (dSet,2,M,Mo)
tot Mtot(X, P)= (MX, P) ∀x ∈ X . x ∈ P =⇒ f (x) �= ∗ ∧ f (x) ∈Q
par Mpar(X, P)= (MX, P ∪ {∗}) ∀x ∈ X . x ∈ P ∧ f (x) �= ∗ =⇒ f (x) ∈Q

The Cartesian Dijkstra structures associated to these Cartesian liftings offer the total and partial
correctness interpretations of Hoare triples.

Example 35. Generalizing Example 34, we consider Cartesian liftings of the exception monad E
along dSet,2. Its functor part is defined by EX � X+ E, where E is a fixed set. We can easily verify
that an EM monotone E-algebras over 2 bijectively corresponds to a subset of E. For a subset
A⊆ E, the corresponding algebra excA : E2→ 2 is

excA(x)=� ⇐⇒ x= ι1(�)∨ ∃e ∈A . x= ι2(e).
Let us write EexcA for the associated Cartesian lifting of E. Its object part is given by

EexcA(X, P)= (EX, {ι1(x) | x ∈ P} ∪ {ι2(e) | e ∈A}),
and the Hoare triple (X, P){f }(Y ,Q) in (dSet,2, E, EexcA) is equivalent to

∀x ∈ X . x ∈ P =⇒ (∃y ∈Q . f (x)= ι1(y))∨ (∃e ∈A . f (x)= ι2(e)).
This statement says that f returns a value satisfying Y , or raise an exception belonging to A.

Example 36. (Hino et al. 2016, Example 3.3) We next consider the Cartesian liftings of the
nonempty powerset monad P+ along dSet,2. Its functor part is defined by P+X� {U ⊆ X | U �= ∅}.
There are exactly two EMmonotone P+-algebras may, must over 2:

may(U)=� ⇐⇒ �∈U,
must(U)=� ⇐⇒ ⊥ �∈U

They induce two Cartesian liftings P+may, P+must of P+ along dSet,2. The Dijkstra structures with
these Cartesian liftings of P+ along dSet,2 offer the may and must correctness interpretations of
Hoare triples.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 493

o Lifting P+o, object part (X, P){f }(Y ,Q) in (dSet,2, P+, P+o)
may P+may(X, P)= (P+X, {U | U ∩ P �= ∅}) ∀x ∈ X . x ∈ P =⇒ ∃u ∈ f (x) . u ∈Q
must P+must(X, P)= (P+X, {U | U ⊆ P}) ∀x ∈ X . x ∈ P =⇒ ∀u ∈ f (x) . u ∈Q

Example 37. We consider again the monad P+ of the previous example, but now we regard dSet,2
as a CLat∧-fibration. Then must above is the only EM monotone P+-algebra over 2 belonging
to CLat∧. Therefore the must correctness interpretation of the Hoare triple has the composable
strongest postcondition predicate transformer (see Section 3.5).

Example 38. We consider the state monad S, whose functor part is defined by SX= S⇒ (X× S);
here S is the set of states. Recall that a computation f : X→ SY can be seen as a procedure from X
to Y that has access to an external memory device with states in S. However, the two-point set 2 is
too small to remember stored values when |S| ≥ 2. Indeed,

Theorem 39. When |S| ≥ 2, there is no EM monotone S-algebra over 2.

Proof. Plotkin and Power (2001) observed that algebras of the set monad correspond bijectively
to mnemoids, sets that satisfy the algebraic theory of update-lookup. For the carrier 2, these
operations have the types:

lookup : 2S→ 2 update : S× 2→ 2

and satisfy the equations below:

∀s ∈ S.∀b ∈ 2. lookup(λs.update(s, b))= b (19)
∀s1, s2 ∈ S.∀b ∈ 2. update(s1, update(s2, b))= update(s2, b) (20)

∀s ∈ S.∀f ∈ 2S. update(s, lookup(f))= f (s) (21)

The algebraic theory implies that if update(s, b)= 1 for any s and b, then update(t, 1)= 1 for all
t, since

update(t, 1)= update(t, update(s, b))= update(s, b)= 1

by Equation 20. An analogous reasoning can be done when update(s, b)= 0. This leaves two cases,
either update(t, 0)= 0 and update(t, 1)= 1 for all t, or update(t, 0)= update(t, 1) for all t.

In the second case, we derive a contradiction easily:

1= lookup(λt.update(t, 1))= lookup(λt.update(t, 0))= 0

where the first and last equalities are given by Equation (19).
For the first case, we need a further subcase distinction. Let s be a state and fs ∈ 2S the function

that returns 1 on s and 0 otherwise. Either lookup(fs)= 0 or lookup(fs)= 1. If it is 0, then

1= update(s, 1)= update(s, lookup(fs))= update(s, 0)= 0

Here, the second equality comes from applying Equation (21).
The subcase lookup(fs)= 1 is analogous. This completes the proof.

When we replace the slicing object 2 with S⇒ 2 (with the pointwise order), we find that it
carries an EMmonotone S-algebra o(k)� λs . π1(k s)(π2(k s)); see also Pitts (1991, Example 3.4.2)
and Maillard et al. (2019, Section 4.4). The corresponding Cartesian lifting of S along dSet,(S⇒2) :
Set/�(S⇒ 2)→ Set and the derived wppt satisfies

So(i)(c)= λs . i(π1(cs))(π2(cs)), wp(f , i)(x)= λs . i(π1(f (x)(s)))(π2(f (x)(s))).

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

494 A. Aguirre et al.

By using the uncurrying i′ and f ′ of i and f , respectively, wppt can be simplified: wp(f , i)(x)=
λs . i′(f ′(x, s)). The Hoare triple (X, i){f }(Y , j) is valid iff for all x ∈ X and s ∈ S, i(x, s) implies
j(f (x, s)).

In this setting, the strength cannot be lifted to the slice category. The following counterex-
ample (Kura 2022, Example 3.4.11) shows that the conditions of Theorem 29 are not satisfied.
Let s1, s2 be distinct states, x� λs.(s= s1) : S⇒ 2 and t� λs.〈(λs′.(s′ = s2)), s2〉 : S(S⇒ 2). Then,
x∧ o(t)= λs.(s= s1) �≤ λs.⊥= (o ◦ S(∧) ◦ θS)(x, t).

Example 40. Finally, we consider the finite probability distribution monad D. A finite probability
distribution on a set X is a functionμ : X→ [0, 1] such thatμ is nonzero at finitely many elements
in X, and

∑
i∈X μ(i)= 1. The functor part of the monad D is defined by

DX� {μ is a finite probability distribution on X}.
The unit ηD(x) is the Dirac distribution at x, which has value 1 at x and 0 everywhere else, and
the Kleisli lifting f # for f : X→ DY is given by f #(μ)(y)�

∑
x∈X f (x)(y)μ(x). Given x1, x2 ∈ X and

ρ ∈ (0, 1), the convex combination (x1 ⊕ρ x2) is the probability distribution with value ρ on x1,
(1− ρ) on x2 and 0 everywhere else.

Theorem 41. There are exactly two EM monotone D-algebras over 2, given by

pmay(μ)=� ⇐⇒ μ(�)> 0,
pmust(μ)=� ⇐⇒ μ(�)= 1

Proof. Let h : D2→ 2 be a D-algebra. Then it must satisfy:

h(η(0))= 0 h(η(1))= 1 h(p⊕α q)= h(h(p)⊕α h(q))
Assume h(p)= 1 for some p ∈ (0, 1). Then, by the third and second conditions we have, for

every α ∈ [0, 1],

h(p⊕α 1)= h(h(p)⊕α h(1))= h(1)= 1

In other words, for every q ∈ [p, 1], f (q)= 1.
On the other hand, also by the third and first conditions

h(p⊕p 0)= h(h(p)⊕p h(0)= h(p2)= 1.

With these two results combined, we get that f (q)= 1 for every q ∈ [0, 1].

They induce two Cartesian liftings Dpmay, Dpmust of D along dSet,2. The predicate transformers
associated to them generalize the may and must correctness of nondeterministic programs to the
probabilistic setting.

o Lifting Do, object part (X, P){f }(Y ,Q) in (dSet,2, D, Do)
pmay Dpmay(X, P)= (DX, {μ | ∃x ∈ P . μ(x)> 0}), ∀x ∈ X . x ∈ P =⇒ Pry∼f (x)[y ∈Q]> 0
pmust Dpmust(X, P)= (DX, {μ | ∀x ∈ P . μ(x)> 0}) ∀x ∈ X . x ∈ P =⇒ Pry∼f (x)[y ∈Q]= 1

Here the notation Pry∼f (x)[y ∈Q] denotes the probability of y ∈Q when sampling y from f (x).
Explicitly, this is defined as

Pry∼f (x)[y ∈Q]�
∑
y∈Y

1Q(y) · f (x)(y)

where 1Q is the characteristic function of Q.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 495

We note that Cartesian liftings are rather rare, compared to arbitrary liftings. We
look at the case of the powerset monad P along dSet,2. For each regular cardinal λ,
Pλ(P⊆ X)� {U ⊆ P | |U|<λ} gives a lifting of the powerset monad P along dSet,2. On the other
hand (a modification of), Example 36 shows that there are only two Cartesian liftings of P along
dSet,2. Example 38 also shows that there is no Cartesian lifting of the nontrivial state monad along
dSet,2.

