
Proving full-system security properties under
multiple attacker models on capability machines

Thomas Van Strydonck
KU Leuven

Aı̈na Linn Georges
Aarhus University

Armaël Guéneau
Aarhus University

Alix Trieu
Aarhus University

Amin Timany
Aarhus University

Frank Piessens
KU Leuven

Lars Birkedal
Aarhus University

Dominique Devriese
KU Leuven, Vrije Universiteit Brussel

Abstract—Assembly-level protection mechanisms (virtual mem-
ory, trusted execution environments, virtualization) make it
possible to guarantee security properties of a full system in
the presence of arbitrary attacker provided code. However, they
typically only support a single trust boundary: code is either
trusted or untrusted, and protection cannot be nested. Capability
machines provide protection mechanisms that are more fine-
grained and that do support arbitrary nesting of protection. We
show in this paper how this enables the formal verification of full-
system security properties under multiple attacker models: differ-
ent security objectives of the full system can be verified under a
different choice of trust boundary (i.e. under a different attacker
model). The verification approach we propose is modular, and
is robust: code outside the trust boundary for a given security
objective can be arbitrary, unverified attacker-provided code. It is
based on the use of universal contracts for untrusted adversarial
code: sound, conservative contracts which can be combined with
manual verification of trusted components in a compositional
program logic. Compositionality of the program logic also allows
us to reuse common parts in the analyses for different attacker
models. We instantiate the approach concretely by extending
an existing capability machine model with support for memory-
mapped I/O and we obtain full system, machine-verified security
properties about external effect traces while limiting the manual
verification effort to a small trusted computing base relevant for
the specific property under study.

I. INTRODUCTION

Assembly-level security primitives are a cornerstone of se-
cure systems, and they come in many forms. CPU-supported se-
curity mechanisms like virtual memory, trusted execution envi-
ronments, virtualization, micro-policies or capability machines
all offer a form of encapsulation, which supports the execution
of untrusted code with restricted authority. Some architectural
security mechanisms, such as virtual memory, virtualization or
trusted execution environments, are carefully optimized for spe-
cific security abstractions, such as processes, virtual machines
or enclaves, and provide poor support for features which fall
outside of these abstractions. In this paper, we are interested
in such a feature, which is poorly supported by the most-used
security mechanisms: nested encapsulation. This refers to sce-
narios where an encapsulated piece of code (e.g. a user process
or virtual machine) further encapsulates a subset of its own
code from the rest of its code. When nested encapsulation is
poorly supported by the architectural primitives, it can only be
supported at the cost of additional effort, complexity and a cer-

tain performance loss. For example, library OSs like Graphene
require host OS cooperation to implement process isolation [1]
and running virtual machines inside virtual machines requires
additional context switches with additional overhead [2].

Contrary to many other primitives, micro-policies [3] and
capability machines [4], [5], [6] are designed explicitly for
generality and flexibility. In particular, capability machines
offer good support for nested encapsulation, as we now explain.
On a capability machine, capabilities are used to represent
authority explicitly. Different forms of capabilities represent
authority over memory, the authority to invoke other code, etc.
Unprivileged code can easily set up an encapsulation boundary
by constructing an object capability: an opaque capability
that can be invoked by other code and only makes private
state available after invocation. This private state can in turn
include other capabilities representing additional authority. An
object capability invocation hence represents a context switch
between security domains.

Building on related work in high-level languages [7], [8],
[9], Skorstengaard et al. and Georges et al. have developed
a methodology for robust modular verification of software
running on capability machines [10], [11] that supports proving
(security) properties in the presence of untrusted code. The idea
is to formalize the hardware-provided security guarantees in the
form of a universal contract: a separation logic contract that
holds for arbitrary, untrusted code on the machine. This univer-
sal contract expresses a form of capability safety: the untrusted
code’s authority is effectively bounded by the authority of the
capabilities it is given access to. In robust modular verification,
the program logic allows combining manual verification of a
property for certain components with this universal contract for
untrusted code to obtain a full-system proof of the property.

For now, this work has remained restricted to proving
artificial security properties: for example the fact that an
assertion failure flag will never be set [11], [12] or equi-
termination of programs [13]. In this paper, we extend this
robust modular verification approach to a capability machine
with memory-mapped I/O (MMIO). Although this is not
technically the most complex feature to add, it does allow us
to prove end-to-end system properties that are more interesting
and realistic. Contrary to the artificial properties of previous
work, our results specify that a security property holds for

MMIO Peripherals

component21 component22

wrapper21 wrapper22

wrapper1

other code

Figure 1: An example architecture of nested parapass-through wrappers around
the peripherals.

the system’s trace of external effects, which we believe is the
ultimate goal of verification in many practical settings.

Additionally, we extend the approach to reasoning about
nested encapsulation. To formally verify intended security
properties in the presence of nested encapsulation, we analyze
the system several times using different attacker models,
corresponding to different scenarios that the encapsulations
are (explictly or implicitly) designed for. 1

To make our approach concrete, we study the equivalent of
BitVisor’s parapass-through virtualization [14], where small
wrappers enforce security policies on the interaction with
peripherals. Such wrappers rely on a very small TCB and
lend themselves well to verification. Particularly, we consider
scenarios like the one depicted in Fig. 1 where different parties
install wrappers in a nested way. For example, a hardware
manufacturer could install a wrapper with exclusive access to
certain peripherals and read and write callbacks which other
code on the system can use to interact with the peripherals.
The wrapper could restrict configuration parameters (perhaps
depending on the options purchased from the device manufac-
turer) simply by applying a bounds check on values written to a
particular MMIO address. On top of this, a device manufacturer
could install a second wrapper that keeps a counter to enforce
a maximum amount of interactions with a particular device
or rate-limit the interactions with a device (by consulting an
external timer device before allowing an interaction). Another
realistic policy could enable an LED whenever a camera device
is set to capture mode (for privacy reasons). More generally,
we believe that many interesting policies could be enforced
using nested, unsophisticated low-TCB wrappers. Such policies
are directly supported in our model in a way that appears quite
realistic for embedded processors (e.g. the SAM D5x/E5x
[15]), if they were extended with capability machine security
primitives. Fig. 1 shows a possible architecture with a bottom-
level wrapper wrapper1 around all peripherals, as well as two
nested wrappers (wrapper21 and wrapper22), each consisting
of a read and write closure around different peripherals. On
top of these wrappers is the remainder of the code base, which
can remain untrusted and largely unmodified, except that direct

1Although we use terms like attacker model and adversary in this paper,
we use the terms as synonyms for trust model and untrusted code, as we
don’t necessarily mean that the corresponding components are malicious, but
perhaps simply faulty or vulnerable to security exploits. We do not distinguish
such scenarios and we believe that nested encapsulation is useful for enforcing
correctness, as well as security properties.

writes to peripheral MMIO addresses need to be replaced with
invocations of the wrappers.

A security analysis of nested wrappers should consider
different attacker models, for example the four models depicted
in Fig. 2. In these diagrams, gray components are treated
as untrusted: white components are manually verified for
correctness and security (i.e. proper encapsulation towards the
gray components). For example, a security analysis of wrapper1
could use the leftmost model: only wrapper1 is trusted and all
other code on the system is treated as arbitrary. Because of the
machine’s capability safety, it suffices to manually verify the
wrapper and its encapsulation to verify the intended property.
A second analysis could use the attacker model of Fig. 2b: in
addition to wrapper1, it relies on the secure wrappers wrapper21
and wrapper22. This second analysis has a larger TCB but can
prove the stronger properties that wrapper21 and wrapper22
enforce. The analysis does not inspect the code of wrapper1 for
this, but relies on a functional contract for it (perhaps provided
by the hardware manufacturer together with wrapper1). Further
analyses could use additional attacker models as depicted in
Fig. 2c and Fig. 2d.

Note that while the system is analyzed several times, we
hasten to point out that (1) only wrapper code is manually
verified and (2) no wrapper is verified twice: wrapper1 is
verified manually, resulting in a functional correctness contract,
which is then used when manually verifying wrapper21 and
wrapper22. The full system properties are obtained by com-
bining the verification results of each of the wrappers with
our general capability safety theorem. Note also that although
wrapper21 and wrapper22 are both trusted in the second attacker
model, compositionality of our program logic still allows us to
verify them separately, relying on a contract for each other’s
behavior. This avoids creating unnecessary dependencies when
verifying wrappers.

In this paper, we present and explain our approach by
considering representative example wrappers on a model
capability machine. A first example corresponds roughly to
the first two layers of Figure 1, with wrappers enforcing a
simple bounds check and a maximum bound on the amount
of accesses respectively (i.e. a stateful property). In this first
example, we demonstrate that we can modularly reason about
independent wrappers and that the verification effort can be
shared when they are implemented according to a fixed code
structure. Our second example shows that our approach also
supports more complex properties that consider interactions
with several peripherals. It considers a setup where wrapper22
is replaced with a wrapper wrapper22 bis that limits the rate
at which a certain peripheral is accessed. Wrapper22 bis will
only allow accesses to its peripheral after an external timer
device indicates that sufficient time has passed. It does not
follow the same fixed structure as the first wrappers and is
verified separately.

To summarize, our contributions are the following:
• We extend the capability machine model, program logic and

logical relation of Georges et al. [11] with memory-mapped
I/O and secure enforcement of I/O properties and reprove

MMIO Peripherals

wrapper21 wrapper22

wrapper1

untrusted

(a)

MMIO Peripherals

wrapper21 wrapper22

wrapper1

untrusted

(b)

component22

MMIO Peripherals

component21

wrapper21 wrapper22

wrapper1

untrusted

(c)

component21

MMIO Peripherals

component22

wrapper21 wrapper22

wrapper1

untrusted

(d)

Figure 2: Four example attacker models, which could be used for analysing security of the system in Fig. 1.

their universal contract for arbitrary code on the machine.
• We demonstrate universal contracts for proving full-system

security properties on effect traces in the presence of
untrusted code, thus obtaining more interesting and realistic
end-to-end properties.

• We extend the approach to systems with nested encapsulation
by analyzing the same system several times with different
attacker models.

• We apply this approach to nested policy enforcement
wrappers around peripherals and obtain machine-checked
full-system proofs of the different stakeholders’ intended
properties. Custom separation logic resources and wrapper
specifications in so-called HOCAP style allow us to accu-
rately specify the contracts between wrappers and verify
them modularly. We demonstrate that verification effort can
be shared for wrappers sharing a fixed code structure.
All of our proofs have been machine-verified in Coq, using

the Iris program logic, and are available online [16].

II. A SIMPLE CAPABILITY MACHINE WITH MMIO SUPPORT

First, we present the operational semantics of our capability
machine. Our work builds upon the work of Georges et al. [11]
and, transitively, on that of Skorstengaard et al. [10], [12].
As such, our presentation here is similar to theirs, though
simplified to fit our purposes. Specifically, we do not consider
so-called local and uninitialized capabilities.

