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ABSTRACT
We propose automated methods for synthesising attacks against

indifferentiability, a powerful simulation-based notion of security

commonly used to reason about symmetric-key constructions. Our

methods are inspired from symbolic cryptography which is popular

to reason about, e.g., cryptographic protocols. For that, we introduce

a core programming language for algebraic distinguishers and study
the class of universal distinguishers, who win the indifferentiability

game against every simulator; then, we show that the universality

of algebraic distinguishers can be reduced to solving systems of

algebraic, deducibility and static-equivalence constraints.

Our approach is implemented in a tool, AutoDiff, which solves

these constraint systems, and applies heuristics to automate the

cryptanalysis (i.e., to search automatically for universal distinguish-

ers). We evaluate the tool with many non-trivial attacks from the lit-

erature on Feistel networks and Even-Mansour blockciphers among

others. Our tool is able to check the validity these attacks, and in

many cases to synthesise themwithout guidance. To our knowledge,

AutoDiff is the first practical tool for indifferentiability attacks.
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• Security and privacy → Logic and verification; Block and
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1 INTRODUCTION
Algebraic cryptanalysis is a general set of techniques for reduc-

ing the (in)security of symmetric cryptographic constructions to

solving systems of equations. However, the size and complexity of

these equations make their manual resolution at best unwieldy. To

address this bottleneck, cryptanalysts have built tools that search

for attacks [22, 23, 36, 37, 43, 55, 63] and this approach has been suc-

cessfully applied to find vulnerabilities against many block ciphers.

However, these tools are focused on indistinguishability-based no-

tions of security, and cannot be used for analysing other standard

notions of security. One such popular notion is indifferentiabil-
ity [58, 62], which was typically regarded as an important criterion

for the NIST selection of SHA-3 [18]. The prime purpose of indif-

ferentiability is to support compositional analysis of cryptographic

constructions. To this end, it is stated as a simulation-based notion

of security, relating a real cryptographic component 𝐶 to another

ideal component 𝑅. Informally, it guarantees that𝐶 can be replaced

by 𝑅 in a larger system for the security analysis of a so-called

single-stage security game. In practice, indifferentiability is defined

through a game between a distinguisher 𝐷 and a real or ideal oracle:
(1) the real oracle system is the actual component 𝐶 built from a

set of smaller ideal components 𝑄 , and

(2) the ideal system is a random function 𝑅 and a simulator 𝑆 that

simulates the small components of 𝑄 by interacting with 𝑅.

The security game consists of the distinguisher attempting to cor-

rectly guess against which of the two systems it plays (see Figure 1).

The classical notion of indifferentiability states that there is a simu-

lator 𝑆 , s.t. any distinguisher 𝐷 can only get a negligible advantage

in this game through a polynomial number of oracle calls.

Figure 1: Indifferentiability security experiment

Indifferentiability is a common target property for symmet-

ric cryptographic constructions, and has been widely studied for

Feistel networks [47], Even-Mansour block ciphers [46], confu-

sion diffusion mechanisms [44], and Lai–Massey constructions.
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Unfortunately, (dis)proving indifferentiability of these construc-

tions is tedious and error-prone, even more so than for the simpler

indistinguishability-based definitions. On the provable security

side for example, Coron et al. [32] proved that the 6-round Feis-

tel network was indifferentiable from a random permutation; but

Holensetein et al. [50] pointed out two years later that the proof was
invalid. Follow-up works attempted to remedy this flaw, resulting in

a proof of indifferentiability for 8-round Feistel networks [40]. Sim-

ilar challenges have been faced for other constructions, including

Iterated Even-Mansour [39, 54]. On the cryptanalysis side, which

is the focus of this paper, one usually considers the stronger notion

of universal attack, which exhibit a distinguisher 𝐷 that can distin-

guish between the real and ideal worlds for any possible simulator 𝑆 .

Proving that a construction admits a universal distinguisher is the-

oretically stronger than showing that it is not indifferentiable, yet

most pen-and-paper attacks indeed exhibit a universal distinguisher.

However, should it be for standard or universal differentiability,

techniques from algebraic cryptanalysis do not appear as a natural

fit: the simulation-based nature of the notion makes it unlikely to

reduce the attack search to solving a simple system of algebraic

equations. One key hurdle is to identify a richer set of constraints

that can accommodate the universal quantification over simulators.