We end this section with a discussion about strengths on Dijkstra structures of the form
(dSet,2, T, Ṫ). First, the fibration dSet,2 : Set/�2→ Set has finite products (1, 1̇,×, ×̇). Second, every
monad (T, η,μ) on Set has a unique strength θ given by

θX,Y (x, c)= (λy ∈ Y .ηX×Y (x, y))#(c); (22)

see Moggi (1991). We then obtain the following:

Proposition 42. Every Dijkstra structure (dSet,2, T, Ṫ) has a unique strength (θ , θ̇).

Proof. From Theorem 29, it suffices to show x∧ o(c)≤ o ◦ T(λy.x∧ y)(c) for any x ∈ 2 and c ∈ T2.
It suffices to check whether this holds for x=⊥ and x=�; both cases trivially hold.

6. Dijkstra Structures on dSet,[0,∞]

We next replace the poset 2= {⊥≤�} with the poset [0,∞] of nonnegative extended reals,
with the usual numerical order. It is a completely distributive lattice, and the domain fibration
dSet,[0,∞] : Set/�[0,∞]→ Set has a rich structure (in fact it is a tripos Pitts 1999, Example 2.2). An
object of Set/�[0,∞] is a function i : X→ [0,∞].

Example 43. We consider the counting monad C over Set, whose functor part is given by
CX�N× X. This is identical to the writer monad over a single alphabet (N∼= 1∗). Eachmonotone
function f : [0,∞]→ [0,∞] (bijectively) determines an EM monotone C-algebra o(f)(n, x)�
f n(x), and the corresponding Cartesian lifting Co(f) of C along dSet,[0,∞] is given by Co(f)(i)(n, x)=
f n(i(x)). The standard choice of f : [0,∞]→ [0,∞] is the successor function s(x)= x+ 1. In this
case, the lifting becomes Co(s)i= λ(n, x) . n+ i(x).

Example 44. We consider Cartesian liftings of the nonempty powerset monad P+ along dSet,[0,∞].
There are at least two EM monotone P+-algebras sup, inf : P+[0,∞]→ [0,∞]. They induce two
Cartesian liftings:

P+sup(i)= λU . sup
x∈U

i(x) (i : X→ [0,∞])

P+inf(i)= λU . inf
x∈U i(x) (i : X→ [0,∞])

These Cartesian liftings can be seen as quantitative generalizations of the may and must liftings
from Example 36.

Example 45. We can view objects in Set/�[0,∞] as random variables. The expected value of a ran-
dom variable i : X→ [0,∞] over a finite probability distribution μ ∈ DX, denoted by Ex∼μ[i(x)],
is computed as E ◦ Di(μ), where E : D[0,∞]→ [0,∞] is the expected value function on [0,∞]. It
is easy to check that E is an EMmonotone D-algebra over [0,∞]. Therefore, the expected value is
a Cartesian lifting of D along dSet,[0,∞]:

DE(i)� λμ . Ex∼μ[i(x)]= λμ .
∑

i(x) ·μ(x). (i : X→ [0,∞])

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

496 A. Aguirre et al.

The wppt of the Cartesian Dijkstra structure (dSet,[0,∞], D, DE) computes the weakest pre-
expectation (McIver and Morgan 2005):

wp(f , i)= λj . Ex∼f (j)[i(x)]. (f : Y→ DX, i : X→ [0,∞])

We point out that the Cartesian Dijkstra structure (dSet,[0,∞], D, DE) does not have a strength,
since the strength for the finite probability distribution monad does not satisfy the conditions of
Theorem 29. The strength θDX,Y is defined as

θDX,Y (x, ν)(x
′, y)=

{
ν(y) x′ = x
0 otherwise.

The conditions of the Theorem require that for every x ∈ [0,∞] and every ν ∈ D([0,∞]),
min(x, E(ν))≤ Ey∼ν[min(x, y)]. However, we can find a counterexample (see also Kura 2022,
Example 3.4.10) by setting x= 1 and ν such that ν(0)= ν(2)= 1

2 . Then, we have min(1, E(ν))=
1 �≤ 1

2 = Ey∼ν[min(1, y)].

Example 46. When modeling a programming language with both nondeterministic choice and
probabilistic choice, we might want to combine P+ and D via a distributive law D ◦ P+→ P+ ◦ D.
However, Plotkin showed that there is no such distributive law (Varacca and Winskel 2006). To
remedy this, Varacca andWinskel introduced the indexed valuation monad (Varacca andWinskel
2006), which does have a distributive law with P+.

In this paper, we employ its finite variant called finite indexed distribution monad (Sato 2011).
A finite indexed distribution over a set X is a finite multiset of pairs (p, x) where p ∈ (0, 1] and
x ∈ X, and moreover, the sum of ps in the multiset is 1. We define

I(X)� {μ : finite indexed distribution over X}.
The probabilistic sum of finite indexed distributions is defined as follows (below @ denotes
multiset union):

[· · · (pi, xi) · · ·]⊕p [· · · (qj, yj) · · ·]�

⎧⎪⎪⎨
⎪⎪⎩
[· · · (qj, yj) · · ·] (p= 0)
[· · · (p · pi, xi) · · ·]@[· · · ((1− p)qj, yj) · · ·] p ∈ (0, 1)
[· · · (pi, xi) · · ·] (p= 1)

Every finite probability distribution may be regarded as a finite indexed distribution; we write the
inclusion map by ιX : D(X)→ I(X). We can extend I to a monad on Set called the finite indexed
distribution monad. The concept of expectation can also be extended to finite indexed distribu-
tions. First, the function IE : I([0,∞])→ [0,∞] defined below gives an EM monotone I-algebra
over [0,∞]:

IE[(p1, x1), · · · , (pn, xn)]�
n∑
i=1

pi · xi.

We write IEx∼ν[i(x)] to mean IE ◦ (I(i)(ν)). We note that E= IE ◦ ι. The corresponding Cartesian
lifting of I along dSet,[0,∞], and the wppt within the derived Cartesian Dijkstra structure is

IIE(i)(ν)� IEx∼ν[i(x)]=
∑

(p,x)∈ν
p · i(x), wp(f , i)(x)=

∑
(p,y)∈f (x)

p · i(y).

6.1 Dijkstra Structures for Composite Monads
We next visit examples of liftings of composite monads via distributive laws.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 497

Example 47. We have seen all the Cartesian liftings of the Maybe monadM (Example 34) and the
nonempty powerset monad P+ (Example 36) along dSet,2. We next derive Cartesian liftings of the
composite monad P+ ◦β M via the distributive law β :M ◦ P+→ P+ ◦M given by β(∗)= {∗} and
β(U)=U. The composite monad can model the computational effects of both nondeterministic
choice and diverging computations. To give Cartesian liftings of P+ ◦β M along dSet,2, it suffices to
show (17) for all the four combinations of EMmonotone P+- andM-algebras. They all satisfy (17).

Theorem 48. There are exactly four Cartesian liftings of P+ ◦β M along dSet,2.

Let us denote these liftings by P+a ◦β Mb, where (a, b) range over the four-point set
{may, must} × {tot, par}. Each lifting is explicitly described as follows:

P+a ◦β Mb(I, X)=

⎛
⎜⎜⎜⎜⎜⎝P

+(M(I)),

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{U | U ∩ X �= ∅} (a=may, b= tot)
{U | U ⊆ X} (a=must, a= tot)
{U | U ∩ (X+ {∗}) �= ∅} (a=may, b= par)
{U | U ⊆ X+ {∗}} (a=must, b= par)

⎞
⎟⎟⎟⎟⎟⎠

Next, we look at examples of composite monads with the counting monad C in Example 43.
The countingmonad is useful formeasuring various intensional quantities of program executions.
The distributive law of any Set-monad T over the counting monad C exists and is provided by the
unique strength θX,Y : X× TY→ T(X× Y) of T given as (22). Here we discuss giving a Cartesian
lifting of T ◦θ C.

Theorem 49. Let o : T[0,∞]→ [0,∞] be an EM monotone T-algebra and f : [0,∞]→ [0,∞] be
a monotone function. Then o and o(f) (the EMmonotone C-algebra associated to f ; see Example 43)
satisfy (17) if and only if o ◦ Tf = f ◦ o, that is, f is a T-algebra endomorphism over o.