Section II-A presents the operational semantics for a simple
capability machine and Section II-B explains how we add
memory-mapped I/O. The semantics is summarized in Fig. 3
to 6 with additions for memory-mapped I/O in blue.

A. A simple capability machine

RWX

RW RX

RO E

O

Figure 4: Permission lattice.

The syntax of capability ma-
chine programs is given in Fig. 3.
We consider a machine with finite
memory bounded by AddrMax.
A machine word w ∈ Word is
either an unbounded integer or
a capability. A capability is a
quadruple (p, b, e, a) representing
a permission p with authority over
range [b, e) and currently pointing
to address a. A permission is an element of the lattice depicted
in Fig. 4. There are six different permissions: opaque (O),
enter (E), read-only (RO), read/execute (RX), read/write (RW)

and read/write/execute (RWX). These permissions are standard,
except for the opaque permission which provides no privilege
and the enter permission, inspired by the M-Machine [5], that
can be used to build opaque closures or object capabilities.
Enter capabilities are “unsealed” into read/execute capabilities
when jumped to. The capability is then available in the pc
register and can be copied into another register to restore
environment variables in the case of a closure.

Fig. 6 defines the small-step operational semantics of
the machine. The machine’s state consists of an execution
mode µ and an execution configuration ϕ. The mode µ
models the machine’s instruction cycle, which loops infinitely
(expressed by Repeat µ) until it reaches a successful done
state Done Halted through REPEATHALT or a failed state
Done Failed through REPEATFAIL. The REPEATSINGLE rule
allows for the execution of single instructions through the
EXECSINGLE rule. If the execution of the instruction is
successful, i.e. execution in EXECSINGLE does not fail or halt
and results in a Done SingleStep state, then REPEATSTANDBY
allows for another iteration of the processor’s instruction cycle.

An execution step (EXECSINGLE) requires an executable,
in-range capability (p, b, e, a) in the pc register. The word z at
address a is then read and decoded into an instruction decode(z)
which is executed on the current configuration ϕ to result in
a new machine state Jdecode(z)K(ϕ). Machine instructions i
operate over registers r or either integers or registers ρ. The
behavior of instruction i in configuration ϕ is specified by
JiK(ϕ) defined in Fig. 5. Most instructions use the auxiliary
function updPC to increment the pc register at the end of their
executions. Since the address space is finite, pointer arithmetic
such as a+ 1 can fail. For ease of reading, we write a+ k to
indicate successful pointer arithmetic.

Instructions fail and halt respectively terminate the
execution in a Failed or Halted state. move r ρ copies ρ
(its value if it’s an integer, or its contents if it’s a register) into
r. Memory can be manipulated using the load and store
instructions: load r1 r2 reads the value at the address pointed
to by the capability in r2 assuming it has read permission
and is within bounds, and copies the value into r1. Similarly,
store r ρ stores ρ at the address pointed to by the capability
in r assuming it has write permission and is within bounds.
The jmp instruction jumps to a capability, by writing it into the
pc register. As explained earlier, the jmp instruction unseals
E capabilities into RX capabilities before jumping to them.

a ∈ Addr , [0,AddrMax]

p ∈ Perm , O | E | RO | RX | RW | RWX

c ∈ Cap , {(p, b, e, a) | b, e, a ∈ Addr}
w ∈ Word , Z + Cap

r ∈ RegName , pc | r0 | r1 | . . . | r31
reg ∈ Reg , RegName→Word

m ∈ Mem , Addr→Word

EventTy , IOWrite | IORead

e ∈ Event , EventTy ×Addr× Z
t ∈ Trace , list Event

ϕ ∈ ExecConf , Reg ×Mem × State× Trace

δ ∈ DoneState , Standby | Halted | Failed
µ ∈ ExecMode , SingleStep | Repeat µ | Done δ
ρ ∈ Z + RegName

i ::= jmp r | jnz r r | move r ρ | load r r | store r ρ | add r ρ ρ | sub r ρ ρ | eq r ρ ρ | lt r ρ ρ | lea r ρ |
restrict r ρ | subseg r ρ ρ | isptr r r | getp r r | getb r r | gete r r | geta r r | fail | halt

Figure 3: Machine words, machine state and instructions.

updPC(ϕ) =

{
(Done Standby, ϕ[reg.pc 7→ (p, b, e, a+ 1)]) if ϕ.reg(pc) = (p, b, e, a)
(Done Failed, ϕ) otherwise

getWord(ϕ, ρ) =

{
ρ if ρ ∈ Z
ϕ.reg(ρ) if ρ ∈ RegName

updST(ϕ, e, s) = ϕ[state 7→ s][trace 7→ ϕ.trace ++ [e]]

i JiK(ϕ) Conditions
fail (Done Failed, ϕ)
halt (Done Halted, ϕ)

move r ρ updPC(ϕ[reg.r 7→ w]) w = getWord(ϕ, ρ)

load r1 r2 updPC(ϕ[reg.r1 7→ w])
ϕ.reg(r2) = (p, b, e, a) and w = ϕ.mem(a)
and b ≤ a < e and p ∈ {RO, RX, RW, RWX} and a /∈ MMIO

load r1 r2
updPC(updST(ϕ[reg.r1 7→ z],

(IORead, a, z), s))

ϕ.reg(r2) = (p, b, e, a) and mmioLoad(ϕ.state, a) = (s, z)
and b ≤ a < e and p ∈ {RO, RX, RW, RWX} and a ∈ MMIO

store r ρ updPC(ϕ[mem.a 7→ w])
ϕ.reg(r) = (p, b, e, a) and b ≤ a < e and
p ∈ {RW, RWX} and w = getWord(ϕ, ρ) and a /∈ MMIO

store r ρ
updPC(updST(ϕ, (IOWrite, a, z),

mmioStore(ϕ.state, a, z)))

ϕ.reg(r) = (p, b, e, a) and b ≤ a < e and p ∈ {RW, RWX}
and z = getWord(ϕ, ρ) and z ∈ Z and a ∈ MMIO

jmp r (Done Standby, ϕ[reg.pc 7→ newPc])
if ϕ.reg(r) = (E, b, e, a), then newPc = (RX, b, e, a)
otherwise newPc = ϕ.reg(r)

restrict r ρ updPC(ϕ[reg.r 7→ w])
ϕ.reg(r) = (p, b, e, a) and
p′ = decodePerm(getWord(ϕ, ρ)) and
p′ 4 p and w = (p′, b, e, a)

subseg r ρ1 ρ2 updPC(ϕ[reg.r 7→ w])
ϕ.reg(r) = (p, b, e, a) and for i ∈ {1, 2},
zi = getWord(ϕ, ρi) and zi ∈ Z and
b ≤ z1 and 0 ≤ z2 ≤ e and p 6= E and w = (p, z1, z2, a)

lea r ρ updPC(ϕ[reg.r 7→ w])
ϕ.reg(r) = (p, b, e, a) and z = getWord(ϕ, ρ) and
p 6= E and w = (p, b, e, a+ z)

geta r1 r2 updPC(ϕ[reg.r1 7→ a]) ϕ.reg(r2) = (, , , a)
. . .

(Done Failed, ϕ) otherwise

Figure 5: Operational semantics: instruction semantics.

REPEATSINGLE
(SingleStep, ϕ)→ (Done δ, ϕ′)

(Repeat SingleStep, ϕ)→ (Repeat (Done δ), ϕ′)

REPEATSTANDBY
(Repeat (Done Standby), ϕ)
→ (Repeat SingleStep, ϕ)

REPEATHALT
(Repeat (Done Halted), ϕ)
→ (Done Halted, ϕ)

REPEATFAIL
(Repeat (Done Failed), ϕ)
→ (Done Failed, ϕ)

EXECSINGLE

(SingleStep, ϕ)→

Jdecode(z)K(ϕ) if ϕ.reg(pc) = (p, b, e, a) ∧ b ≤ a < e ∧

p ∈ {RX, RWX} ∧ ϕ.mem(a) = z

(Done Failed, ϕ) otherwise

Figure 6: Operational semantics: reduction steps.

Capabilities can be modified using the restrict, subseg
and lea instructions. restrict can be used to decrease
the permission of a capability according to the permission
lattice’s partial order 4. subseg can be used to decrease
the range of authority of a capability, while lea can be used
to modify where a capability points to. As E capabilities are
used to encapsulate code and data, they cannot be modified
until they are unsealed, hence the instructions subseg and
lea fail when used with E capabilities. Indeed, e.g. changing
the address of an E-capability could enable Return Oriented
Programming (ROP) flavored attacks [17]. Instructions to read
capabilities’ fields are also provided: geta, getp, getb
and gete respectively read the a, p, b and e fields of a
capability (p, b, e, a). Not shown in Fig. 5 are instructions
jnz (conditional jump), add, sub (addition and subtraction),
eq (equality), lt (comparison) and isptr to check whether
a register contains a capability. Finally, if none of the above
cases apply, the execution falls through to a failed state as
shown on the last row in Fig. 5.

B. Adding support for memory-mapped I/O

To allow communication between the CPU and devices, we
add support for MMIO. Those additions are indicated in blue
in Fig. 3 and 5. For simplicity, we do not yet support interrupts;
the CPU and devices must poll memory for updates. We discuss
adding interrupts in Section VI.

To model MMIO, we assume a set MMIO of addresses re-
served for MMIO and augment execution configurations ϕ with
a trace t of MMIO events e, and an environmental state s drawn
from a set State as shown in Fig. 3. An event e is a triple of a
mode e.type (read or write), an address e.addr, and an integer
e.value that is read or written. The operational semantics of our
machine in Fig. 5 is parameterized by this set State, MMIO and
two operations mmioLoad : (State × Addr) → (State × Z)
and mmioStore : (State × Addr × Z) → State, that model
how the state of the devices reacts to MMIO loads and stores.

Fig. 5 shows the new behavior of load and store for
MMIO addresses. load will use mmioLoad to get the value
at address a from the environment and load it into the register.
Similarly, store uses mmioStore to indicate that a value is
written at some address. In both cases, the operations transition
the environment’s state and an IORead or IOWrite event is
recorded in the trace.

III. EXAMPLE WRAPPERS

This section details the two examples with nested parapass-
through security wrappers that were described in the introduc-
tion. The goal is to illustrate how stakeholders such as the
ones in Fig. 1 can set up the capability machine to achieve
their security objectives.