In this paper, we put forward the use of richer constraints bor-

rowed from symbolic cryptography [13, 16, 53]. This approach,

which can be traced back to the seminal work of Dolev and Yao [45],

uses a simplified model where cryptographic primitives are mod-

elled algebraically, by means of equations that idealise their effects:

for instance, encryption is typically modelled by two constructors

for encryption and decryption, and an equation for encryption-

decryption cancellation. The algebraic nature of the symbolic model

fosters automation, as security analyses in this context are thus able

to leverage standard techniques from unification theory such as de-
ducibility or static equivalence as in [13, 15, 26], whose decidability

has been extensively studied [2, 6, 24, 29].

Contributions
This paper presents AutoDiff, the first automated tool for checking

and finding attacks (i.e., universal distinguishers) against the indif-

ferentiability of cryptographic constructions. AutoDiff supports the

validity of many non-trivial attacks from the literature, and also

(re)discovers automatically several of them. For that:

(1) We introduce a syntax for algebraic distinguishers, a restricted

class of distinguishers that encompasses many indifferentiabil-

ity attacks from the literature;

(2) We show that for a candidate distinguisher expressed in our

our syntax, universality can be reduced algorithmically to in-

solvability of a constraint system. They combine in a novel way

standard notions of symbolic constraints, including algebraic

equations but also deducibility constraints and static equivalence.
(3) Relying on a backend solving of our constraint systems, we

develop heuristics searching for violations of indifferentiability

automatically. We implemented a prototype, AutoDiff, and eval-
uated it on frameworks such as Feistel networks, Even-Mansour
ciphers, orMerkle-Damgård constructions. Our results show that

AutoDiff can verify many non-trivial attacks from the literature,

and in many cases retrieve them.

Related Work
Dolev-Yao models. Our work leverages many techniques initially

designed for analysing cryptographic protocols in symbolic models.

These techniques originate from the seminal work of Dolev and

Yao [45] and are primarily characterised by an idealisation of the

attacker’s deducing capabilities, so that they can be described in

purely algebraic terms. This algebraic view allows a direct con-

nection to logic, which is highly beneficial for automation. The

symbolic model has been used extensively for analysing crypto-

graphic protocols, both for proving security and for discovering

logical flaws; for some recent examples, see, e.g., [14, 19, 38, 51].

One common approach is to translate the protocol into a set of

algebraic intruder constraints [15, 26–28, 41, 42], hence reducing
the insecurity problem to the verification of symbolic notions such

as deducibility or static equivalence [2, 24, 29]. We use the same

notion of constraint, and leverage existing work on constraint solv-

ing [2, 6, 15, 28, 29, 33, 41, 42].

Computational soundness. We also uses techniques of compu-

tational soundness, i.e., that relate security in the symbolic and

computational models. This line of work, initiated by Abadi and

Rogaway [3] and further developed in a long series of works, in-

cluding [16, 30, 34, 53], heavily relies on some of the tools used

by our approach. We use in particular the results of [16]. Interest-

ingly for our work, the usual theories of XOR (present in most of

the constructions we analyse) are known to be incompatible with

computational soundness, at least for an unbounded number of

symbolic operations [65]. This justifies in particular our restric-

tion to distinguishers performing a bounded number of operations

(which is a key assumption in our results as we show in Section 6.2

that a minimal unbounded extension of our framework is unsound).

Variations of the approach. Alternatives to computational sound-

ness are symbolic methods for reasoning about computational se-

curity. They are often specialised to a specific problem: padding-

based encryption [9, 35], symmetric encryption [49, 56, 59], pairing-

based, or lattice-based security [11, 12]. These works have very

different goals from ours (indistinguishability proofs vs. indiffer-

entiability attacks), but there is partial overlap in the constraint

solving techniques used in the backend—the closest relationship

being with Meadows [59]. Yet another approach similar to ours is

what has been developed in the generic group model (GGM) and

its variants [21, 57, 60, 64]. They are, in short, idealised models to

reason about lower and upper bounds of group-based algorithms,

such as those to solve discrete logarithm. Typically, some works

based on these models use constraints to automate analyses in

the GGM [4, 5, 10]: as us, they generate constraints that are then

solved by general-purpose tools. However, the notion of constraint

they rely on is simpler than ours, e.g., it does not involve static

equivalence.