Example 50. We consider the instance of Theorem 49 where T is the finite probability distribu-
tion monad D. The composite monad D ◦θ C is suitable for modeling probabilistic programs that
report cost counting during their executions. We will see this in Section 7. The EM monotone
D-algebra E : D[0,∞]→ [0,∞] and the successor function s : [0,∞]→ [0,∞] evidently satisfies
the equality condition of Theorem 49:

E ◦ Ds= λμ . Ex∼μ[1+ x]= λμ . 1+ Ex∼μ[x]= s ◦ E.
Therefore, E and o(s) satisfy (17) by Theorem 49. The composite DE ◦ Co(s) is a Cartesian lifting of
D ◦θ C along dSet,[0,∞] and is computed as DE ◦ Co(s)(i)= λμ . E(c,x)∼μ[c+ i(x)]. The wppt in the
Dijkstra structure (dSet,[0,∞], D ◦θ C, DE ◦ Co(s)) is

wp(f , j)(x)= E(c,y)∼f (x)[c+ j(y)] (f : X→ D ◦θ C(Y), j : Y→ [0,∞]).

Example 51. The nonempty powerset monad P+ distributes over the finite indexed distribution
monad I. The distributive law γ : I ◦ P+→ P+ ◦ I is given by

γX[(p1,U1), · · · , (pn,Un)]� {[(p1, x1), · · · , (pn, xn)] | x1 ∈U1, · · · , xn ∈Un}.
It is easy to check that the expectation function IE : I[0,∞]→ [0,∞] (Example 46) distributes
over sup : P+[0,∞]→ [0,∞] (Example 44). Therefore, the wppt in the Cartesian Dijkstra
structure (dSet,[0,∞], P+ ◦γ I, P+sup ◦ IIE) is

wp(f , i)(j)= sup
ν∈f (j)

IEx∼ν[i(x)] (f : X→ P+ ◦γ I(Y), i : Y→ [0,∞], j ∈ X).

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

498 A. Aguirre et al.

This wppt performs angelic choice. We can also derive the one performing demonic choice by
replacing sup with inf in this argument. Finally, we compose it with the counting monad C. This
yields the CartesianDijkstra structure (dSet,[0,∞], (P+ ◦γ I) ◦θ C, P+sup ◦ IIE ◦ Co(s)), whose wppt is:

wp(f , i)(j)= sup
ν∈f (j)

IE(c,x)∼ν[c+ i(x)] (f : X→ P+ ◦γ I(Y), i : Y→ [0,∞], j ∈ X).

Recently some new approaches to monadic models of nondeterministic and probabilistic
branching have been proposed. Moggi et al. construct a monad structure on the composite func-
tor P+ ◦ T for any monad T over Set (Moggi et al. 2020). This is not given by distributive law. Goy
and Petrisan employ a weaker notion of distributive law to combine the powerset monad and the
probability distribution monad (Goy and Petrisan 2020). We leave it to a future work to study
wppts for the monads arising from these approaches.

7. Expected Runtime as Weakest Precondition
So far we have been studying abstract wppts formulated in fibered category theory. One might
wonder how they are useful for giving a concrete wppt semantics of an actual imperative
programming language. An intended use of the fibrational wppt is the following.

Suppose that an imperative programming language L and its monadic denotational semantics
[[_]] are given. The semantics [[_]] interprets a program C as a memory transformer [[C]] :M→
TM. To derive a wppt semantics of L, we prepare a Cartesian Dijkstra structure (dC,� :C/��→
C, T, Ṫ), then define the wppt semanticsW(C) of a program C as

W(C)�wp([[C]], _) ∈ Pos((C(M,�),≤), (C(M,�),≤)).
When the semantics [[_]] consists of the standard monadic constructs, such as the Kleisli com-
position and algebraic operations, we may derive an inductive definition of W by using the
composability of wp and the commutativity of wp with algebraic operations (Proposition 31).

We illustrate this story by deriving Kaminski et al’s expected runtime transformer (ert for short)
(Kaminski et al. 2016). Kaminski et al. showed that the expected runtime of probabilistic pro-
grams can be computed using a predicate transformer-like operator. We apply our theory of
Dijkstra structures to derive their ert operator from a fibrational wppt and amonadic denotational
semantics with cost counting program transformation (Theorem 52).

The language we consider here is a loop-free fragment of Kaminski et al.’s language (we will
discuss languages with loops in Section 9) . Fix sets Var, Exp, Bool of variables, probabilistic
expressions and probabilistic Boolean expressions, respectively. The syntax of the language is
defined by the following BNF grammar (below x ∈Var, e ∈ Exp, b ∈ Bool):

Prog $ C : = empty | C; C | x :∼ e | tick | {C}�{C} | if (b){C}{C}.
The command x :∼ e samples a value from a probabilistic expression e. The box operator {C}�{C′}
nondeterministically chooses C or C′ and executes the chosen program. The conditional expres-
sion if (b){C}{C′}, samples a bit from a Bernoulli distribution with bias given by an expression b,
then runs C if the sample is 1; otherwise runs C′. This conditional expression thus combines both
probabilistic choice and deterministic conditionals.

Before introducing the expected runtime transformer, we prepare some interpretations of
primitives. We fix a set V of values and let M=VVar be the set of memory configurations.
We give interpretations of e ∈ Exp and b ∈ Bool by functions [[e]] :M→ DV and [[b]] :M→
[0, 1], respectively. We also assume that the memory configuration update function updx :M×
V→M is suitably defined for each variable x ∈Var. The expected runtime transformer ert :
Prog×Set(M, [0,∞])→ Set(M, [0,∞]) is inductively defined as follows (below i :M→ [0,∞]
and ρ ∈M):

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 499

ert(empty, i)ρ = i(ρ)
ert(tick, i)ρ = 1+ i(ρ)

ert(C1; C2, i)ρ = ert(C1, ert(C2, i))ρ
ert({C1}�{C2}, i)ρ =max(ert(C1, i)ρ, ert(C2, i)ρ)

ert(x :∼ e, i)ρ = 1+ Ev∼[[e]]ρ[i(updx(ρ, v))]
ert(if (b){C1}{C2}, i)ρ = 1+ ert(C1, i)ρ ⊕[[b]]ρ ert(C2, i)ρ

To derive the ert in our framework, we first give a monadic semantics of the language using
the composite monad T� (P+ ◦γ I) ◦θ C in Example 51. We interpret effectful commands and
conditional commands using the following generic effects (Section 4.4) t, u, c for counter tick,
nondeterministic choice and probabilistic choice, respectively.

t : 1→ T1 t(∗)= {[(1, (1, ∗))]}
u : 1→ T2 u(∗)= {[(1, (0,�))], [(1, (0,⊥))]}
c : [0, 1]→ T2 c(p)= {[(p, (0,�)), (1− p, (0,⊥))]}

They induce the following algebraic operations:

α(t)X(!Y , f)= λy ∈ Y . {I(λx . x+ 1)(ν)|ν ∈ f (y, ∗)}
α(u)X(!Y , β(f1, f2))= λy ∈ Y . f1(y)∪ f2(y)
α(c)X(p, β(f1, f2))= λy ∈ Y . {ν ⊕p(y) μ|ν ∈ f1(y),μ ∈ f2(y)}

Using these algebraic operations, we define our denotational semantics:

[[empty]]= ηTM
[[tick]]= α(t)M(!M , ηTM ◦ rM) (rM :M× 1→M)

[[C1; C2]]= [[C2]] • [[C1]]
[[{C1}�{C2}]]= α(u)M(!M , β([[C1]], [[C2]]))

[[x :∼ e]]= T(updx) ◦ θM,V ◦ 〈idM , ιM ◦ [[e]]〉
[[if (b){C1}{C2}]]= α(c)M([[b]], β([[C1]], [[C2]]))

Here ιM : DM→ IM is the inclusion (Example 46).
Recall that in Example 51, we obtained a Cartesian lifting Ṫ� P+sup ◦ IIE ◦ Co(s) of T along

dSet,[0,∞]. In the Dijkstra structure (dSet,[0,∞], T, Ṫ), wp ([[C]], i) satisfies

wp([[empty]], i)ρ = i(ρ)
wp([[tick]], i)ρ = 1+ i(ρ)

wp([[C1; C2]], i)ρ =wp([[C1]], wp([[C2]], i))ρ
wp([[{C1}�{C2}]], i)ρ =max(wp([[C1]], i)ρ, wp ([[C2]], i)ρ)

wp([[x :∼ e]], i)ρ = Ev∼[[e]]ρ[i(updx (ρ, v))]
wp([[if (b){C1}{C2}]], i)ρ =wp([[C1]], i)ρ ⊕[[b]]ρ wp([[C2]], i)ρ

This is already very close to Kaminski et al’s expected runtime transformer. The major differ-
ence between wp and ert is that the latter adds 1 to reflect the time consumption by probabilistic
assignments and probabilistic conditionals. This difference can be resolved by an accounting
transformation A defined below. It inserts a tick command before time-consuming instructions:

A(empty)= empty, A(x : ∼ e)= tick ; x :∼ e A({C}�{C′})= {A(C)}�{A(C′)}
A(C; C)=A(C);A(C′) A(tick)= tick A(if (b){C}{C′})= tick; if (b){C}{C′}

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

500 A. Aguirre et al.

Theorem 52. Under the Cartesian Dijkstra structure (dSet,[0,∞], T, Ṫ), we have

ert(C, i)=wp([[A(C)]], i).