A. Three-layer stateful example with orthogonal wrappers

The first system we consider is setup as in Fig. 1, with an
additional bottom-most wrapper wrapper0. There are hence 3
layers of simple wrappers, where the third layer contains two
disjointly operating wrappers. The proof effort for this example

can be shared, since the wrappers share a common structure,
as will be discussed in section IV-D. The different wrappers
enforce the following concrete invariants, modelling the kind
of real security properties we discussed in the introduction:
• Wrapper0 encapsulates all of MMIO, and creates a read

and write closure for MMIO that higher-level wrappers use.
It does not enforce its proper predicate, i.e. it enforces the
trivially true predicate P0 on the trace t in Fig. 7. We separate
this wrapper from the others, since its implementation
deviates: it is the only wrapper that does not recursively call
another wrapper, but rather accesses MMIO directly.

• Wrapper1 ensures that no more than 1000 MMIO-events
(read and write combined) occur once the capability machine
boots. This invariant is expressed by the predicate P1 on
the trace t in Fig. 7.

• To ensure safety of values sent to their respective peripherals,
wrapper21 solely allows positive values, whereas wrapper22
solely allows negative values. Note that it would be trivial to
extend this to an arbitrary bounds check. This is expressed by
P21 and P22 in Fig. 7, where ↑te(Pe) is a predicate on traces
that holds on a trace t iff Pe(e) holds for all events e in t.

• We model two different peripherals (e.g. network and
display) situated at the memory-mapped addresses a1 and
a2, respectively. Wrapper21 only allows events destined
for address a1, i.e., wrapper21 enforces predicate P21 on
a filtered view of the general MMIO trace. The filtering
is represented by F21 in Fig. 7. Thus wrapper21 enforces
P21 ◦ F21 on the MMIO trace. Analogously, wrapper22
enforces P22 ◦ F22. The complement filter F2 will be used
to prove that no addresses other than a1 and a2 receive
MMIO events, by requiring that F2(t) = [].
The previous description has provided us with sufficient

details to define the verification goals of each stakeholder. These
goals are formulated as security objectives, and summarized in
Fig. 8. Note that wrapper0 does not have any security objective
of its own, since it solely encapsulates MMIO. OBJ-1 specifies
the guarantees that wrapper1 hopes to achieve from verification.
OBJ-1 states that if the initial memory m0 and registers r0
constitute a valid configuration init config 1(r0,m0) (further
explained below), then any execution starting from the empty
trace ∅ and an arbitrary state s0 and taking an arbitrary number
of steps (denoted by −→∗), will result in a configuration that
has a trace t′ satisfying P1. In other words, wrapper1 can be
sure that P1 will hold on any trace of execution, as long as
the capability machine boots into a configuration satisfying
init config 1.

For the second layer, we get two separate security objectives;
OBJ-21 and OBJ-22. This models the situation where the two
drivers are developed and verified independently (perhaps by
separate developer teams in the same company), relying on
a contract for the other wrapper, rather than its exact code.
Otherwise, OBJ-21 and OBJ-22 are analogous to OBJ-1. They
enforce that if the initial memory and register configuration is
satisfactory, the respective predicates P21 and P22 hold over the
network and display parts of the final trace t, i.e. P21(F21(t))
and P22(F22(t)) hold. Additionally, the complement filter F2

c lsi , (RWX, d lsi, d ei, d lsi)

c r i , (E, d r i, d ei, d r i)

c w i , (E, d ei, d ei, d w i)

↑te : (Event→ Prop)→ (Trace→ Prop) , λPe t. (∀e. e ∈ t⇒ Pe(e))

F21 : Trace→ Trace , λt. filter(λe. e.addr = a1, t)

F22 : Trace→ Trace , λt. filter(λe. e.addr = a2, t)

F2 : Trace→ Trace , λt. filter(λe. e.addr /∈ {a1, a2}, t)

P0 : Trace→ Prop , λ .True

P1 : Trace→ Prop , λt. length(t) < 1000

P21 : Trace→ Prop , λt. ↑te(λe, e.value > 0)

P22 : Trace→ Prop , λt. ↑te(λe, e.value < 0)

LS genx : list Word→ list Word ,
λvcust. [c lsx, c rpr(x), c wpr(x)] ++ vcust

LS0 : Trace→ list Word , λ . [(RW, MMIOb, MMIOe, MMIOb)]
LS1 : Trace→ list Word , λt.LS gen1([length(t)])
LS21 : Trace→ list Word , λ .LS gen21([])
LS22 : Trace→ list Word , λ .LS gen22([])

Figure 7: Definitions involved in the first example

OBJ-1
init config 1(r0,m0) (r0,m0, ∅, s0) −→∗ (r,m, t, s)

P1(t)

OBJ-21
init config 21(r0,m0) (r0,m0, ∅, s0) −→∗ (r,m, t, s)

P21(F21(t)) ∧ F2(t) = []

OBJ-22
init config 22(r0,m0) (r0,m0, ∅, s0) −→∗ (r,m, t, s)

P22(F22(t)) ∧ F2(t) = []

Figure 8: The different security objectives that the stakeholders wish to enforce
in the first example

guarantees that no events to addresses other than a1 or a2 can
ever happen in the system.

The init config predicate above defines the assumptions
each wrapper makes on the initial state of memory and registers
to make its security objective provable. It ensures that the pc
register is initialized correctly, and disallows the adversary’s
memory from containing any capabilities; a conservative
assumption made for simplicity reasons, to avoid a trivial
bypass of the encapsulation of trusted components. Additionally,
init config makes assumptions on the initial layout of memory;
Fig. 9 graphically illustrates these assumptions for wrappers 1
and 21 (22 is analogous). The figure also summarizes the
different components involved in correctly setting up the
wrappers in each layer before passing control to the adversary.
Note that these assumptions imply different attacker models for
the different security objectives, as sketched earlier in Fig. 2:
adversaries are allowed to arbitrarily instantiate the untrusted
parts of the system, depicted in red, with code.

We now discuss each subfigure in order, with the aid of
Fig. 10, which illustrates the control flow of the running
example from machine start-up (at START), until control is
passed to an adversary. The contents of important registers are
shown at key points in execution.

First, Fig. 9a presents the memory layout from the point
of view of wrapper0. As for all wrappers in our system, the
memory layout contains 3 major parts; code for the wrapper

itself, set-up code to initialize the wrapper code, and adversarial
code. The MMIO region represents all of MMIO, and is unique
to wrapper0, since no other wrappers access MMIO directly.

The code of wrapper0 itself consists of a read closure
from address d r0 to d w0, a write closure from d w0 to
d ls0 and local state used by the closures, from d ls0 to
d e0. As mentioned before, the read and write closures do
not enforce any predicate on the trace; they simply provide
read and write functionality to MMIO memory. The local state
consists of a single address, which the set-up code will store
a capability (RW, MMIOb, MMIOe, MMIOb) for MMIO into. It is
hence independent of the current trace, and given by LS0() in
Fig. 7. This capability provides the read and write closures of
wrapper0 access to all of MMIO. Fig. 11 demonstrates the code
for the write closure. It makes use of the following macros:
• reqint r raux: succeeds iff r contains an integer
• lea_a r ρ raux: absolute version of lea, that makes the

capability in r point to the address corresponding to ρ.
• rclear r: clears the set of registers r by overwriting them

with the value 0.
In order to simplify wrapper invocations, we settled on the
following common calling convention in our examples:
• r0 contains the return address
• r1 contains the value to write in case of a write event, and

the value that is read in case of a read event
• r2 contains the request’s destination MMIO address
• r25-r31 are caller-save auxiliary registers, jointly denoted by

the set Raux

Fig. 11 starts by loading the MMIO capability from d ls0
into r25, and making it point to the MMIO address in r2. Next,
the value in r1 is stored through r25, thereby writing it to MMIO

memory. Note that if r1 is not an integer, or r2 is not an MMIO

address, this operation will fail. Finally, all auxiliary registers
are cleared, and the write closure jumps to its return address
in r0.

The purpose of the set-up code is to create the previously
discussed read and write closures, and to pass these to
Adversary 0 securely. Fig. 12 lists the concrete set-up code for
wrapper0. When the machine boots, the pc register is assumed
to point to Set-up Code 0 and contains an omnipotent capability
granting access to all of memory. For simplicity reasons, all

MMIOb

MMIOe

MMIO Region

s b0

s e0

Set-up Code 0

d r0

Read Wrapper 0

d w0

Write Wrapper 0

d ls0

d e0

Local State 0

w
ra

pp
er

0

adv b0

adv e0

Adversary 0

(a) wrapper0 layout

Layout 0

s b1

s e1

Set-up Code 1

d r1

Read Wrapper 1

d w1

Write Wrapper 1

d ls1

d e1

Local State 1
w

ra
pp

er
1

adv b1

adv e1

Adversary 1

(b) wrapper1 layout

Layout 0 +1

s b21

s e21

Set-up Code 21

d r21

Read Wrapper 21

d w21

Write Wrapper 21

d ls21

d e21

Local State 21

w
ra

pp
er

2
1

Layout 22

adv b2

adv e2

Adversary 2

(c) wrapper21 layout

Figure 9: The memory layout from the point of view of wrappers 0, 1 and 21. Verified parts of memory are shown in green, regions that the wrapper’s set-up
code assumes correctness contracts for are shown in blue, and adversarial code is shown in red. Red dashed lines illustrate how each following wrapper is
situated in the adversarial region of the previous wrapper. Blue dashed lines show how an abstract view of the previous memory layout is assumed in the
following wrapper.

START

Set-up Code 0

Adversary 0

Set-up Code 1

Adversary 1

Set-up Code 21

Set-up Code 22

Adversary 2

pc (RWX, adv bX, adv eX, adv bX)

r1 (E, d rX, d eX, d rX)

r2 (E, d rX, d eX, d wX)

X = 0

X = 1

pc (RWX, adv b2, adv e2, adv b2)

r3 (E, d r21, d e21, d r21)

r4 (E, d r21, d e21, d w21)

r1 (E, d r22, d e22, d w22)

r2 (E, d r22, d e22, d w22)

Figure 10: The flow of control and a few representative register states when
jumping to the adversary in the execution of the motivating example. Black,
dotted connectors indicate register state during the indicated transition. Gray
connectors indicate that the pointed-to registers received the indicated value
in the previously executed set-up code.

1 #1: Load MMIO capability
2 reqint r2 r25
3 move r25 pc
4 lea_a r25 d_ls0 r26
5 load r25 r25
6 lea_a r25 r2 r26

7 #2: Write MMIO value
8 store r25 r1
9 #3: Clear and return

10 rclear Raux

11 jmp r0

Figure 11: The code for wrapper0’s write closure (Write Wrapper 0 in Fig. 9a).