2 INDIFFERENTIABILITY FROM RANDOM
2.1 Algorithms
Formalism. Throughout the paper, we refer to the following no-

tion of (randomised) algorithm 𝐴 : 𝑋 → 𝑌 to model program

executions. An algorithm 𝐴 is modelled as a probabilistic transi-

tion system→𝐴 over a chosen set of states S. This includes input
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states of the form input(𝑥) for 𝑥 ∈ 𝑋 , and output states of the

form output(𝑦) for 𝑦 ∈ 𝑌 . We only assume that for all states 𝑠 ∈ S,
the set {𝑠 ′ ∈ S | 𝑠 →𝐴 𝑠 ′} of successors of 𝑠 is finite (and empty

iff 𝑠 is an output state). An execution of 𝐴(𝑥) is then simply a

sequence of transitions from input(𝑥) to some output(𝑦). In the

vein of probabilistic Turing machines, algorithms are randomised
in that the state following 𝑠 in an execution is picked uniformly

at random from all possible successors (independently of previous

execution steps). The algorithm is deterministic if each state has

at most one successor; note in particular that any function 𝐹 can

be interpreted as a trivial deterministic algorithm with transitions

input(𝑥) →𝐹 output(𝐹 (𝑥)). The probability of an execution from

input(𝑥) reaching output(𝑦) is then written

Pr[𝐴(𝑥) = 𝑦] .

To model security games, we also consider algorithms that are

parametrised by the execution of another one. For that we say that

𝐴 has oracle access to a terminating algorithm 𝑅 (which is made

explicit with the notation𝐴𝑅
) if on certain statesQ ⊆ S called query

states, 𝐴 stops its normal execution, runs a probabilistic execution

of some 𝑅(𝑥) instantly, and chooses its next state depending on the

output state of 𝑅—after which the execution of 𝐴𝑅
resumes.

Constructions. We specifically operate over the group𝐺 = {0, 1}𝜂
of bitstrings of length 𝜂 equipped with exclusive or (xor, ⊕). The
integer 𝜂 is called the security parameter, which is a caliber for

probabilistic security properties. A function 𝐹 : 𝐺𝑝 → 𝐺𝑞
is also

called a keyed permutation when 𝑝 ⩾ 𝑞 and there exists a function

𝐹 −1

: 𝐺𝑝 → 𝐺𝑞
, called its inverse, such that for all x ∈ 𝐺𝑞, y ∈ 𝐺𝑝−𝑞

,

𝐹 −1 (𝐹 (x, y), y) = x and 𝐹 (𝐹 −1 (x, y), y) = x .

If 𝑄 is a set of functions, 𝑄∗ ⊆ 𝑄 is the set of keyed permutations

of 𝑄 . A construction 𝐶𝑄
is an algorithm with oracle access to the

functions of 𝑄 , called primitives, and to the inverses 𝐹 −1

, 𝐹 ∈ 𝑄∗. A
primitive is always ideal (or random), i.e., it is formally a distribution
of functions, here the uniform distribution over all functions, or all

keyed permutations, of adequate domain. The effective oracle 𝐹 is

then sampled from this distribution. By abuse of vocabulary, we

will talk about ideal functions as if they were actual functions.

2.2 The Indifferentiability Game
Our formalisation is based on [40]. Indifferentiability expresses the

impossibility to tell apart a construction 𝐶𝑄
and an ideal function

𝑅 with significant probability, using the following key notion:

Definition 2.1 (distinguisher). A distinguisher 𝐷 is an algorithm

that initiates a bounded number 𝑞 ∈ N of queries to a collection of

oracles (and possibly to their inverses for the keyed permutations

among them), and eventually outputs 0 or 1.

In practice, the security experiment for indifferentiability is a

game where a distinguisher is given oracle access to either:

(1) the construction 𝐶𝑄
and the ideal primitives 𝑄 (real world),

(2) or a random function 𝑅 and a simulation of𝑄 (simulated world),
and needs to guess which of the two oracle systems it interacts

with. When it succeeds to do so, 𝐷 is said to win the indifferentia-
bility game. Rephrasing, for indifferentiability to hold, it should be

possible to simulate the behaviour of the ideal primitives 𝑄 from

a random function 𝑅, in a way that no distinguishers call tell a

difference between the real construction and the simulated one.