8. Dijkstra Structures on dSet,[0,∞]n

As our final example, we consider an example of predicates that take values over [0,∞]n, based
on Kura et al. (2019). They study the problem of computing bounds on tail probabilities to answer
questions of the form “what is the probability that a program takes more than n steps before termi-
nating?”. Their technique is based on using concentration bounds, for which one needs to compute
higher moments of the form E[Tn], where T is a random variable expressing the runtime of the
execution of a program. To compute these, they carry a vector (E[T], E[T2], . . . , E[Tn]) contain-
ing the current estimations for the higher order moments. When the program takes a step, this
vector can be used to compute the updated (E[T + 1], E[(T + 1)2], . . . , E[(T + 1)n]). For instance,
for the second moment, we have E[(T + 1)2]= E[T2]+ 2E[T]+ 1.

We derive this computation as a wppt in a suitable Cartesian Dijkstra structure on a domain
fibration (unlike Kura et al. 2019 here we do not consider the nondeterministic computations).
Consider again the composite D ◦θ C of the counter monad and the finite probability distribu-
tion monad considered in Example 50. We first introduce EM monotone algebras for C and D as
follows:

• We define an algebraic operation tickn : [0,∞]n→ [0,∞]n that simulates letting one unit of
time pass:

tickn(r1, . . . , rn)= (tick1n(r1, . . . , rn), . . . , tick
n
n(r1, . . . , rn))

where tickkn(r1, . . . , rn)= 1+
k∑

i=1

(
k
i

)
ri (1≤ k≤ n)

Here the inputs are taken to be the moments of T, where ri represents E[Ti], and tickin com-
putes E[(T + 1)i] from them. This coincides with the elapse function defined in Kura et al.
(2019). This operation induces an EM monotone C-algebra o(tickn) : C[0,∞]n→ [0,∞]n
for each n.

• For D we take the product of n-fold copies of the expected value E : D[0,∞]→ [0,∞]
which is an EM monotone D-algebra as shown in Example 45. This product is itself an EM
monotone D-algebra En : D[0,∞]n→ [0,∞]n.

It follows from affinity of tickn and linearity of the expected value that tickn is a D-algebra endo-
morphism over En. From Theorem 49, we obtain the Cartesian lifting DEn ◦ Co(tickn) of D ◦θ C
along dSet,[0,∞]n : Set/�[0,∞]n→ Set. In the Dijkstra structure (dSet,[0,∞]n , D ◦θ C, DEn ◦ Co(tickn)),
the wppt satisfies the definition below:

wp(f , p)(j)� (wp1(f , p)(j), . . . , wpn(f , p)(j)), (f : X→ D ◦θ C(Y), p : Y→ [0,∞]n)

where wpk(f , p)(j)� E(c,i)∼f (j)

⎡
⎣ck +

k∑
l=1

(
k
l

)
ck−lpl(i)

⎤
⎦

Here f represents an effectful computation, and p is a function that maps final states of f to the
vector of moments for the runtime of some continuation of f . The wp operator then computes the
vector of moments for the runtime of f followed by its continuation. In particular, this coincides
with the Fn operator from Kura et al. (2019).

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 501

9. Continuity and Fixed Points
For aK-Dijkstra structure (p, T, Ṫ), its associated wppt wp(f , _) is a monotone function belonging
to K (Definition 5-(2)); this means that it obeys the constraint imposed by the subcategory K of
Pos. For example, the wppt of an ωCPO-Dijkstra structure is continuous on its second argument.
For practical applications, it is also interesting to consider continuity of wppts on their first argu-
ment. This is useful for defining the wppt of an unbounded loop program in closed form via a
fixpoint equation, such as it is done in other calculi (Kaminski et al. 2016; McIver and Morgan
2005). In this section we introduce the concept of enrichment on Kleisli categories and discuss
the continuity of wppts on their first argument. We then show that under a certain condition, the
wppt of a while loop program can be computed by the least fixpoint of the wppt of the loop body.

Throughout this section, we fix a category C and a monad (T, η,μ) on C. Recall that an ω-
complete partial order (ωCPO) is a CPO (X,�X) in which every ω-chain x0 �X x1 �X . . . has a
least upper bound %i∈ωxi. We define ωCPO to be the category of ωCPOs (which may not have the
least element) and continuous functions (i.e. functions that preserve least upper bounds) between
them.

9.1 Continuity of Weakest Precondition Predicate Transformers on Morphisms
To discuss the continuity of wppts in their first argument, we first introduce the concept of
enrichment of Kleisli categories by the Cartesian category (ωCPO, 1,×).

Proposition 53. Let {�X,Y}X,Y∈C be a family such that each �X,Y is an ωCPO on the homset
C(X, TY). Then the following are equivalent (below fn, gn are ω-chains of morphisms of appropriate
type):

(1) The Kleisli composition (•) is monotone and continuous in the following sense:

(•) ∈ωCPO((C(Y , TZ),�Y ,Z)× (C(X, TY),�X,Y), (C(X, TZ),�X,Z)).

(2) The Kleisli composition (•) is monotone and continuous in each argument.
(3) Precomposition _ ◦ g, the Kleisli lifting operation (−)#, and the postcomposition f • _ are all

monotone and continuous.

The proof of this proposition is easy and omitted.

Definition 54. An ωCPO-enrichment of the Kleisli category CT is a family {�X,Y}X,Y∈C such that
each �X,Y is an ωCPO on the homset C(X, TY), and moreover one of the equivalent conditions in
Proposition 53 hold.

We now seek for the condition for wppts to be continuous in their first argument.

Proposition 55. Let {�X,Y}X,Y∈C be an ωCPO-enrichment of CT, (�,≤) be an ordered object in
C belonging to ωCPO, and o : T�→� be an EM monotone algebra. Consider the wppt wp of the
Dijkstra structure (dC,� :C/��→C, T, To). Then the following are equivalent:

(1) o ◦ _ ∈ωCPO((C(X, T�),�X,�), (C(X,�),≤X)) for every X ∈C.
(2) wp(_, i) ∈ωCPO((C(X, TY),�X,Y), (C(X,�),≤X)) for every X, Y ∈C and i : Y→�.

Proof. (1)=⇒ (2) Since {�X,Y}X,Y∈C is an ωCPO-enrichment, the postcomposition
Ti ◦ _= (η ◦ i)# ◦ − is monotone and continuous by Proposition 53. Thus, we obtain the
following diagram in ωCPO, and the composition coincides with wp(_, i)= o ◦ Ti ◦ _. This
concludes the monotonicity and continuity of wp(_, i).

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

502 A. Aguirre et al.

wp(_, i)= (C(X, TY),�X,Y) Ti◦− �� (C(X, T�),�X,�) o◦− �� (C(X,�),≤X).

(2)=⇒ (1) Immediate from o ◦ _=wp(_, id�).

Definition 56. Let {�X,Y}X,Y∈C be an ωCPO-enrichment of CT, (�,≤) be an ordered object in C

belonging to ωCPO, and o : T�→� be an EMmonotone algebra. We say that o is compatiblewith
the ωCPO-enrichment if one of the equivalent conditions in Proposition 55 holds.

In any Kleisli categoryCT with anωCPO-enrichment, each free algebra ismonotone, belonging
to ωCPO, and is compatible with the enrichment.

Proposition 57. Let {�X,Y}X,Y∈C be an ωCPO-enrichment on CT and � ∈C be an object. Then
(T�,�_,�) is an ordered object inC belonging to ωCPO, and μ� : TT�→ T� is an EMmonotone
T-algebra belonging to ωCPO that is compatible with the ωCPO-enrichment.

Example 58. In the category Set with a monad T, it is sometimes enough to equip TY with an
ωCPO �Y for every set Y , then extend it to an ωCPO on the homset Set(X, TY) by the pointwise
order. This is the case of:

• The maybe monadM in Example 34, where the ωCPO�Y onMY is the flat order making {∗}
the least element. We then extend this order to the pointwise order�X,Y on Set(X,MY). This
is an ωCPO-enrichment on SetM. Among EM monotone M-algebras tot, par in Example 34,
only tot belongs to ωCPO and is compatible with the ωCPO-enrichment.