1 #0: Machine boots here
2 #1: MMIO capability
3 move r0 pc
4 lea_a r2 d_ls0 r1
5 move r1 pc
6 subseg r1 MMIOb MMIOe
7 store r2 r1
8 #2: Wrapper closures
9 move r1 pc

10 subseg r1 d_r0 d_e0
11 move r2 r1
12 lea_a r1 d_r0 r3

13 lea_a r2 d_w0 r3
14 restrict r1 E

15 restrict r2 E

16 #3: Adv capability
17 move r0 pc
18 subseg r0 adv_b0 adv_e0
19 lea_a r0 adv_b0 r3
20 #4: Clear, jump to adv
21 rclear Rclr

*

22 jmp r0

*Rclr = RegName\{pc, r0, r1, r2}
Figure 12: The set-up code for wrapper0 (Set-up Code 0 in Fig. 9a).

wrapper code is assumed pre-loaded in memory, but initial
memory cannot contain any capabilities. The set-up code starts
by deriving the previously discussed MMIO capability from
the omnipotent pc, and storing it at address d ls0. Next, it

derives the read and write closures from the pc and stores
them in r1 and r2. Lastly, it restricts the omnipotent pc to the
adversary region, clears all auxiliary registers and jumps to the
adversary, thereby loading r0 into the pc. Fig. 10 demonstrates
how execution starts in Set-up Code 0, and how, when jumping
to Adversary 0, pc, r1, and r2 are set up as previously described.
From the point of view of wrapper0, the concrete code stored
inside Adversary 0 is irrelevant, as capability safety ensures that
no adversary will be able to bypass its read and write closures.

Let us now consider the memory layout for wrapper1 in
Fig. 9b. The layout is similar to Fig. 9a, except for the topmost
region. Since Set-up Code 0 gets to execute before passing
control to Set-up Code 1, wrapper1 assumes the existence
of a region Layout 0, whose instructions satisfy a contract
that captures the behavior of Set-up Code 0. Consequently,
init config 1 in OBJ-1 requires the machine to boot inside
the Layout 0 region and pass control to Set-up Code 1 at the
end, with the register state as specified in Fig. 10. Requiring
a contract rather than precise code makes the different layers
more independent, and will, e.g., allow the hardware vendor to
optimize network packet handling without affecting any proofs
in higher-up layers.

The code for wrapper1 itself is similar in layout, but makes
use of more extensive local state than wrapper0. Concretely,
the read and write closures ensure that the local state always
satisfies LS1 in Fig. 7. LS1 is defined in terms of a general
local state LS genx. LS genx describes the layout of local
state for wrapper x (with x 6= 0). It specifies that the first three
addresses contain a RWX capability c lsx for all of local state,
and the read and write closures c rpr(x) and c wpr(x), where
pr(x) represents the layer-below wrapper, which x will call.
For example, pr(22) = 1. Having c lsx is required because
jumping to an E capability in our capability machine results in
a pc with RX permission, which disallows updating the local
state. Lastly, LS genx takes a list of custom values vcust as
an argument. This allow wrappers to specify additional local
state to aid in enforcing their invariants. In this case, Fig. 7
defines LS1 , λt.LS gen1([length(t)]), where x=1 because
wrapper1 requires access to its own local state, and pr(x) = 0
because wrapper1 will call wrapper0 to have it perform MMIO.
Additionally, vcust = [length(t)], because wrapper1 requires
one extra address to store local state; a counter length(t) that
corresponds to the number of MMIO events performed so far,
to compare it to 1000.

Fig. 13 demonstrates how the read closure of wrapper1
uses local state. It makes use of a generic read_wrapper
template, which we use for any non-bottom-level wrapper
in this example. The template uses a list of instructions
check_read to check whether the wrapper’s predicate (e.g.,
P1 in this case) would still hold after the next MMIO event, and
update the local state if this is the case. First, the template
verifies whether r2 is a valid address, and not just any integer.
This is done using the is_addr r raux1 raux2 macro, which
succeeds iff r contains an integer that corresponds to a memory
address. Then, it calls upon the checking instructions. Lastly,
it loads c r0 from address d ls1 + 1 and jumps to it. For

1 #Template code
2 read_wrapper(check_read) ,
3 is_addr r2 r25 r26
4 check_read
5 move r25 pc
6 lea_a r25 d_ls1 r26
7 load r25 r25
8 lea r25 1
9 load r26 r25

10 jmp r26
11

12 read_wrapper_1 ,
13 read_wrapper(check_1)
14

15 #Check: < 1000 events
16 check_1 ,
17 move r25 pc
18 lea_a r25 d_ls1 r26
19 load r25 r25
20 lea r25 3
21 load r26 r25
22 add r26 r26 1
23 lt r26 r26 1000
24 lea pc r26
25 fail
26 load r26 r25
27 add r26 r26 1
28 store r25 r26

Figure 13: The code for wrapper1’s read closure (Read Wrapper 1 in Fig. 9b).

wrapper1 the template is instantiated with check_1, which
checks that P1 holds. These instructions first load c ls1 from
d ls1, then load length(t) from d ls1 + 3, check whether
length(t) + 1 < 1000 still holds, and fail if this is not the
case. If the check passes, length(t) + 1 is stored to d ls0 + 3,
ensuring that LS1 holds again after the call to wrapper0.

The set-up code for wrapper1 is very similar to the code we
discussed in Fig. 12. The only difference is that, rather than
ensuring that LS0([]) holds, the set-up code needs to satisfy
LS1([]) before jumping to Adversary 1. Fig. 10 again shows
the state of key registers at that point.

Finally, Fig. 9c summarizes wrapper21. Wrapper21 again
assumes a contract for lower-level wrappers, that is satisfied
by the region Layout 0 +1. This contract captures the behavior
of Set-up Code 0 and 1 combined, i.e., the first two steps in
Fig. 10. Similarly, a new region Layout 22 satisfies a second
contract that captures the behavior of Set-up Code 22. Both
contracts appear in the definition of init config 21 in OBJ-21
and enable more modular code development. We do not discuss
wrapper22 separately, since its layout is the dual of wrapper21.
Both wrappers share the same adversary.

The code for wrapper21 itself is similar to the code for
wrapper1. It enforces LS21 in Fig. 7, which is again defined in
terms of LS genx. No custom local state is needed to check
P21. The set-up code is also similar, but it jumps to wrapper22
before control is passed to Adversary 2, as shown in Fig. 10.
This Figure demonstrates how Set-up Code 21 sets up the
closures for wrapper21 in r3 and r4, whereas Set-up Code 22
(or in this case the assumed contract for Layout 22) sets up its
closures in r1 and r2. Set-up Code 21 uses r1 and r2 to pass
the closures for wrapper1 to Set-up Code 22.

B. Rate limiting

To demonstrate how the previous example generalizes to
support a more complex property that requires interaction with
multiple devices, we implemented and verified a second exam-
ple where wrapper22 is replaced by wrapper22 bis; a wrapper
that implements rate limiting. The other wrappers and security
objectives remain unchanged. Concretely, wrapper22 bis relies
on a trusted, memory-mapped timer device, and only allows
an IO-event to or from its peripheral (at the same address a2
that wrapper22 used) to occur when a value of 1 has been

P22 bis : Trace→ Prop ,
λt. match t with
| [] : True
| t′ ++ [e] : P22 bis(t′) ∧
(e.addr 6= atimer ⇒ last(t′) = Some(IORead, atimer, 1))

F22 bis : Trace→ Trace ,
λt. filter(λe. e.addr = a2 ∨ e.addr = atimer, t)

LS22 bis : Trace→ list Word ,
λt.LS gen22([if last(t) = Some(IORead, atimer, 1)

then 1 else 0)])

Figure 14: Definitions involved in the second example

read from the timer address atimer beforehand. In other words,
wrapper22 bis enforces the predicate P22 bis in Fig. 14 on
a version of the MMIO trace that has been filtered through
F22 bis. Here, the function last returns the most recent event in
t, if any. In summary, security objective OBJ-22 is replaced by
the following (where F2 now also disallows events to atimer):
OBJ-22-BIS
init config 22(r0,m0) (r0,m0, ∅, s0) −→∗ (r,m, t, s)

P22 bis(F22 bis(t)) ∧ F2(t) = []

To correctly enforce P22 bis ◦ F22 bis, wrapper22 bis
consists of 2 different types of closures. First, a read and
write closure similar to the ones demonstrated in Fig. 9, which
clients can use to respectively read from and write to a2 if
the last event in F22 bis(t) is a timer event that returned 1.
Second, a read-only timer closure, which allows reading from
atimer and returns the read value. To coordinate between these
closures, they share local state that satisfies LS22 bis in Fig. 14.
The three closures uphold LS22 bis as follows:
• Whenever the timer closure is called, it writes a 1 to the

local state if it read a 1, and 0 otherwise.
• Whenever the regular read or write closure is called, if the

event is destined for address a2, it checks the local state
to see if the stored value is 1. If not, the wrapper fails. If
the value is 1, it is consumed and set to 0, and the call is
passed on to wrapper1.
Note that in our current set-up, wrapper22 bis is the sole

wrapper that can read (and write) the timer address, since
it requires a view of all MMIO events to atimer and a2 in
F22 bis. Section IV-A will discuss how our approach can be
generalized to a setting where a closure is shared between
multiple wrappers, e.g. wrapper21 and wrapper22 bis.

IV. PROVING THE SECURITY OBJECTIVES

This section outlines the high-level technical ideas that
underlie the proofs of security objectives such as the ones
in Fig. 8. Intuitively, the proof of each wrapper’s security
objective employs an invariant to state that the objective holds
at each step of execution. Section IV-A discusses how each
wrapper’s invariants are formalized in Iris.

Proving that the invariant always holds requires reasoning
about 2 different phases of execution:

1) The wrapper’s concrete closures that we hand-verify should
enforce the invariant, as Section IV-B further explains.
Additionally, the concrete Set-up Code of the wrapper
and (specifications for) the set-up code of all layer-below
wrappers should respect the invariant. The latter is simple
to prove, since set-up code does not perform IO itself.

2) The arbitrary adversarial code in the Adversary region should
be safe to execute, i.e. have no way of bypassing the
wrapper’s closures and breaking the invariant. Section IV-C
discusses how we employ a semantic model to reason about
the safety of unknown code in the capability machine.

In Section IV-D we finally discuss an approach to sharing the
verification effort for wrappers that have a common structure.
This is not required for our verification approach, but it allowed
us to reduce the verification effort involved in proving the first
example.

A. Invariants to enforce security objectives

In this section, we detail how each wrapper x employs
invariants invs(x) to prove modularly that its security objective
OBJ-X holds at each step of execution. It is insufficient to have
an invariant that simply states that the security objective holds
continuously. To be of general use, each wrapper requires three
additional types of reasoning to be possible with its invariant.