Definition 2.2 (indifferentiability). Let 𝐶𝑄
be a construction and

𝑅 be an ideal function (keyed permutation if𝐶𝑄
is one). We say that

𝐶𝑄
is indifferentiable if there exist a polynomial 𝑡𝑆 (𝜂, 𝑞), and 𝜀 (𝜂, 𝑞)

negligible in 𝜂 such that, for every 𝑞 ∈ N, there exists a randomised

algorithm 𝑆𝑅 (called a simulator) running in time 𝑡𝑆 (𝜂, 𝑞) such that

for all distinguishers 𝐷 making at most 𝑞 oracle queries,���Pr[𝐷𝐶𝑄 ,𝑄 = 1] − Pr[𝐷𝑅,𝑆𝑅 = 1]
��� ⩽ 𝜀 (𝜂, 𝑞)

where probabilities account for the sampling of ideal functions.

We recall that 𝑓 (𝜂) being negligible means that for any 𝑛 ∈ N,
there exists 𝜂0 such that, for every 𝜂 ⩾ 𝜂0, 𝑓 (𝜂) ⩽ 𝜂−𝑛 . On the

contrary, 𝑓 (𝜂) is overwhelming if 1 − 𝑓 (𝜂) is negligible. Note also
that, in the above definition, the simulator is only tasked to simulate

the oracle calls of 𝐷 to the primitives 𝑄 , whereas the calls to the

main oracle 𝐶𝑄
and its potential inverse (𝐶−1)𝑄 are automatically

simulated by 𝑅 and 𝑅−1

.

In the original definition of indifferentiability, simulators are

stateful programs and may thus hold information from one query

to another. To account for this fact in a lightweight manner, we

assume for simplicity that, on every query, 𝑆 implicitly receives the

list of all past queries made to it.

2.3 Universal Differentiability
Strictly speaking, disproving indifferentiability requires to show

that, for all simulators 𝑆 , there exists a distinguisher 𝐷 telling apart

the real and simulated worlds with significant probability. It is

however more convenient to exhibit one single distinguisher 𝐷
(qualified as universal) that has a non-negligible advantage in the

security game against all possible simulators 𝑆 .

Definition 2.3 (universal distinguisher). A distinguisher 𝐷 is said

to be universal against a construction 𝐶𝑄
if, for all simulators 𝑆

running in polynomial time in the security parameter 𝜂, we have

for some non-negligible function 𝜀 : N→ R:���Pr[𝐷𝐶𝑄 ,𝑄 = 1] − Pr[𝐷𝑅,𝑆𝑅 = 1]
��� ⩾ 𝜀 (𝜂)

Proposition 2.4 (universal differentiability). If there exists
a universal distinguisher 𝐷 against a construction 𝐶𝑄 , then 𝐶𝑄 is
differentiable from a random function.

In theory, this characterisation is a sufficient but not necessary

condition. There might exist constructions that are not indifferen-

tiable from a random function, but that cannot be differentiated

by any fixed algorithm 𝐷 . To the best of our knowledge however,

the existence of such constructions is an open problem. In practice,

the standard approach for disproving indifferentiability therefore

remains to exhibit a universal distinguisher, as evidenced by at-

tacks on various high-profile block ciphers such as 5-round Feistel

networks [31], 4-round iterated Even-Mansour ciphers [39], Merkel-

Damgård or 2-round confusion-diffusion networks [44]. Our goal

is to automate the verification of universality for a class of distin-

guishers encompassing these attacks.
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2.4 Examples of Constructions
The two simplest constructions we can conceive are the following

ones, given a primitive 𝐹 : 𝐺 → 𝐺 :

𝐶1 (𝑥) = 𝐹 (𝑥) 𝐶2 (𝑥) = 𝑥

The construction 𝐶1 is by definition an ideal function: no distin-

guisher can win the security game against the simulator that simu-

lates a query to 𝐹 (𝑥) by a call to𝑅(𝑥). On the contrary,𝐶2 is trivially

differentiable: consider the distinguisher 𝐷 that (1) samples a group

element 𝑥 ∈ 𝐺 uniformly at random; (2) calls the main oracle on

𝑥 , and thus obtains 𝑦 = 𝑥 in the real world and 𝑦 = 𝑅(𝑥) in the

simulated world; and (3) returns 1 iff 𝑥 = 𝑦. Then 𝐷 wins the secu-

rity game with overwhelming probability against any simulator 𝑆 .

Let us now introduce more complex constructions that will serve

as running examples throughout the paper and primary targets of

interest for our prototype analyser.

Feistel networks. A 𝑘-round Feistel network [47] is a symmetric

block cipher 𝐶 : 𝐺2 → 𝐺2
illustrated in Figure 2 and used among

others in standards such as PKCS [17, 48].