• The nonempty powerset monad P+X� {U ⊆ X | U �= ∅} in Example 36, where the ωCPO
�Y on P+Y is given by set inclusion. We then extend this order to the pointwise order�X,Y
on Set(X, P+Y). This is an ωCPO-enrichment on SetP+ . Among EMmonotone P+-algebras
may, must in Example 36, only may belongs to ωCPO and is compatible with the ωCPO-
enrichment.

• The subdistribution monad SD, which assigns to X ∈ Set the set of probability subdistri-
butions over X, i.e., functions ν : X→ [0, 1] such that ν is nonzero at countably many
points and

∑
x∈X ν(x)≤ 1. This is a variant of the finite probability distribution monad

D in Example 40. Given μ1,μ2 ∈ SD(X), we define the order μ1 �μ2 by μ1(x)≤μ2(x)
for every x ∈ X. We extend this order to the pointwise order �X,Y on Set(X, SDY). This
is an ωCPO-enrichment on SD. The expectation function E : SD[0,∞]→ [0,∞] given by
E(μ)=∑

x∈X xμ(x) is the EM monotone SD-algebra belonging to ωCPO that is compatible
with the ωCPO-enrichment.

We end this section by updating Theorem 32 with an ωCPO enrichment. Let (1,×) be finite
products on C and θ be a strength for T, {�X,Y}X,Y∈C be an ωCPO-enrichment on CT, (�,≤)
be an ordered object in C belonging to ωCPO, and o : T�→� be an EM monotone T-algebra
belonging to ωCPO and compatible with the ωCPO-enrichment. Then for any generic effect
g :A→ TB and X, Y ∈C, we obtain the following commutative diagram in ωCPO:

(C(Y × B, TX),�Y×B,X)

α(g)X(a,_)
��

wp(−,i) �� (C(Y × B,�),≤Y×B)

op(o,g)(a,_)
��

(C(Y , TX),�Y ,X) wp(−,i)
�� (C(Y ,�),≤Y).

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 503

Theorem 32 guarantees the commutativity of the diagram. It remains to verify that morphisms in
the above diagram are inhabitants of ωCPO:

(1) From Proposition 57, (TX,�_,X) is an ordered object in C belonging to ωCPO, and μX
is an EM monotone T-algebra belonging to ωCPO. Therefore, the operation α(g)X(a, _)
belongs to ωCPO by Proposition 31.

(2) Since (�,≤) and o : T�→� belongs to ωCPO, op(o, g)(a, _) belongs to ωCPO by
Proposition 31.

(3) Since o is compatible with the ωCPO-enrichment, wp(_, i) belongs to ωCPO by
Proposition 55.

9.2 Application: Semantics of While Loops
We use the theory developed in the previous section to study the weakest precondition of while
loops in imperative languages. This is carried out in the Dijkstra structure (dC,�, T, To) specified
by the following data:

• C is a category with finite products (1,×) and finite coproducts (0,+), with a distributive law
(Section 4.4).

• (T, η,μ, θ) is a strong monad on C, and {�X,Y}X,Y∈C is an ωCPO-enrichment on CT. We
assume that each order �X,Y admits the least element ⊥X,Y , and the cotupling [−,−] of the
coproduct is an isomorphism in ωCPO:

[−,−] : (C(X, TZ),�X,Z)× (C(Y , TZ),�Y ,Z)∼= (C(X+ Y , TZ),�X+Y ,Z). (23)

• (�,≤) is an ordered object in C belonging to ωCPO. We assume that each order ≤X admits
the least element⊥X , and the cotupling of the coproduct is an isomorphism in ωCPO:

[−,−] : (C(X,�),≤X)× (C(Y ,�),≤Y)∼= (C(X+ Y ,�),≤X+Y). (24)

• o : T�→� is an EM monotone T-algebra belonging to ωCPO that is compatible with the
ωCPO-enrichment. Moreover, o ◦ Ti ◦ ⊥X,Y =⊥X holds for any object X, Y ∈C and mor-
phism i : Y→�. This guarantees that the wppt wp of the Dijkstra structure (dSet,�, T, To) is
not only continuous but also strict in its first argument.

We assume that a program C is interpreted as a memory transformer [[C]] : M→ TM, whereM
is the object representing the collection of memory configurations. We also assume that a Boolean
expression b is interpreted as a function [[b]] : M→ 2, where 2 is the coproduct 1+ 1. We rep-
resent true and false by the left and right injections, respectively. To interpret a while loop of an
imperative language as a morphism [[while (b){C}]] : M→ TM, we first define the following family
of partial iterations:

Wb,C,0 �⊥M,M

Wb,C,n+1 � α(η2)M([[b]], β(Wb,C,n • [[C]], ηM))
= [(Wb,C,n • [[C]]) ◦ rM , ηM ◦ rM] ◦ distM,1,1 ◦ 〈idM , [[b]]〉

where Wb,C,n executes n iterations of the loop and returns the bottom element in the traces that
have not terminated. For the definition of β , see (18). The right-hand side of Wb,C,n+1 is the
denotation of the conditional command if (b){C;Wb,C,n}. We can see that Wb,C,n =�n

b,C(⊥M,M)
where�b,C : C(M, TM)→C(M, TM) is an operator defined as

�b,C(f)� α(η2)M([[b]], β(f • [[C]], ηM)).

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

504 A. Aguirre et al.

It is a continuous function with respect to the ωCPO given by the enrichment:

Lemma 59. �b,C ∈ωCPO((C(M, TM),�M,M), (C(M, TM),�M,M)).

Proof. This is immediate because α(η2)M([[b]], _) is continuous by Proposition 31, and the
mapping f �→ β(f • [[C]], ηM)= [(f • [[C]]) ◦ r, ηM ◦ r] ◦ dist is continuous from the property of
ωCPO-enrichment and the assumption (23) on cotupling.

We then take the least fixpoint of �b,C and employ it as the denotation of the while program
while (b){C}:

[[while (b){C}]]�
⊔
n
�n

b,C(⊥M,M)= lfp�b,C.

We want to compute the weakest precondition wp([[while (b){C}]], j) of the while loop at a
morphism j :M→�. By Corollary 33, for all n:

wp(Wb,C,n+1, j)= op(o, η2)([[b]], β(wp([[C]], wp (Wb,C,n, j)), j)).

We thus let�b,C,j : C(M,�)→C(M,�) be another operator

�b,C,j(i)� op(o, η2)([[b]], β(wp([[C]], i), j)).

This operation is also continuous:

Lemma 60. For any morphism j :M→� in C, we have

�b,C,j ∈ωCPO((C(M,�),≤M), (C(M,�),≤M)).

Proof. Let j :M→� be a morphism in C. Notice that�b,C,j can be factored as

�b,C,j = op(o, η2)([[b]], _) ◦ β(_, j) ◦wp([[C]], _).
Then op(o, η2)([[b]], _) and wp([[C]], _) are continuous because o belongs to ωCPO by
Proposition 31. Also, β(_, j)= [_ ◦ r, j ◦ r] ◦ dist is continuous because o is an ordered object and
cotupling is continuous by (24).

Proposition 61. For any morphism j :M→� in C, we have the following commutative diagram
in ωCPO:

(C(M, TM),�M,M)

�b,C
��

wp(−,j) �� (C(M,�),≤)

�b,C,j
��

(C(M, TM),�M,M)
wp(−,j)

�� (C(M,�),≤)

Proof. Since the EM monotone T-algebra o is compatible with the ωCPO-enrichment, wp(_, j)
belongs to ωCPO by Proposition 55. We next show the commutativity. Let f :M→ TM and j :
M→� be morphisms in C. We have

wp(�b,C(f), j)=wp(α(η2)M([[b]], β(f • [[C]], ηM)), j) (definition)
= op(o, η2)([[b]], β(wp([[C]], wp(f , j)), j)) (Corollary 33)
=�b,C,j(wp(f , j)). (definition)

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 505

Theorem 62. For any morphism j :M→� in C,�b,C and�b,C,j defined as above satisfy

wp(lfp�b,C, j)=wp([[while (b){C}]], j)= lfp(�b,C,j).

Proof. From the strictness assumption and continuity of wp(_, j), plus Proposition 61 and Scott
induction, we conclude the equation.

10. Cartesian Dijkstra Structures Arising from Change-of-Base
In Section 3.3, we have seen the change-of-base construction of Dijkstra structures. In this sec-
tion, we present some examples of this construction to derive Cartesian Dijkstra structures over
relational fibrations.

We first present an example of the change-of-base to obtain fibrations whose total category
contains binary relations as objects (Bonchi et al. 2018; Jacobs 1999).

Example 63. Let (C, I,⊗) be a monoidal category and (�,≤) be an ordered object in C. We take
the change-of-base of dC,� :C/��→C along the tensor product functor (⊗) :C2→C. We write
the resulting fibration rC,� : BRel(C,�)→C2.