First, each wrapper has a view of the physical trace, which
is the part of the physical trace that it knows about. In
our first example, wrappers 0 and 1 view the entire trace,
whereas the views of wrappers 21 and 22 consist of all events
addressed to a1 and a2, respectively. A wrapper x will only
ever see a subview of the layer-below wrapper pr(x)’s view.
By expressing the view of x in terms of the view of pr(x), the
invariant ensures that all wrappers’ views are indeed recursively
views of the actual physical event trace, obtained through
repeated filtering.

Secondly, in case multiple wrappers x1, . . . , xn have a
common layer-below wrapper pr(x1), it should be possible to
modularly reason about events they admit. For example, we
should not have to know anything about the view of xn on
the trace, to reason about the view that x1 has on the trace.

Lastly, the invariant needs to ensure that any local state that
the wrapper requires for its correct operation is enforced on
the wrapper’s current view of the trace. For example, to prove
correct operation of wrapper1 in our first example, the invariant
must be able to guarantee that the number of MMIO events
that wrapper1 keeps track of, is the number of events in the
most up-to-date view of the trace.

In the remainder of this section, we flesh out these three types
of reasoning by means of Fig. 16, which demonstrates how
different aspects of the wrappers’ invariants help us achieve
the desired reasoning. At the end, we showcase some concrete
invariants used in our first example. Note that the enforcement
of the security objective itself is trivially expressed by adding
the condition Px(tx) to the invariant, as Fig. 16 shows.

1) Connecting x1 to pr(x1): In general, a wrapper x1’s
view of the trace is a filtered view, a subsequence of the
layer-below wrapper pr(x1)’s view. We can connect different

valid(F) , ∃Pe : Event→ Prop. (∀t. F (t) = filter(Pe, t)) ∧ (∀e : Event.decidable(Pe(e)))

orthogonal(F1, F2) , ∀t. F1(F2(t)) = F2(F1(t)) = []

(filter full γ t ∗ filter val γ F t′) −∗ F (t) = t′ (filter val γ F t ∗ filter val γ F ′ t′) −∗ orthogonal(F, F ′)

(∀F ′. valid(F ′) ∧ orthogonal(F, F ′)→ F ′(t) = F ′(t′))→
(filter full γ t ∗ filter val γ F) −∗ (filter full γ t′ ∗ filter val γ F F (t′))

1 2

3

Figure 15: Three main properties of the filter full and filter val abstractions built on top of the filter resource algebra in Iris, and definition of the auxiliary
notions of validity and orthogonality they require.

invst,xPx(tx)invP,x

filter val γpr(x) Fx tx

filter full γx tx

cur tr γlsx tx cur tr′ γlsx tx,invs(x)

invs(pr(x1))

. . .

invs(x1)

. . .

. . . invs(xn)

. . .

Figure 16: Figure illustrating the interaction of the different resources in
the invariants invs(x) (consisting of two invariants intP,x and intst,x) of
an arbitrary wrapper x. The bottom of the figure shows how the invariants
of a wrapper pr(x1) are connected to its layer-above wrappers x1, . . . , xn.
Circular connectors represent an authoritative (i.e. “full”) view of a resource,
that one or more fragmentary (i.e. “partial”) views, represented by claw-shaped
connectors , can be connected to. The connector represents a unique
partial view, i.e. it is enforced to be equal to the full view.

layers this way: the invariant for wrapper x1 in Fig. 16 owns
a resource filter val γpr(x1) Fx1

tx1
, which states that x1’s

view on the trace is tx1
and that tx1

is obtained by applying
a filter Fx1 to the view tpr(x1) that pr(x1) has. As shown in
the bottom of the figure, this resource connects to the resource
filter full γpr(x1) tpr(x1) in wrapper pr(x1), which represents
the full view. Here, γpr(x) is simply a name used to distinguish
different filtering systems. The root wrapper has a view on
the entire physical trace, i.e. its invariant owns a resource
filter val γ id t where id is the identity filter and t is the
physical trace. Note that top-level wrappers do not require a
resource filter full γ t , since they do not provide a view on
the trace to a higher-level wrapper. When proving OBJ-X for
a wrapper x1, x1 and its siblings are the top level wrappers.

2) Reasoning modularly about sibling wrappers: In the case
where multiple wrappers x1, . . . , xn have a common layer-
below wrapper pr(x1), reasoning about each wrapper’s view
can happen modularly if the wrappers have orthogonal views
on the trace, where orthogonality for two filters F and F ′ is
denoted orthogonal(F, F ′) and defined in Fig. 15. For example,
F21 and F22 are orthogonal in our first example, so we can
update the view of the trace F21(t) that wrapper21 has, without
requiring any knowledge of wrapper22’s view F22(t), and vice

versa. Similarly, we might have multiple wrappers that only
write certain ranges of output values, that only ever read,
respectively write values, that always write specific pairs of
MMIO values, etc. Note that orthogonality is more flexible
than disjointness since it does not presuppose a notion of
intersection, but that it degenerates to the latter in case we
consider filters that filter on individual events (as is the case
in our examples).

Given this notion of orthogonality, we defined a novel filter
resource algebra (an Iris construct used to define custom sepa-
ration logic resources) to reason about independent, orthogonal
updates to a trace. The previous resources filter full γ t and
filter val γ F t are in fact defined in terms of this resource
algebra. Fig. 15 defines the three most important properties
that these two resources satisfy. First, we define a filter F to
be valid if it filters the trace by a decidable event predicate
Pe. Property 1 states that t′ is indeed a view of t through the
filter F . Property 2 states that any two filter val resources
are guaranteed to be orthogonal. Property 3 then leverages
orthogonality to express how we may update traces modularly:
if all orthogonal, valid filters are unaffected by a trace update,
then we can update a filter full and filter val without requiring
ownership of any other filters. Fig. 16 illustrates how the filters
x1, . . . , xn are connected to their common layer-below filter,
assuming orthogonal filtering predicates.

The reader might wonder about the case where the views of
x1, . . . , xn are not orthogonal. This case does not occur in our
current examples, but Iris offers multiple resource algebras that
can be used to reason about different forms of shared views
on the trace. For example, imagine a scenario where a clock
closure (similar to the timer closure in our second example)
is shared between wrapper21 and wrapper22 bis, such that
both wrappers can read timestamps from it and enforce their
own predicates (e.g. “at least X seconds have to pass between
any two writes to a2”). The wrappers 21 and 22 bis would
still require an orthogonal view to know about all events at
respectively a1 and a2, but now also a partial view for their
reads from aclock. The partial view ensures that wrapper22 bis
does not need to update its view whenever wrapper21 reads a
timestamp from the clock, and vice versa. Iris already contains
a monotone resource algebra, that could allow implementing
such partial views.

3) Incorporating local state: While the security objective
Px(tx) has to be satisfied at each step of execution (i.e.
atomically), the local state can temporarily be out of sync

invP,0 3 3 3 3 		 3 3 3

invst,0 3 3 3 7 7 		 3 3

invP,1 3 3 3 3 		 3 3 3

invst,1 3 3 7 7 7 7 		 3

invP,21 3 3 3 3 		 3 3 3

invst,21 3 7 7 7 7 7 7 		

wrapper0

wrapper1

wrapper21

↑↓↑↓ IO occurs

Figure 17: Overview of when different invariants need to hold when
invoking wrapper21 in our first example, where 		 denotes an invariant being
reestablished for a new view of the trace.

with the trace, e.g. if a wrapper updates its local state before
invoking the layer-below wrapper to perform IO, or if updating
the local state takes multiple instructions. For this reason,
invs(x) consists of two parts: an atomic invariant invP,x, which
ensures that the security objective holds continuously, and
a so-called non-atomic invariant [18] invst,x, which ensures
(among other things) that the local state is satisfied. The
resources cur tr γlsx tx and cur tr′ γlsx tx in Fig. 16 enforce
that the view of the trace in both invariants is the same.
Fig. 17 illustrates how both types of invariants are upheld
differently when invoking one of wrapper21’s closures: the local
state invariants can temporarily be broken while a lower-level
wrapper is executing and reestablished afterwards, whereas all
atomic invariants have to be updated at the same time, during
the instruction that performs the physical MMIO effect.

4) Putting it all together: Given the representation of invP,x

in Fig. 16, we now denote this atomic invariant with all of
its parameters as invP(Fx, Px, tpx, γpr(x), γlsx, γx). The only
new parameter is the boolean tpx, which denotes whether x is
currently considered a top-level wrapper. This is important to
know since, as mentioned, the resource filter full γx tx is not
present if x is a top-level wrapper. The arguments γpr(x),γlsx,γx
are omitted if they are clear from context.

To exemplify the previous discussion, we investigate the
atomic invariants involved in proving OBJ-21 (the non-atomic
invariants are more tedious and less interesting). The invariants
are as follows:
invP(id, ,False, γ0, γls0, γ1) ∗ invP(id, ,False, γ1, γls1, γ21)
∗ invP(F21,P21,True, γ21, γls21,)

∗ ∃t. filter val γ2 F2 []

The first three invariants represent wrappers 0, 1 and 21. Since
wrappers 0 and 1 are the only wrappers in their layer, they
apply the identity filter id to the previous layer’s trace. The
resource filter val γ0 id t in wrapper0’s invariant is linked to
the actual physical trace. The third invariant, wrapper21’s proper
invariant, enforces the first conclusion of OBJ-21, through the
presence of F21 and P21. Additionally, the fourth invariant
ensures that no other addresses than a1 and a2 receive MMIO

events. From the point of view of the top-level wrapper21 in
Fig. 9c, the third layer is irrelevant, so the third invariant has
tp set to True, whereas non-top-level wrappers 0 and 1 have
it set to False. Also note the in place of P0 and P1 in the
first two invariants, indicating that wrapper21 does not care
what predicate the lower wrappers enforce when proving its
own security objective.

B. Functional correctness of wrappers

The invariants discussed in the previous section are used to
prove two contracts for every wrapper: a form of functional
correctness and a form of security. We will discuss the proofs
of security in more detail in the next section, and the proofs of
correctness now. The correctness contract expresses that when
a wrapper is invoked, it either generates the desired external
effect or throws an error in case the effect would violate their
policy.