Figure 2: 𝑘-round Feistel network

The construction receives the inputs (𝑥0, 𝑥1) and returns the

outputs (𝑥𝑘 , 𝑥𝑘+1) by iterating the following computation:

𝑥𝑖+1 = 𝑥𝑖−1 ⊕ 𝐹𝑖 (𝑥𝑖 ),
using the primitives 𝐹𝑖 : 𝐺 → 𝐺 , 𝑖 ∈ [1, 𝑘]. For instance, for 3

rounds, the first output of 𝐶 is 𝑥3 = 𝑥1 ⊕ 𝐹2 (𝑥0 ⊕ 𝐹1 (𝑥1)).
Feistel networks have the convenient property of being invert-

ible due to the cancellation property of ⊕, and are therefore used to
build invertible pseudorandom permutations from (non-invertible)

pseudorandom primitives. One desired security property is hence

that their structure preserves the randomness of the atomic func-

tions 𝐹𝑖 , which is formalised by the indifferentiability of 𝐶 .

Even-Mansour ciphers. A 𝑘-round (iterated) Even-Mansour ci-

pher [46], a symmetric block cipher 𝐶 : 𝐺2 → 𝐺 (Figure 3). On

inputs (𝑥,𝑦), the construction performs 𝑘 applications of primitives

𝑃𝑖 : 𝐺 → 𝐺 to 𝑥 , each preceded and followed by a mask using a

same key 𝑦. The primitives 𝑃𝑖 are assumed to be invertible.

x …P1 P2 Pk

y

Figure 3: 𝑘-round Iterated Even-Mansour cipher

The overall construction 𝐶 is therefore a keyed permutation.

That is, we can define 𝐶−1

: 𝐺2 → 𝐺 such that for all 𝑥,𝑦 ∈ 𝐺 ,
𝐶 (𝐶−1 (𝑥,𝑦), 𝑦) = 𝑥 𝐶−1 (𝐶 (𝑥,𝑦), 𝑦) = 𝑥

3 ALGEBRAIC DISTINGUISHERS
The distinguishers we consider will be restricted to operations that

can be abstracted by uninterpreted symbols and algebraic equations.

This way, negligible biases in probabilistic events can be filtered out

from analyses, making automation simpler. The resulting formalism

borrows much from the applied pi-calculus [1], a symbolic model

often used in the analysis of cryptographic protocols.

3.1 Symbolic Model of Group Computations
We recall that we focus on constructions on the group 𝐺 = {0, 1}𝜂
of 𝜂-bitstrings. We model them symbolically by a set of atomic data:

A = Cst ⊎ Rnd ⊎ Vars1

Elements of Rnd (random group elements) represent values sampled

by the distinguisher (and therefore cannot be guessed by the simu-

lator with non-negligible probability). On the contrary, elements of

Cst (constant group elements) model fresh values that the simulator

may generate during its simulation. Elements of Vars1
(first-order

variables, or simply variables) are used as placeholders for other

computations. Operations over atomic data are then modelled by

function symbols 𝐹 , that are abstract uninterpreted symbols tagged

with an in-arity 𝑝 > 0 and an out-arity 𝑞 > 0 indicating how many

arguments they take and return. We write 𝐹 : 𝐺𝑝 → 𝐺𝑞
to express

this fact. These symbols are then gathered into so-called signatures:

F = Fun ⊎ Orcl .
Symbols of Fun model the operations such as ⊕ used for building

the construction and distinguishers, whereas symbols ofOrcl, called
oracle symbols, model the various oracles of the security game.

Definition 3.1 (first-order term). Lists of first-order terms t (or
simply “terms” for short) are obtained by applying function symbols

to atomic values or other terms, according to their arities. The

formation of terms is defined through the following inference rules:

𝑥 ∈ A
𝑥 : 𝐺

t1 : 𝐺𝑝 t2 : 𝐺𝑞

t1, t2 : 𝐺𝑝+𝑞
t : 𝐺𝑝 (𝐹 : 𝐺𝑝 → 𝐺𝑞) ∈ F

𝐹 (t) : 𝐺𝑞

Similarly to function symbols, 𝑝 is called the arity of t : 𝐺𝑝
. We

write T (𝑆) for the set of terms t : 𝐺𝑝
, 𝑝 ∈ N, constructable from

the symbols and atomic data of 𝑆 ⊆ F ∪ A. A term that contains

no variables is called a ground term.