BRel(C,�)

rC,�
��

��
��

C/��

dC,�
��

C2
(⊗)

�� C

The concrete description of BRel(C,�) is the following: objects are triples (X, Y , i : X⊗ Y→�)
of two objects and a morphism in C, and a morphism from (X, Y , i) to (X′, Y ′, i′) is a pair of C-
morphisms f : X→ X′ and g : Y→ Y ′ such that i≤X⊗Y i′ ◦ (f ⊗ g). Intuitively, BRel(C,�) is the
category of�-valued binary relations betweenC-objects. In the fibration rC,� : BRel(C,�)→C2,
the pullback is given by (f , g)∗(X′, Y ′, i′)= i′ ◦ (f ⊗ g). Example 8 is an instance of this con-
struction where C= Set and �= 2 and the tensor product functor (⊗) is the binary product
functor (×).

Example 64. Let (C, I,⊗) be a monoidal category and (T, η,μ) be a monad on C. Then (⊗,m)
is a monad opfunctor from T2 (the product monad on C2) to T if and only if mX,Y : TX⊗ TY→
T(X⊗ Y) is a natural transformation satisfying

X⊗ Y

ηX⊗ηY
��

ηX⊗Y

����
���

���
���

T2X⊗ T2Y
mTX,TY ��

μX⊗μY
��

T(TX⊗ TY)
TmX,Y �� T2(X⊗ Y)

μX⊗Y
��

TX⊗ TY mX,Y
�� T(X⊗ Y) TX⊗ TY mX,Y

�� T(X⊗ Y).

(25)

This is exactly the tensor product part of the data to make T amonoidal functor.
Specially, for any commutative monad (T, η,μ, θX,Y) on a symmetric monoidal category

(C, I,⊗), put θ ′X,Y the symmetric version of the strength θ . Then the following double strength
(Jacobs 1994, Definition 3.4) satisfies (25).

dstTX,Y : TX⊗ TY
θTX,Y �� T(TX⊗ Y)

T(θ ′X,Y) �� T2(X⊗ Y)
μX⊗Y �� T(X⊗ Y)

This is shown in Theorem 2.3 in Kock (1970). Therefore ((⊗), dstT) is a monad opfunctor from
T2 to T.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

506 A. Aguirre et al.

Example 65. The nonempty powerset monad P+ is commutative over the Cartesian category
(Set, 1,×). Its double strength dstP

+
X,Y : P+X× P+Y→ P+(X× Y) satisfies

dstP
+

X,Y (U,V)= {(u, v) | u ∈U, v ∈V}.
From Example 64, the pair ((×), dstP+) becomes a monad opfunctor from (P+)2 to P+.

We use this monad opfunctor to take the change-of-base of two Cartesian Dijkstra structures
(dSet,2, P+, P+may) and (dSet,2, P+, P+must) in Example 36. The resulting Cartesian Dijkstra struc-
tures are denoted by (rSet,2, (P+)2, Tmay) and (rSet,2, (P+)2, Tmust), respectively. The behavior of
the liftings Tmay, Tmust is described as follows. We first represent each object in BRel(Set, 2) by a
triple of sets (X, Y , R) such that R⊆ X× Y . Then liftings Tmay, Tmust act on BRel(Set, 2)-objects
as follows:

Tmay(X, Y , R)= (P+X, P+Y , {(U,V) | ∃u ∈U . ∃v ∈V . (u, v) ∈ R})
Tmust(X, Y , R)= (P+X, P+Y , {(U,V) | ∀u ∈U . ∀v ∈V . (u, v) ∈ R}).

Example 66. The finite probability distribution monad D is also commutative over the Cartesian
category (Set, 1,×); its double strength dstDX,Y : DX× DY→ D(X× Y) takes the product of two
probability distributions:

dstDX,Y (μ, ν)= λ(x, y) . μ(x)× ν(y)�μ⊗ ν.
From Example 64, the pair ((×), dstD) becomes a monad opfunctor from D2 to D.

We use this monad opfunctor to take the change-of-base of the Cartesian Dijkstra structure
(dSet,[0,∞], D, DE) in Example 45. The resulting Cartesian Dijkstra structure (rSet,[0,∞], D2, TE) has
the lifting whose object part behaves as

TE(X, Y , i)= (DX,DY , λ(μ, ν) . E(x,y)∼μ⊗ν[i(x, y)]).

11. Related Work
One of the earliest studies on a logic for a monadic programming language is Pitts’ evaluation
logic (Pitts 1991). The logic has an evaluation modality [x⇐ E]φ(x), internalizing the wppt in
the predicate logic. The semantics of the evaluation modality is given by a T-modality �X,Y (Pitts
1991, Definition 3.3.1), which is an extension of monad lifting with an extra parameter, but axiom-
atized differently from (Cartesian) monad liftings. Later, Moggi gave a semantics of evaluation
logic in the framework of dominance (Moggi 1995). Some examples of T-modalities are also given
in Pitts (1991), Moggi (1995), overlapping with examples in Section 5. A precise relationship
between T-modalities and Cartesian liftings is yet to be studied. We currently know that in a
Dijkstra structure (p, T, Ṫ) with a strength θ for T, the operator �X,Y (P)� θ∗X,Y Ṫ(P) satisfies the
T-modality axioms. Conversely, any T-modality induces a Cartesian lifting of the underlying
monad in a suitable fibration.

The interpretation of Hoare logic has also been pursued using other structures than fibrations.
Abramsky et al. introduce specification structures as a loose framework for general Hoare logic
(Abramsky et al. 1996). It is easy to see that a Dijkstra structure in our setting determines a spec-
ification structure. Specification structures themselves do not provide wppts, and computational
effects are not explicitly modeled.

Martin et al. (2006) give a categorical framework for Hoare logic using certain functors of type
H : S→ PreOrd. They correspond to opfibrations, hence they offer strongest postconditions pred-
icate transformers instead. Computational effects are not explicitly modeled. One unique feature
of Martin et al. (2006) is that their Hoare logic supports trace operators in the sense of Joyal et al.
(1996).

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 507

In Goncharov and Schröder (2013), Goncharov et al. constructed semantics of Hoare logic
from a pair (P ,T) of an order-enriched monad T , and an innocent submonad P of T . They
showed thatP1 is a frame, and used this fact to interpret Hoare logic predicates by morphisms of
typeX→P1. They introduced the wppt using the join ofP1 in Goncharov and Schröder (2013),
and called its composability sequential compatibility. Later they showed the wppt induced from the
pair (P ,T) is sequentially compatible if and only if the canonical morphism T P1→P1 is an
EM algebra (Rauch et al. 2016, Remark 11). This fact bridges the work (Goncharov and Schröder
2013; Rauch et al. 2016) and the following approach studied by Hasuo.

In Hasuo (2015), Hasuo introduced PT situations to construct composable wppts. A PT sit-
uation is a tuple of an order-enriched monad (T,≤) (in a different sense from Goncharov and
Schröder 2013), an object� ∈C and an EM T-algebra τ on T�, satisfying certain conditions. Each
PT situation induces a functor PKl(τ) : (CT)op→ Pos embodying a wppt. The construction of PKl

can be accounted for by the recipe given in Section 4. Let (T,≤,�, τ) be a PT situation. It deter-
mines an ordered object (T�,�) in C, and τ is monotone (Hasuo 2015, Definition 2.4). Using
the recipe in Section 4, it determines a Cartesian lifting Tτ of T along dC,T� :C/T�→C. Then
the wppt wp in the Cartesian Dijkstra structure (dC,T�, T, Tτ) coincides with PKl(τ). This demon-
strates that the recipe in Section 4 generalizes the construction of PKl(τ) given in Hasuo (2015).
Especially, our recipe does not demand order enrichment on T and allows us to take arbitrary
ordered object (not limited to the form T�) as the basis of the lax slice construction. Examples 36,
38, 40 are benefited from this generalization.

Hino et al. (2016) introduced another construction of wppts using relative algebras. A relative
algebra is a monad morphism of type T→D(�−,�), where T is a Set-monad and D is a category
with powers �I (MacLane 1998, Section X.4 (4)) of a fixed D-object �. They construct wppts by
composing the comparison functor SetT→ SetT (MacLane 1998, Theorem VI.3) and the functor
SetT→Dop induced by a relative algebra (Hino et al. 2016, Theorem 4.8). When D= Pos, their
wppts coincide with those of Cartesian liftings of T along the posetal fibration dSet,� in Section 4.
Therefore examples in Section 5–8 are also covered by the relative-algebra based wppts. On the
other hand, the interaction between generic effects and wppts discussed in Section 4.4 is new
compared to Hino et al. (2016). It is the key in the semantic analysis of Kaminski’s ert in Section 7.