These contracts are expressed in terms of a program logic
for our capability machine, which we inherit from Georges
et al. [11] and extend with rules for the MMIO cases of the
load and store instructions. The program logic contains
the following weakest precondition assertion:

wp Repeat SingleStep {s.Q(s)}
which is read as “repeating the fetch decode execute loop of
the capability machine until it either halts or fails, will produce
a final state s (Done Failed or Done Halted) for which Q
holds”. In terms of wp {}, we can define a form of contract
triple {P} Repeat SingleStep {Q} that we define (roughly)
as follows2:

∀ϕ.P −∗ (Q −∗ wp Repeat SingleStep {s. ϕ(s)})
−∗ wp Repeat SingleStep {s. ϕ(s)}

In terms of this abstraction, the functional correctness
contract of the write closure of a wrapper x could look roughly
as follows (omitting error cases and technical details):

filter val γx (λt. filter(Pe, t)) t ∗ Pe(IOWrite, a, v)

∗ pc 7→ (pw, bw, ew, aw)

∗ r0 7→ wret ∗ r1 7→ v ∗ r2 7→ a

Repeat SingleStep
filter val γx (λt. filter(Pe, t)) (t++ [(IOWrite, a, v)])
∗ pc 7→ updatePcPerm(wret)

∗ r0 7→ wret ∗ r1 7→ v ∗ r2 7→ a

where the updatePcPerm function maps E capabilities to their
RX counterparts and leaves other capabilities untouched, and
we used the fact that filters in our current examples are event-
based (cfr. the definition of validity in Fig. 15) to rewrite
Fx as (λt. filter(Pe, t)). This contract expresses that when
the write closure is invoked and the pc contains a capability
(pw, bw, ew, aw), with arguments v and a and a return capability

2Two caveats: (1) we do not use this abstraction in our Coq development
but use the unfolded definition directly and (2) most of our contracts use a
variant of this definition that allows the program to fail at an arbitrary point
of execution.

wret in appropriate registers, then execution will jump back
to wret with unmodified register contents. Additionally, a
filter val γx (λt. filter(Pe, t)) t resource is required to update
the filter full γx t resource in invP,x using property 3 in
Fig. 15. To prove the orthogonality precondition to this property,
Pe needs to accept the requested external effect (IOWrite, a, v).
In the postcondition, an updated filter val resource is returned
to express that the effect has been performed.

Unfortunately, the above contract does not quite work. The
problem is that higher-level wrappers who wish to invoke a
lower-level write closure do not directly own the necessary
resource filter val γx (λt. filter(Pe, t)) t. As we discussed,
this resource is embedded in an invariant invP. Because this
invariant is atomic, it must be restored after every individual
instruction, as was already illustrated in Fig. 17. It is therefore
not possible to extract the resource from the invariant for the
duration of the wrapper invocation.

To solve this problem, we employ the technique of
Higher-Order Concurrent Abstract Predicates (HOCAP)
[19], [20]. The client wrapper will not extract the
filter val γpr(x) (λt. filter(Pe, t)) t resource from its invariant
and restore it after the invocation. Instead, it delegates the
work of updating its invariant to the invoked wrapper, and the
invoked wrapper will do this at exactly the right execution step,
namely the step that executes the MMIO write. This means
the contract will look as follows (again omitting error cases
and technical details):

(
∀t.filter full γx t ∗ P V

filter full γx (t++ [(IOWrite, a, v)]) ∗Q

)
∗ P ∗ pc 7→ (pw, bw, ew, aw)

∗ r0 7→ wret ∗ r1 7→ v ∗ r2 7→ a

Repeat SingleStep{
Q ∗ pc 7→ updatePcPerm(wret)

∗ r0 7→ wret ∗ r1 7→ v ∗ r2 7→ a

}

In this contract, the caller provides a so-called view shift
to the wrapper invocation: a type of logical callback that
expresses how the lower-level wrapper pr(x) can update the
client wrapper x’s invariant for them. View shifts are the
reason why, in Fig. 17, wrapper0 was capable of immediately
reestablishing the atomic invariants of wrapper1 and wrapper21
when it performed MMIO. Note that the client does not need
to provide their filter val γx (λt. filter(Pe, t)) t resource
beforehand, but instead is allowed to rely on the invoked
wrapper’s filter full γx t resource in the proof of the view shift.
In this proof, the view shift is allowed to consume additional
client resources P that the caller has to provide at the start of the
invocation, and produces resources Q. Note that, since top level
wrappers contain no filter full γx t resource that needs to be
updated externally, their contracts need not be parameterized by
a view shift. In other words, the same boolean tp we discussed
in the previous section will determine whether a wrapper’s
contract is parameterized by a view shift.

E(v) , ∀reg . (R(reg) ∗ pc 7→ v ∗∗(r,w)∈reg,r 6=pc r 7→ w)

−∗ wp Repeat SingleStep { .>}
R(reg) ,∗(r,w)∈reg,r 6=pc V(w)

V(w)

V(z),V(O,−) , >
V(E, b, e, a) , � . E(RX, b, e, a)

V(p, b, e, a) , ∗a′∈[b,e) ∃p′. p 4 p′ ∧
∃w. a′ 7→p′ w ∗ V(w)

Figure 18: Logical relations describing capability safety. Figure adapted from
Georges et al. [11].

If x is neither a top-layer nor a bottom-layer wrapper, then
both x and pr(x) are parameterized by a (different) view
shift, and a conversion between both needs to happen to prove
the contract of x. Using the invariant invP,x, we can prove
the following generally applicable view shift lowering lemma,
to abstract away most reasoning related to view shifts when
proving contracts:

Theorem 1 (View Shift Lowering):

invP((λt. filter(Pe, t)), Px, tpx, γpr(x), γlsx, γx) −∗
(∀t. filter full γx t ∗ P Vfilter full γx (t++ [e]) ∗Q) −∗
(∀t. filter full γpr(x) t ∗ P ∗ Pe(e) ∗ Px(t++ [e]) ∗

cur tr′ γls,x tVfilter full γpr(x) (t++ [e]) ∗Q ∗
cur tr′ γls,x (t++ [e]))

This theorem states that the view shift that x is parameterized
by can be lowered to one that satisfies the contract for pr(x),
if x can provide the additional guarantee that Pe(x) and
Px(t ++ [e]) hold (which is precisely what x checks before
admitting the event anyway), and if x makes pr(x) update the
trace in the local state invariant invst. Recursively applying
this theorem allows efficiently deriving higher-level driver
specifications from lower-level ones. Note that view shift
lowering accumulates resources in P and Q until the bottom-
level driver is reached, at which point all higher-level invariants
invP are updated at once.

C. A semantic model for capability safety

In this section, we describe how we reason about the fact
that unknown adversarial code satisfies the security objectives.
We use a logical relations model to capture the notion of
capability safety, i.e. the universal contract, that the hardware
capabilities provide. Concretely, we will verify that our own
wrapper closures are safe to execute, and that the adversary’s
code is safe to execute, starting from safe register states, in
particular states containing the wrappers’ closures.

Since our capability machine builds upon the bare-bones
capability machine of Georges et al. [11], we reuse their logical
relation without revocation and its formalization in Iris, and
repeat a simplified version of the separation logic definition in
Fig. 18. Additionally, we reprove their fundamental theorem
(Theorem 2 below) in the presence of MMIO.

We restrict our explanation of Fig. 18 to the essentials
required to understand the key concepts behind our proofs. The
model consists of three different, mutually recursive relations:

• The value relation V : Word→ iProp (with iProp the type
of propositions in Iris) defines when a word is safe.

• The expression relation E : Word→ iProp defines when a
capability can safely be executed in the pc register.

• The register relation R : Reg → iProp lifts the value
relation to an entire register bank (bar the pc). A register
bank is safe if each general purpose register is safe.

Technically, these relations are well-defined by so-called
guarded recursion, see [11], [21].

We first discuss the definition of the value relation. V(w)
specifies an upper bound on the authority over memory that
the word w carries. Since integers and O-capabilities do not
represent any authority over memory, they are always safe,
as expressed by >. Enter capabilities are safe if it is safe to
execute them in the pc after jumping to them (hence the RX
permission). The presence of the persistent modality � and
the later modality . can be ignored by readers unfamiliar with
them. All remaining capability types have read permission
and these capabilities are safe if, for each a′ in their memory
range [b, e), an Iris invariant (denoted by a boxed assertion)
exists that asserts that memory location a′ will always contain
a safe value. The assertion a′ 7→p′ w in the invariant expresses
unique ownership of the memory location a′ with permission
p′ and stored word w. Additionally, this assertion implies that
a′ cannot be an MMIO location. This ensures that adversaries
cannot gain direct access to MMIO memory and bypass our
wrappers. Note that the invariant permits using a p′ that is at
least as strong as p, i.e. p 4 p′. This allows for downgrading
of capability permissions and aliasing of different permissions.
Notice that no additional assertions have to be added to the
definition of V(p, b, e, a) for capabilities that carry additional
write or execute authority. The intuitive reason is that the
invariant already enforces that any written value needs to be
valid, and that having read authority over a part of memory
suffices for an adversary to copy code over to a region that it
has write-execute permission over, and execute it there.

Next, we discuss the execution relation E . It states that,
given ownership of any initial register bank reg that satisfies
the register relation R, we can safely run the machine with
v in the pc register. The weakest precondition assertion wp
uses a trivial postcondition >, which at first sight might
seem odd. This suffices because Iris’ weakest precondition
implicitly enforces that all invariants hold at each step of
execution. Thus, any invariants related to OBJ-X that a wrapper
might define will also be enforced through the expression
relation by the wp assertion. For example, if wrapper1 were
to set up an invariant that ensures that P1 holds over the
current trace t, i.e. P1(t), then this invariant is upheld at each
step of execution when jumping to Adversary 1, under two
conditions. First, Adversary 1 should be safe to execute. i.e.
E(RWX, adv b1, adv e1, adv b1) holds. Second, to meet the
precondition of the expression relation, Set-up Code 1 has
to pass the adversary a safe register block, which notably
requires proving that the read and write closures for wrapper1
are safe, since they are shown to be located in r1 and r2 when
jumping to Adversary 1 in Fig. 10. This latter condition can

be proven relatively straightforwardly from the contracts we
described in Section IV-B. We hence focus on proving the
different adversaries in our examples safe, by leveraging the
FTLR (fundamental theorem of the logical relation).

The fundamental theorem has the following simple statement:
Theorem 2 (FTLR): ∀w.V(w) −∗ E(w).

In other words: if a word is safe, it can safely be executed as
well. The statement is identical to Georges et al.’s FTLR, but
the proof is slightly different due to the presence of MMIO.

Through this theorem, it is easy to prove that for each region
Adversary X in Fig. 9, E(RWX, adv bX, adv eX, adv bX)
holds. Since each init config X predicate requires initial
memory to not contain any capabilities, since integers are
always safe, and since the different set-up codes do not change
the adversary’s memory, V(RWX, adv bX, adv eX, adv bX)
holds. The fundamental theorem then proves the result.

D. Sharing verification effort for fixed-structure wrappers

For wrappers x that satisfy some conditions, we have
developed a method in Coq that requires minimal manual
verification effort in proving the functional contract and safety
of the closures for these drivers. The conditions are as follows:
• Respect the calling convention described in Section III.
• Enforce their security objective using an atomic invariant of

the form invP(Fx, Px, tpx).
• Consist of a single read and write closure, and only jump

to the read and write closures of their layer below driver.
The state invariant invst expresses both ownership of the
code for x, and describes the closures for pr(x) in the
local state, and will hence be parameterized by the relevant
addresses of both x and pr(x). It is then denoted as follows:
invst(d rpr(x), d wpr(x), d epr(x), d rx, d wx, d ex).

