
Unifying Cubical and Multimodal Type Theory

Frederik Lerbjerg Aagaard1, Magnus Baunsgarrd Kristensen2, Daniel Gratzer1,
and Lars Birkedal1

1 Aarhus University, Denmark
2 IT University of Copenhagen, Denmark

We introduce cubical multimodal type theory (MTT□), a dependent type theory that com-
bines multimodal type theory (MTT) [GKNB20] with cubical type theory (CTT) [CCHM18].
The result not only retains the desirable qualities of both theories but also validates an ex-
tensionality principle for modal types that is not present in MTT. For semantics, we provide
an axiomatic approach to constructing models, including presheaf models. As an example, we
model guarded recursion by replaying the arguments from [GKNB20] now in MTT□. Using
presheaf models, we prove that Löb induction is consistent with the theory, and we prove using
modal extensionality that Löb induction gives a propositionally unique fix-point which in MTT
requires additional axioms [GKNB21].

Cubical type theory. CTT [CCHM18] was introduced to achieve two things: a computa-
tionally effective interpretation of the univalence axiom and a more well-behaved identity type
satisfying e.g. function extensionality. It extends MLTT with an interval object I—an abstrac-
tion of the interval [0, 1]—and path types PathA(a0, a1), essentially the type of functions from
the interval that agree on endpoints. A path corresponds to a term that depends on a single
interval variable but dependence on multiple variables yields squares, cubes, or n-cubes. The
intent is for path types to replace identity types, but they are not yet transitive. To fix this,
CTT includes Kan operations which state that if a path is defined on only a part of an n-cube
and one endpoint can be extended to the whole cube then the other endpoint may be extended
as well. With this, one can prove that paths can be composed, resulting in transitivity and
support for path induction (though with computation only up to a path). In order for the Kan
operations to compute, they must have computation rules for every type, e.g. there is a rule
specifying how the Kan operation in A×B can be reduced to operations in A and B.

Multimodal type theory. Separately, it is common to increase the expressivity of MLTT
by adding modalities [BMSS12], but proving that these extensions satisfy desirable qualities
like normalisation is laborious. MTT [GKNB20] alleviates this problem by providing a single
type theory that is parametrised by a mode theory—a 2-category that specifies the modal
situation—yet satisfies canonicity [GKNB20] and normalisation [Gra22]. By instantiating MTT
with an appropriate mode theory, we can model specific modal type theories, e.g. guarded
recursion [GKNB20]. Each object of a mode theory (m,n, . . .), called a mode, is a copy of
MLTT, whilst each 1-cell (µ, ν, . . .), called a modality, allows movement between modes. Thus,
for any modality µ : n m, we have amongst others the rules:1

Γ cx@m

Γ, {µ} cx@n

Γ, {µ} ⊢ A@n

Γ ⊢ ⟨µ | A⟩@m

Γ, {µ} ⊢ a : A@n

Γ ⊢ modµ(a) : ⟨µ | A⟩@m

1The left-most rule is referred to as locking a context.
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Cubical multimodal type theory. Cubical multimodal type theory (MTT□) is a combi-
nation of MTT and CTT. Like MTT it is parametrised by a mode theory, but whereas MTT
contains a copy of MLTT at each mode, MTT□ contains a copy of CTT. Each instance of MTT□

thus consists of a number of copies of CTT connected by weak dependent right adjoints.
The challenge in this combination is that in order for terms to compute, computation rules

for interactions between modal and cubical aspects must be added; in particular, a computation
rule for Kan operations in modal types. However, this rule will not be well-typed before adding
exchange principles, governing interactions between the cubical and modal aspects of the theory.
The exact makeup of these principles is a subtle part of the design of this theory, and care has
to be taken to encapsulate the desired examples.

We adopt a principle of orthogonality, i.e. that modal and cubical aspects should inter-
fere minimally with each other. Concretely, we have rules stating that a dimension term
Γ ⊢ r : Im @m may be moved to a locked context Γ, {µ} ⊢ rµ : In @n and the same for
faces. This induces substitutions Γ, i : Im, {µ} ⊢ σµ : Γ, {µ}, i : In @n and Γ, ϕ, {µ} ⊢ τµ :
Γ, {µ}, ϕµ @n, where −, ϕ is restriction of a context to the face ϕ, which we demand are isomor-
phisms. A similar approach to combining CTT with a modal type theory is taken in [KMV21],
whilst [Cav21] and [MV18] use equalities instead of isomorphisms.

Using these operations, we establish a computation rule for Kan operations in ⟨µ | A⟩ in
terms of A, which we prove to be well-typed; concretely:

compi⟨µ|A⟩ [ϕ 7→ modµ(u)]modµ(u0) = modµ(compiA [ϕµ 7→ u[σµ ◦ τµ]]u0)

Just as CTT validates many extensionality principles, with these exchange principles, we
get for MTT□ modal extensionality:

Theorem 1. Given a modality µ : n m and terms A : U@n and a, b : El(A)@n, there is a
path equivalence ⟨µ | PathEl(A)(a, b)⟩ ≃ Path⟨µ|El(A)⟩(modµ(a),modµ(b))@m.

MTT□ is formally defined as a generalised algebraic theory, and it, therefore, induces a
category of models, including an initial model. Due to the complexity of the type theory,
constructing such a model is a laborious task, and we, therefore, introduce cubical MTT cosmoi
as an axiomatic approach to producing models. These assign a topos satisfying axioms from
[OP18] and [LOPS18] to each mode while each modality is assigned to an adjunction which
induces a dependent right adjoint whose left adjoint preserves the cubical structure coherently.
These axioms ensure that each mode models CTT while the entire structure models MTT.
Finally, by requiring that the cubical structure is appropriately preserved these models validate
the aforementioned exchange principles.

Theorem 2. Any cubical MTT cosmos induces a model of MTT□.

Theorem 3. Let f : M Cat be a strict 2-functor, and write F ∗(µ), F!(µ), and F∗(µ) for the
precomposition, left Kan extension, and right Kan extension respectively of f(µ)× id□. Then:

� the network of morphisms of LOPS topoi given by the adjunctions F ∗(µ) ⊣ F∗(µ) induces
a model of MTT□ over M; and

� the network of morphisms of LOPS topoi given by the adjunctions F!(µ) ⊣ F ∗(µ) induces
a model of MTT□ over M.
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