Example 47 is inspired by the four qualification modes introduced by Unno et al. (2018). They
consider a functional programming language supporting nondeterministic choice and recursion
and design a refinement-type system to analyze the behavior of programs. Their refinement-type
system introduces qualified types for various modal properties of nondeterministic and diverging
computations. The qualified type is annotated with a mode index Q1Q2 ∈ {∀, ∃}2. The index Q1
specifies whether the return value of a program always (Q1 =∀) or sometimes (Q1 =∃) satisfy the
refinement. The index Q2 is about the partial (Q2 =∀) or total (Q2 =∃) correctness of a program
execution. We find a striking similarity with qualified types and the above four liftings of P+a ◦β
Mb. Applying these liftings to a sound semantics of Unno et. al.’s refinement-type system would
be an interesting future work.

The concept of EM monotone algebra appears in Voorneveld’s program logic for a call-
by-push-value language (Voorneveld 2019). The logic can have multiple modalities to make
assertions about effectful programs, and these modalities are interpreted by endofunctor alge-
bras of the monad T� of possibly infinite and partial �-terms. He introduces two conditions on
such endofunctor algebras: leaf-monotonicity (Voorneveld 2019, Definition 4.5) and sequentiality
(Voorneveld 2019, Definition 4.10). They are, respectively, equivalent to monotonicity (12) and
the EM algebra axiom.

Recent work by Wolter et al. (2020) study the fibrational structure of Hoare logic and predi-
cate transformers in the setting of imperative languages, for partial correctness. Their approach
starts by defining indexed categories of programs, syntactic predicates, and semantic predicates
and then use Grothendieck constructors to obtain fibrations from them. The relations between

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

508 A. Aguirre et al.

these fibrations are used to discuss notions such as soundness and completeness of Hoare logic.
Similarly to us, they identify Hoare triples with Cartesian arrows. However, their framework does
not cover other side-effects.

While preparing this paper, Batz et al. published a paper about a weakest preweighting seman-
tics of an imperative programming language with a weighting effect and branching effect (Batz
et al. 2022). They point out that their preweighting semantics can be an instance of the fibrational
wppt semantics of this paper.

Our categorical framework is designed to provide an underlying semantic structure for the
Hoare logic where formulas can only examine memory configurations. On the other hand, several
extensions of program logics are introduced for the languages with exception (Leino and van de
Snepscheut 1994; Maillard et al. 2019; Sekerinski 2012). In these extensions, formulas in the logic
can also examine exceptions raised by programs – for instance, in Sekerinski (2012), the Hoare
logic is extended so that we can specify two postconditions for normal and exceptional termina-
tion. It is an interesting challenge to understand these extended Hoare logic within our fibrational
framework.

Turning our eyes to functional programming languages, a series of recent papers (Ahman et al.
2017; Maillard et al. 2019, 2020) develop Dijkstra monads for the verification of effectful pro-
grams in dependent-type theories. The main task of a Dijkstra monad is to take a type A and a
specification w ∈WA written in the language of a specification monadW and collect computations
that satisfy w. In Maillard et al. (2019, Section 5), they establish an equivalence between Dijkstra
monads and monad morphisms into ordered monads. Dijkstra monads intersect with our cat-
egorical wppts when the former arise from monad morphisms of type T→Wpure, where Wpure

is an ordered continuation monad (see Maillard et al. 2019, Section 4.1 for detail). In this situa-
tion, such a monad morphism bijectively corresponds to an EM monotone T-algebra o over the
return type of Wpure (Maillard et al. 2019, Section 4.4). The corresponding Dijkstra monad then
collects all the computations c ∈ TA such that the predicate transformer wp(−, c) induced from
o is below the specification w ∈WpureA. This is the only relationship we know between Dijkstra
monads and our fibrational theory of wppts, and we leave exploring further relationships between
them as future work.

In this paper, we only considered posetal fibrations, because when verifying program prop-
erties, we do not care very much about proof terms. However, in principle, it is also possible to
consider proof terms during the verification of program properties. Non-posetal fibrations will
then be used for modeling such proof-relevant Hoare logic and wppts. It is an interesting future
work to see how much of this paper’s results extend to non-posetal fibrations.

12. Conclusion
We have presented a fibrational and monadic semantics of Hoare triples and weakest precon-
dition predicate transformers. The key fact is that the composability of wppts is equivalent to
the Cartesianness of the monad lifting. We next studied the Cartesian liftings of monads along
domain fibrations; they bijectively correspond to EMmonotone algebras, giving a fibrational view
of Hasuo (2015). Despite examples presented here being within the framework of Hasuo (2015),
Hino et al. (2016), we studied new examples, in which we have revealed the monads behind wppt-
like operators used to compute expected run-time (Kaminski et al. 2016) and higher moments
(Kura et al. 2019).

Acknowledgements. This paper was first submitted while the first author was affiliated to the Imdea Software Institute. The
authors are grateful to Mayuko Kori for spotting a mistake in the example in Section 8.

Financial support. This research was supported by ERATO HASUO Metamathematics for Systems Design Project (No.
JPMJER1603), JST. This research was conducted during the first author’s visit to the National Institute of Informatics.

Conflicts of interest. The authors declare none.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

Mathematical Structures in Computer Science 509

Notes
1 Here side effects refer to those that cannot be modeled by memory update functions of typeM→M, such as input, output,
nondeterministic choice, probabilistic choice, and manipulating an external memory device. The last one may be modeled by
the state monad S⇒ (−×S) employing the set S of states taken independently fromM.
2 That is, p is aMSLat-fibration, whereMSLat is the subcategory of Pos consisting of posets with finite meets and finite-meet
preserving monotone functions.
3 In Jacobs (1999), the word “domain fibration” refers to the functor from a (strict) slice category.
4 A categoryC has small powers of� ∈C if for any set I,C has a product of I-many copies of�; see MacLane (1998, Section
III.4).

References
Abramsky, S., Gay, S. and Nagarajan, R. (1996). Specification structures and propositions-as-types for concurrency. In Logics

for Concurrency: Structure versus Automata, Berlin, Heidelberg, Springer Berlin Heidelberg, 5–40.
Aguirre, A., Barthe, G., Hsu, J., Kaminski, B. L., Katoen, J.-P. and Matheja, C. (2021). A pre-expectation calculus for

probabilistic sensitivity. Proceedings of the ACM on Programming Languages 5 (POPL) 1–28.
Aguirre, A. and Katsumata, S. (2020). Weakest preconditions in fibrations. Electronic Notes in Theoretical Computer Science

352 5–27. The 36th Mathematical Foundations of Programming Semantics Conference, 2020.
Ahman, D., Hritcu, C., Maillard, K., Martínez, G., Plotkin, G. D., Protzenko, J., Rastogi, A. and Swamy, N. (2017). Dijkstra

monads for free. In: Castagna, G. and Gordon, A. D. (eds.) Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, Paris, France, January 18–20, 2017, ACM, 515–529.

Batz, K., Gallus, A., Kaminski, B. L., Katoen, J.-P. andWinkler, T. (2022). Weighted programming: A programming paradigm
for specifying mathematical models. Proceedings of the ACM on Programming Languages 6 (OOPSLA1) 1–30.

Beck, J. (1969). Distributive laws. In: Eckmann, B. (ed.) Seminar on Triples and Categorical Homology Theory, Berlin,
Heidelberg, Springer Berlin Heidelberg, 119–140.

Bonchi, F., König, B. and Petrisan, D. (2018). Up-to techniques for behavioural metrics via fibrations. In: Schewe, S. and
Zhang, L. (eds.) 29th International Conference on Concurrency Theory, CONCUR 2018, September 4–7, 2018, Beijing, China,
LIPIcs, vol. 118, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 17:1–17:17.

Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and formal derivation of programs. Communications of the
ACM 18 (8) 453–457.

Filinski, A. (1996). Controlling Effects. Phd thesis, Carnegie Mellon University.
Filinski, A. (2007). On the relations between monadic semantics. Theoretical Computer Science 375 (1–3) 41–75.
Goncharov, S. and Schröder, L. (2013). A relatively complete generic hoare logic for order-enriched effects. In: 28th Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, NewOrleans, LA, USA, June 25–28, 2013, IEEE Computer
Society, 273–282.

Goubault-Larrecq, J., Lasota, S. and Nowak, D. (2008). Logical relations for monadic types. Mathematical Structures in
Computer Science 18 (6) 1169–1217.

Goy, A. and Petrisan, D. (2020). Combining probabilistic and non-deterministic choice via weak distributive laws. In:
Hermanns, H., Zhang, L., Kobayashi, N. and Miller, D. (eds.) LICS’20: 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, Saarbrücken, Germany, July 8–11, 2020, ACM, 454–464.

Hasuo, I. (2015). Generic weakest precondition semantics from monads enriched with order. Theoretical Computer Science
604 2–29. Coalgebraic Methods in Computer Science.