• Have an implementation that satisfies a specific template,
which is parameterized by instructions check read and
check write to check Px ◦ Fx in respectively the read and
write closures. Wrapper 1 in Fig. 13 is structured like this,
for example.

If these conditions are satisfied, the only manual effort
involved is a proof that check read and check write
indeed correctly enforce Px ◦ Fx on x’s view of the
trace, denoted by check spec read(Fx, Px, check read) and
check spec write(Fx, Px, check write), respectively. These
conditions are enforced in the local state invariant invst, adding
the parameters Px and Fx to it.

Under the above conditions, we can define simple contracts
in the style of Section IV-B for the driver’s read and write
closures, that only depend on d rx, d ex, d rx/d wx, and
tpx (to determine whether or not a view shift is required in the
contract), and are denoted read spec(d rx, d ex, d rx, tpx)
and write spec(d rx, d ex, d wx, tpx).

We can then state the following lifting theorem:
Theorem 3 (Lifting-theorem-read):

invP(Fx, Px, tpx)
read spec(d rpr(x), d epr(x), d rpr(x),False)

invst(d rpr(x), d wpr(x), d epr(x), d rx, d wx, d ex, Fx, Px)

read spec(d rx, d ex, d rx, tpx)

A similar result holds for the write spec. Note that this theorem
is generic in tpx. It states that if all necessary conditions on
the state of a wrapper are met (invst), and if an invariant
enforces F and P on the trace (invP), then we can lift a spec
for the pointed-to wrapper in the previous layer, to the current
layer. The bottom-most wrapper, i.e. wrapper0 in the examples,
constitutes the base case in this theorem, and still has to be
manually verified to satisfy read spec and write spec, since
its code and local state do not satisfy the template (cfr. Fig. 11
and LS0 in Fig. 7).

Finally, we can prove top-level wrapper closures secure using
the following theorem:

Theorem 4 (Wrapper-safety-read):

read spec(d rx, d ex, d rx,True) −∗
V(E,Global, d rx, d ex, d rx)

Again, a similar result holds for the write spec.
Since we have abstracted most reasoning related to wrappers

into Theorems 3 and 4, the check_read and check_write
instructions are indeed the only code we need to hand-verify
to ensure wrapper safety. We used this approach to verify the
first example. The shape of the local state and the code of
the second example is slightly different, due to the presence
of the timer closure, so it did not fit this approach. However,
Theorem 4 still applied once the read spec and write spec
were proven.

V. RELATED WORK

Hardware-supported security mechanisms as well as software
verification have been important ingredients of secure system
development for a long time [22]. We discuss the most impor-
tant lines of related work and how they differ from our results.

One distinguishing feature of our work is that we sup-
port robust modular verification. Robust verification requires
underlying programming language or hardware support to
protect verified code from untrusted code. Earlier work has
demonstrated how to robustly verify safety properties in settings
where that protection is not nested. For instance, Sammler et al.
[23] and Jia et al. [24] have proposed approaches to robustly
verify safety properties in the presence of untrusted code that
is confined using some sandboxing mechanism. Alternatively,
Agten et al. [25] have used trusted execution environments
(TEEs) like Intel SGX [26] or Sancus [27] to protect a verified
module from an unverified context, but verification is at the
level of C code and their focus is on proving assertions about
the protected module rather than full system properties. In
our approach, protection of verified code is provided by the
capability-based instruction set architecture, and this enables
handling of nested protection.

Protecting verified code from unverified code is of course
closely related to protecting trusted system software from
untrusted user code. Operating systems, microkernels, and
hypervisors use hardware privilege levels to protect themselves,
and hence the rich line of work on verifying properties of such
system-level software can be seen as an instance of robust mod-
ular verification and hence related to our work. Some important

milestones include the verification of the seL4 microkernel [28],
[29], and the verification of Microsoft’s Hyper-V hypervisor
[30]. The focus is however on proving properties (such as
functional correctness, or selected safety properties) of the
system software under a single attacker model where all non-
privileged code is untrusted. Like our work, the verification of
CertiKOS [31] supports modular (compositional) and layered
verification of device drivers. But an important difference is
that verification in CertiKOS is compositional but not robustly
modular: only user-level code is isolated at run time from kernel-
level code, and any unverified code at kernel-level becomes
part of the trusted computing base. The journal version of the
CertiKOS driver verification paper [32] also has an extensive
overview of other related work on operating system verification.

The usefulness of being able to nest protection systems has
been recognized in the system security research community, and
several systems have been proposed that support, for instance,
nested virtualization [33], [34]. However for none of these
systems, any code-level formal guarantees are provided.

It is the reliance on capabilities as the underlying protection
mechanism that enables arbitrary nesting for our approach.
Capability-based architectures have a rich history [4], and have
been proposed as a security foundation for both high-level
languages [35], [12], [8] and assembly languages [5]. The fact
that capabilities support nesting has been observed before, e.g.
in Mark Miller’s PhD thesis [36]. It has also been known for
a long time that they provide a great foundation for nestable
security architectures in high-level languages [37]. Over the
past decade, capabilities at the instruction set architecture level
have seen renewed interest, largely thanks to the CHERI project
[6]. CHERI is a hybrid architecture that supports capability
based protection for user-level code and classical memory
protection for isolating kernel and processes. Hence, CHERI
does not use the nested encapsulation for wrappers that we
study in this paper. However, CheriRTOS [38], a CHERI-aware
real-time operating system, supports capability-based fine-
grained isolation for device drivers and would be a candidate
implementation platform for our verified wrapper stacks.

Capability-based systems support the enforcement of security
properties in the presence of arbitrary untrusted code in the
system through what are typically called object capability
patterns, like the membrane or caretaker patterns [36]. It is only
relatively recently that sufficiently powerful formal reasoning
approaches have been developed that can prove such properties.
Devriese et al. [7] proposed a reasoning approach based on
logical relations, (what we now call) universal contracts and
the concept of effect parametricity. Swasey et al. [8] developed
the first program logic, OCPL, that can compositionally specify
and verify the properties enforced by object capability patterns.
Building on these ideas, program logics have been developed to
reason about software in low-level capability-based instruction
set architectures [10], [11]. These logics, as ours, are built in
Iris [21], a separation logic framework for building program
logics. Iris integrates, unifies, and simplifies a wide variety of
mechanisms for reasoning about programs that can be higher-
order, concurrent, or use mutable state. The results in this paper

can be seen as an application and extension of these logics to
prove security properties for multiple stakeholders in a system
with nested encapsulation.

One of the motivations for our approach is the minimization
of the Trusted Computing Base (TCB). The various stake-
holders in the system want to ensure their security objectives
while trusting as little other software as possible. The use of
small software modules isolated by some hardware protection
mechanism to enforce full-system security properties has
been proposed in multiple guises in the system security field.
DriverGuard [39] uses virtualization techniques to implement
fine-grained protection on I/O through specific devices with
a small TCB. Para-passthrough virtualization [14] specifically
aims to provide full-system guarantees while relying only on a
small piece of software, albeit for only a single attacker model.
One could argue that micro-kernels or hypervisor-based systems
are similar. We show that it is possible to apply this principle
at multiple levels in the same system and verify security.

Related to minimization of the TCB is the idea of compart-
mentalization, breaking a large program in smaller mutually
distrusting parts and relying on some underlying security
mechanism to protect the parts from one another. Juglaret
et al. [40] have studied the formal guarantees provided by a
compartmentalizing compiler. They consider multiple compro-
mise scenarios, where an attacker can compromise different
subsets of program parts, somewhat similar to our consideration
of multiple attacker models. However, they only consider the
benefits provided by a compartimentalizing compiler, and do
not consider verification.

If the full system security objectives to be verified include
statements about I/O through a given device, then necessarily
the device driver(s) for that device will need to be verified.
Hence, the approach proposed in this paper verifies a subset of
the driver stack for a device depending on the attacker model.
Device drivers have been a target of verification in a wide body
of related work, using techniques ranging from model checking
(e.g. [41]) to deductive verification (e.g. [42]). The objective
of these verification efforts is to improve kernel reliability by
showing that drivers correctly use specific kernel APIs, or do
not have memory safety or concurrency bugs. That is very
different from our objective of verifying that a thin wrapper
around a device enforces a specified security property.

VI. CONCLUSION AND FUTURE WORK

The fine-grainedness of hardware capabilities, in combination
with object capabilities as a primitive enabling encapsulation,
allows for efficient and safe nesting of wrappers enforcing
security properties without costly context switches. This
would be hard to achieve through conventional, more coarse-
grained security primitives. By capitalizing on capabilities and
extending an existing formal model for a capability machine,
we managed to generalize classical robust modular verification
to a nested setting. With nested robust modular verification,
a system that consists of multiple layers is verified robustly
several times, each time verifying an increasing number of
layers and enforcing more security objectives, and considering

the rest of the code base as well as the environment untrusted.
Crucially, our approach retains the compositionality of the
programming logic and does not require verifying the same
code multiple times, even when proving security objectives
for different layers. Our Iris development provides ease of
use when modularly verifying nested wrappers, only requiring
specific checking instructions to be verified and lower layer
wrappers proven safe, in order to obtain proofs of safety for an
entire stack of wrappers. These proofs of wrapper safety are
essential in proving the different full-system security properties.

In future work, we wish to extend our basic model of IO,
to achieve nested full-system guarantees in more involved
settings. Concretely, we believe it to be possible to achieve
similar guarantees when adding interrupts to the basic capability
machine. This would require formalizing interrupts dynamics,
redefining the notion of weakest precondition correspondingly,
as well as proving specifications for registered interrupt
handlers themselves. Another interesting extension is allowing
peripherals to perform some form of capability-restricted DMA
access, as hinted at by Markettos et al. [43]. Additionally,
with the advent of modern capability hardware in the form of
Arm’s Morello prototype [44], it will soon become possible to
perform practical experiments on capability-enabled hardware,
thereby obtaining a fair comparison between our work and
similar approaches using different security primitives.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for valuable comments
and suggestions. This work was supported in part by a Villum
Investigator grant (no. 25804), Center for Basic Research in
Program Verification (CPV), from the VILLUM Foundation;
by the Research Foundation - Flanders (FWO); and by DFF
project 6108-00363 from The Danish Council for Independent
Research for the Natural Sciences (FNU). This research was
partially funded by the Research Fund KU Leuven, and
by the Flemish Research Programme Cybersecurity. Thomas
Van Strydonck holds a Research Fellowship of the Research
Foundation - Flanders (FWO). Amin Timany was a postdoctoral
fellow of the Flemish research fund (FWO) during parts of
this project.

REFERENCES

[1] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A.
Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter, “Cooperation
and security isolation of library OSes for multi-process applications,” in
European Conference on Computer Systems. Association for Computing
Machinery, Apr. 2014, pp. 1–14.

[2] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,
A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour, “The turtles
project: Design and implementation of nested virtualization,” in OSDI.
USENIX Association, Oct. 2010.

[3] A. A. de Amorim, M. Dénès, N. Giannarakis, C. Hritcu, B. C. Pierce,
A. Spector-Zabusky, and A. Tolmach, “Micro-policies: Formally verified,
tag-based security monitors,” in 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. IEEE Computer
Society, 2015, pp. 813–830.

[4] H. M. Levy, Capability-Based Computer Systems. Digital Press, 1984.
[Online]. Available: https://homes.cs.washington.edu/∼levy/capabook/

https://homes.cs.washington.edu/~levy/capabook/

[5] N. P. Carter, S. W. Keckler, and W. J. Dally, “Hardware Support
for Fast Capability-based Addressing,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 1994, pp. 319–327.

[6] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch,
R. Norton, M. Roe, S. Son, and M. Vadera, “CHERI: A Hybrid Capability-
System Architecture for Scalable Software Compartmentalization,” in
IEEE Symposium on Security and Privacy, 2015, pp. 20–37.

[7] D. Devriese, L. Birkedal, and F. Piessens, “Reasoning about object
capabilities with logical relations and effect parametricity,” in IEEE
European Symposium on Security and Privacy, EuroS&P 2016. IEEE,
2016, pp. 147–162.

[8] D. Swasey, D. Garg, and D. Dreyer, “Robust and Compositional
Verification of Object Capability Patterns,” in OOPSLA. ACM, 2017.

[9] T. Van Strydonck, F. Piessens, and D. Devriese, “Linear capabilities for
fully abstract compilation of separation-logic-verified code,” Proc. ACM
Program. Lang., vol. ICFP, 2019.

[10] L. Skorstengaard, D. Devriese, and L. Birkedal, “Reasoning about a
machine with local capabilities - provably safe stack and return pointer
management,” in Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, 2018, pp. 475–501.

[11] A. L. Georges, A. Guéneau, T. Van Strydonck, A. Timany, A. Trieu,
S. Huyghebaert, D. Devriese, and L. Birkedal, “Efficient and provable
local capability revocation using uninitialized capabilities,” Proceedings
of the ACM on Programming Languages, vol. 5, no. POPL, pp. 6:1–6:30,
Jan. 2021.

[12] L. Skorstengaard, D. Devriese, and L. Birkedal, “Reasoning about
a Machine with Local Capabilities: Provably Safe Stack and Return
Pointer Management,” ACM Transactions on Programming Languages
and Systems, vol. 42, no. 1, pp. 5:1–5:53, Dec. 2019.

[13] ——, “Stktokens: Enforcing well-bracketed control flow and stack
encapsulation using linear capabilities,” vol. 3, no. POPL, 2019.

[14] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie,
M. Hirano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo,
and K. Kato, “BitVisor: A thin hypervisor for enforcing {I/O} device
security,” in ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, ser. VEE ’09. ACM, Mar. 2009.

[15] Microchip Technology Inc., “SAM D5x/E5x Family Data Sheet,”
2019. [Online]. Available: https://www.mouser.com/datasheet/2/268/
60001507A-1130176.pdf

[16] T. Van Strydonck, A. L. Georges, A. Guéneau, A. Trieu, A. Timany,
F. Piessens, L. Birkedal, and D. Devriese, “Proving full-system
security properties under multiple attacker models on capability
machines: Coq mechanization,” 9 2021. [Online]. Available: https:
//doi.org/10.5281/zenodo.5514350

[17] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86).” New York, NY, USA:
Association for Computing Machinery, 2007.

[18] Iris Team, “The Iris documentation and Coq development.” 2021.
[Online]. Available: https://iris-project.org

[19] B. Jacobs and F. Piessens, “Expressive modular fine-grained concurrency
specification.” New York, NY, USA: Association for Computing
Machinery, 2011.

[20] K. Svendsen, L. Birkedal, and M. Parkinson, “Higher-order concurrent
abstract predicates,” Modular specification and verification for higher-
order languages with state, p. 108, 2012.

[21] R. Jung, R. Krebbers, J. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer,
“Iris from the ground up: A modular foundation for higher-order
concurrent separation logic,” J. Funct. Program., vol. 28, p. e20, 2018.

[22] D. MacKenzie and G. Pottinger, “Mathematics, technology, and trust:
Formal verification, computer security, and the U.S. military,” IEEE Ann.
Hist. Comput., vol. 19, no. 3, pp. 41–59, 1997.

[23] M. Sammler, D. Garg, D. Dreyer, and T. Litak, “The high-level benefits
of low-level sandboxing,” vol. 4, no. POPL, 2019.

[24] L. Jia, S. Sen, D. Garg, and A. Datta, “A logic of programs with interface-
confined code,” in 2015 IEEE 28th Computer Security Foundations
Symposium, 2015, pp. 512–525.

[25] P. Agten, B. Jacobs, and F. Piessens, “Sound modular verification of C
code executing in an unverified context,” in ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015, S. K. Rajamani and D. Walker,
Eds. ACM, 2015, pp. 581–594.

[26] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptology
ePrint Archive, vol. 2016, p. 86, 2016. [Online]. Available:
http://eprint.iacr.org/2016/086

[27] J. Noorman, J. V. Bulck, J. T. Mühlberg, F. Piessens, P. Maene, B. Preneel,
I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling, “Sancus 2.0: A
low-cost security architecture for iot devices,” ACM Trans. Priv. Secur.,
vol. 20, no. 3, pp. 7:1–7:33, Jul. 2017.

[28] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood, “sel4: formal verification of an OS kernel,” in ACM
Symposium on Operating Systems Principles 2009, J. N. Matthews and
T. E. Anderson, Eds. ACM, 2009, pp. 207–220.

[29] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood, “sel4: formal verification of an operating-system kernel,”
Commun. ACM, vol. 53, no. 6, pp. 107–115, 2010.

[30] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies, “VCC: A practical system for
verifying concurrent C,” in Theorem Proving in Higher Order Logics,
ser. Lecture Notes in Computer Science. Springer, pp. 23–42.

[31] H. Chen, X. N. Wu, Z. Shao, J. Lockerman, and R. Gu, “Toward
compositional verification of interruptible OS kernels and device drivers,”
in Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA,
USA, June 13-17, 2016, C. Krintz and E. Berger, Eds. ACM, 2016, pp.
431–447.

[32] ——, “Toward compositional verification of interruptible OS kernels and
device drivers,” J. Autom. Reason., vol. 61, no. 1-4, pp. 141–189, 2018.

[33] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson,
“Microkernels meet recursive virtual machines,” in USENIX Symposium
on Operating Systems Design and Implementation, K. Petersen and
W. Zwaenepoel, Eds. ACM, 1996, pp. 137–151.

[34] B. Kauer, P. Verı́ssimo, and A. N. Bessani, “Recursive virtual machines for
advanced security mechanisms,” in IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops. IEEE Computer
Society, 2011, pp. 117–122.

[35] S. Maffeis, J. C. Mitchell, and A. Taly, “Object capabilities and isolation
of untrusted web applications,” in 31st IEEE Symposium on Security
and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland, California,
USA. IEEE Computer Society, 2010, pp. 125–140.

[36] M. S. Miller, “Robust composition: Towards a unified approach to access
control and concurrency control,” Ph.D. dissertation, Johns Hopkins
University, 2006.

[37] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten, “Extensible
security architecture for java,” in Proceedings of the Sixteenth ACM
Symposium on Operating System Principles, M. Banâtre, H. M. Levy,
and W. M. Waite, Eds. ACM, 1997, pp. 116–128.

[38] H. Xia, J. Woodruff, H. Barral, L. Esswood, A. Joannou, R. Kovacsics,
D. Chisnall, M. Roe, B. Davis, E. Napierala, J. Baldwin, K. Gudka,
P. G. Neumann, A. Richardson, S. W. Moore, and R. N. M. Watson,
“CheriRTOS: A Capability Model for Embedded Devices,” in 2018 IEEE
36th International Conference on Computer Design (ICCD), Oct. 2018,
pp. 92–99.

[39] Y. Cheng, X. Ding, and R. H. Deng, “Driverguard: Virtualization-based
fine-grained protection on I/O flows,” ACM Trans. Inf. Syst. Secur., vol. 16,
no. 2, pp. 6:1–6:30, 2013.

[40] Y. Juglaret, C. Hritcu, A. A. D. Amorim, B. Eng, and B. C. Pierce,
“Beyond good and evil: Formalizing the security guarantees of com-
partmentalizing compilation,” in 2016 IEEE 29th Computer Security
Foundations Symposium (CSF), 2016, pp. 45–60.

[41] T. Ball, E. Bounimova, R. Kumar, and V. Levin, “SLAM2: static driver
verification with under 4% false alarms,” in International Conference on
Formal Methods in Computer-Aided Design, R. Bloem and N. Sharygina,
Eds. IEEE, 2010, pp. 35–42.

[42] W. Penninckx, J. T. Mühlberg, J. Smans, B. Jacobs, and F. Piessens,
“Sound formal verification of linux’s USB BP keyboard driver,” in NASA
Formal Methods, ser. Lecture Notes in Computer Science, A. Goodloe
and S. Person, Eds., vol. 7226. Springer, 2012, pp. 210–215.

[43] A. T. Markettos, J. Baldwin, R. Bukin, P. G. Neumann, S. W. Moore,
and R. N. Watson, “Position paper: Defending direct memory access
with CHERI capabilities,” 2020.

[44] Arm Limited, “Arm architecture reference manual supplement morello
for a-profile architecture,” 2020.

https://www.mouser.com/datasheet/2/268/60001507A-1130176.pdf
https://www.mouser.com/datasheet/2/268/60001507A-1130176.pdf
https://doi.org/10.5281/zenodo.5514350
https://doi.org/10.5281/zenodo.5514350
https://iris-project.org
http://eprint.iacr.org/2016/086

	Introduction
	A simple capability machine with MMIO support
	A simple capability machine
	Adding support for memory-mapped I/O

	Example wrappers
	Three-layer stateful example with orthogonal wrappers
	Rate limiting

	Proving The Security Objectives
	Invariants to enforce security objectives
	Connecting x1 to `39`42`"613A``45`47`"603Apr(x1)
	Reasoning modularly about sibling wrappers
	Incorporating local state
	Putting it all together

	Functional correctness of wrappers
	A semantic model for capability safety
	Sharing verification effort for fixed-structure wrappers

	Related Work
	Conclusion and Future Work
	References