Hermida, C. (1993). Fibrations, Logical Predicates and Indeterminants. Phd thesis, University of Edinburgh.
Hino, W., Kobayashi, H., Hasuo, I. and Jacobs, B. (2016). Healthiness from duality. In: Grohe, M., Koskinen, E. and Shankar,

N. (eds.) Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’16, New York, NY, USA,
July 5–8, 2016, ACM, 682–691.

Jacobs, B. (1994). Semantics of weakening and contraction. Annals of Pure and Applied Logic 69 (1) 73–106.
Jacobs, B. (1999). Categorical Logic and Type Theory, Studies in Logic and the Foundations of Mathematics, vol. 141,

Amsterdam, North Holland.
Joyal, A., Street, R. and Verity, D. (1996). Traced monoidal categories. Mathematical Proceedings of the Cambridge

Philosophical Society 119 (3) 447–468.
Kaminski, B. L., Katoen, J.-P., Matheja, C. and Olmedo, F. (2016). Weakest precondition reasoning for expected run-times

of probabilistic programs. In: Thiemann, P. (ed.) Programming Languages and Systems - 25th European Symposium on
Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2–8, 2016, Proceedings, Lecture Notes in Computer Science, vol. 9632, Springer,
364–389.

Katsumata, S. (2005). A semantic formulation of ��-lifting and logical predicates for computational metalanguage. In:
Proceedings of CSL’05, LNCS, vol. 3634, Springer, 87–102.

Katsumata, S., Sato, T. and Uustalu, T. (2018). Codensity lifting of monads and its dual. Logical Methods in Computer Science
14 (4).

Kock, A. (1970). Strong functors and monoidal monads. Archiv der Mathematik 23 113–120.

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000330

510 A. Aguirre et al.

Kura, S. (2022). Semantic Refinements for Program Verification. Phd thesis, The Graduate University for Advanced Studies,
SOKENDAI.

Kura, S., Urabe, N. and Hasuo, I. (2019). Tail probabilities for randomized program runtimes via martingales for higher
moments. In: Vojnar, T. and Zhang, L. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, Cham,
Springer International Publishing, 135–153.

Lane, S. M. and Moerdijk, I. (1994). Sheaves in Geometry and Logic, Universitext, New York, NY, Springer.
Leino, K. R. M. and van de Snepscheut, J. L. A. (1994). Semantics of exceptions. In: Olderog, E.-R. (ed.) Programming

Concepts, Methods and Calculi, Proceedings of the IFIP TC2/WG2.1/WG2.2/WG2.3 Working Conference on Programming
Concepts, Methods and Calculi (PROCOMET’94) San Miniato, Italy, 6–10 June, 1994, IFIP Transactions, vol. A-56, North-
Holland, 447–466.

Leinster, T. (2004). Higher Operads, Higher Categories, London Mathematical Society Lecture Note Series, Cambridge,
Cambridge University Press.

MacLane, S. (1998). Categories for the Working Mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, New York,
NY, Springer.

Maillard, K., Ahman, D., Atkey, R., Martínez, G., Hritcu, C., Rivas, E. and Tanter, É. (2019). Dijkstra monads for all.
Proceedings of the ACM on Programming Languages 3 (ICFP) 104:1–104:29.

Maillard, K., Hritcu, C., Rivas, E. and Van Muylder, A. (2020). The next 700 relational program logics. Proceedings of the
ACM on Programming Languages 4 (POPL) 4:1–4:33.

Manes, E. and Mulry, P. (2007). Monad compositions I: general constructions and recursive distributive laws. Theory and
Applications of Categories 18 172–208.

Martin, U., Mathiesen, E. A. and Oliva, P. (2006). Hoare logic in the abstract. In: Ésik, Z. (ed.) Computer Science Logic, Berlin,
Heidelberg, Springer Berlin Heidelberg, 501–515.

McIver, A. and Morgan, C. (2005). Abstraction, Refinement and Proof for Probabilistic Systems, New York, NY, Springer.
Melliès, P.-A. and Zeilberger, N. (2015). Functors are type refinement systems. In: Rajamani, S. K. and Walker, D. (eds.)

Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15–17, 2015, ACM, 3–16.

Moggi, E. (1991). Notions of computation and monads. Information and Computation 93 (1) 55–92.
Moggi, E. (1995). A semantics for evaluation logic. Fundamenta Informaticae 22 (1/2) 117–152.
Moggi, E., Taha, W. and Thunberg, J. (2020). Sound over-approximation of probabilities. Acta Cybernetica 24 (3) 269–285.
Pitts, A. M. (1991). Evaluation Logic. In: van Rijsbergen, C. J. and Birtwistle, G. (eds.) IV Higher Order Workshop, Banff 1990,

Workshops in Computing, London, Springer London, 162–189.
Pitts, A. M. (1999). Tripos theory in retrospect. Electronic Notes in Theoretical Computer Science 23 (1) 111–127. Tutorial

Workshop on Realizability Semantics and Applications (associated to FLoC’99, the 1999 Federated Logic Conference).
Plotkin, G. and Power, J. (2001). Semantics for algebraic operations. In: Brooks, S. and Mislove, M. (eds.) Proceedings of the

Seventeenth Conference on the Mathematical Foundations of Programming Semantics, MFPS 2001, Aarhus, Denmark, May
23–26, 2001, Electronic Notes in Theoretical Computer Science, vol. 45, Elsevier, 332–345.

Rauch, C., Goncharov, S. and Schröder, L. (2016). Generic hoare logic for order-enriched effects with exceptions. In: James, P.
and Roggenbach,M. (eds.)Recent Trends in Algebraic Development Techniques - 23rd IFIPWG 1.3 InternationalWorkshop,
WADT 2016, Gregynog, UK, September 21–24, 2016, Revised Selected Papers, Lecture Notes in Computer Science, vol.
10644, Springer, 208–222.

Sato, T. (2011). A probabilistic monad with nondeterminism for coalgebraic trace semantics. tetsuya sato. In: CALCO Young
Researchers Workshop CALCO-jnr 2011 Selected Papers, University of Southampton.

Sekerinski, E. (2012). Exceptions for dependability. In: Dependability and Computer Engineering: Concepts for Software-
Intensive Systems, IGI Global, 11–35.

Street, R. (1972). The formal theory of monads. Journal of Pure and Applied Algebra 2 (2) 149–168.
Unno, H., Satake, Y. and Terauchi, T. (2018). Relatively complete refinement type system for verification of higher-order

non-deterministic programs. PACMPL 2 (POPL) 12:1–12:29.
Varacca, D. and Winskel, G. (2006). Distributing probability over non-determinism. Mathematical Structures in Computer

Science 16 (1) 87–113.
Voorneveld, N. F. W. (2019). Quantitative logics for equivalence of effectful programs. In: König, B. (ed.) Proceedings of the

Thirty-Fifth Conference on the Mathematical Foundations of Programming Semantics, MFPS 2019, London, UK, June 4–7,
2019, Electronic Notes in Theoretical Computer Science, vol. 347, Elsevier, 281–301.

Whiskering. https://ncatlab.org/nlab/show/whiskering.
Wolter, U. E., Martini, A. R. and Häusler, E. H. (2020). Indexed and fibred structures for Hoare logic. Electronic Notes in

Theoretical Computer Science 348 125–145.

Cite this article: Aguirre A, Katsumata S and Kura S (2022). Weakest preconditions in fibrations.Mathematical Structures in
Computer Science 32, 472–510. https://doi.org/10.1017/S0960129522000330

https://doi.org/10.1017/S0960129522000330 Published online by Cambridge University Press

https://ncatlab.org/nlab/show/whiskering
https://doi.org/10.1017/S0960129522000330
https://doi.org/10.1017/S0960129522000330

	Weakest preconditions in fibrations
	Introduction
	Preliminaries
	Monads and Distributive Laws
	Fibrations

	Dijkstra Structures and Weakest Precondition Predicate Transformers
	Dijkstra Structures
	Composability of the Weakest Precondition Predicate Transformers
	Change-of-base of Dijkstra Structures
	Dijkstra Structures with Strengths
	Strongest Postcondition Predicate Transformers

	Dijkstra Structures on Lax Slice Categories
	Ordered Objects
	Lax Slice Construction
	Characterizing K-Dijkstra Structures on Domain Fibrations
	Algebraic Operations and Weakest Precondition Predicate Transformer

	Dijkstra Structures on dSet,2
	Dijkstra Structures on dSet,[0,]
	Dijkstra Structures for Composite Monads

	Expected Runtime as Weakest Precondition
	Dijkstra Structures on dSet,[0,]n
	Continuity and Fixed Points
	Continuity of Weakest Precondition Predicate Transformers on Morphisms
	Application: Semantics of While Loops

	Cartesian Dijkstra Structures Arising from Change-of-Base
	Related Work
	Conclusion