First-order terms are classically used in symbolic models to rep-

resent computations [1]. Here they specifically model those of the

distinguisher: for example, if the symbol C : 𝐺 → 𝐺 stands for the

main oracle of the security game, ⊕ : 𝐺2 → 𝐺 for xor (with infix

notation), and 𝑥,𝑦 ∈ Vars1
, the term C(𝑥) ⊕ 𝑦 : 𝐺 models a call to

the main oracle on 𝑥 , summed with 𝑦. The functional properties of

these symbols (e.g., commutativity of xor) are then modelled by a

classical notion of equational theory defined below. First, we call a

substitution 𝜎 a partial mapping from variables to terms of arity 1,

written:

𝜎 = {𝑥1 ↦→ 𝜎 (𝑥1), . . . , 𝑥𝑝 ↦→ 𝜎 (𝑥𝑝 )}
and homomorphically extended to a mapping from terms to terms

(and more generally over any object containing variables). We may

write it 𝜎 = {x ↦→ t} with x = 𝑥1, . . . , 𝑥𝑝 and t = 𝜎 (𝑥1), . . . , 𝜎 (𝑥𝑝 ),
note dom(𝜎) = {x} the domain of 𝜎 , and often use the standard

postfix notation 𝑡𝜎 instead of 𝜎 (𝑡). This permits us to define:
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Definition 3.2 (theory). An equational theory E over a signature

F is a set of pairs 𝑢, 𝑣 ∈ T (Vars1 ∪ F ), 𝑢 and 𝑣 of same arity,

called equations and written 𝑢 =E 𝑣 . The relation =E is closed

by substitution and context, that is, it is extended to the smallest

equivalence relation containing E and verifying the inference rules:

𝑢 =E 𝑣

𝑢𝜎 =E 𝑣𝜎

t1 =E u1 t2 =E u2

t1, t2 =E u1, u2

t =E u

𝐹 (t) =E 𝐹 (u)
In this paper, the pair (F , E) is called a theory.

3.2 Reference Theory
From now on, we operate within what we call the reference theory,
defined in Figure 4. It models the security game for a construction

𝐶𝑄
: 𝐺𝑝in → 𝐺𝑝out

, that is assumed to be definable in the reference

theory, that is, as a function from terms to terms. Intuitively, the

function symbols of the theory (Fun) model xor and projections,

while its oracle symbols (Orcl) represent primitives of𝑄 (interpreted

as function symbols), the main oracle C (i.e., 𝐶𝑄
in the real world

and an ideal function 𝑅 in the simulated world), and their potential

inverses referred to as specific symbols 𝐹 −1

. In particular, we define

Orcl0 = 𝑄 ∪ {C : 𝐺𝑝in → 𝐺𝑝out }

the set of the direct oracles of the security game, and Orcl is ob-
tained in Figure 4 by adding inverse symbols to it. By abuse of

notations, given 𝐸 ⊆ Orcl0, we write 𝐸∗ the set of the symbols of 𝐸

corresponding to keyed permutations.

Fun = {0 : 𝐺, ⊕ : 𝐺2 → 𝐺} ∪ {𝜋𝑖/𝑝 : 𝐺𝑝 → 𝐺 | 0 < 𝑖 ⩽ 𝑝}
Orcl = Orcl0 ∪ {𝐹 −1 | 𝐹 ∈ Orcl∗

0
}

𝑥 ⊕ 0 =E 𝑥 𝑥 ⊕ 𝑥 =E 0 𝑥 ⊕ 𝑦 =E 𝑦 ⊕ 𝑥

(𝑥 ⊕ 𝑦) ⊕ 𝑧 =E 𝑥 ⊕ (𝑦 ⊕ 𝑧)
𝜋𝑖/𝑝 (𝑥1, . . . , 𝑥𝑝 ) =E 𝑥𝑖 for 𝑖, 𝑝 ∈ N∗, 𝑖 ⩽ 𝑝

𝜋
1/𝑞 (𝐹 (x)), . . . , 𝜋𝑞/𝑞 (𝐹 (x)) =E 𝐹 (x) for (𝐹 : 𝐺𝑝 → 𝐺𝑞) ∈ Orcl

𝐹 −1 (𝐹 (x, y), y) =E x for 𝐹 ∈ Orcl∗
0

𝐹 (𝐹 −1 (x, y), y) =E x for 𝐹 ∈ Orcl∗
0

Figure 4: Reference theory of the paper

3.3 Specifying Algebraic Distinguishers
Syntax. We now define a grammar for distinguishers that only

perform computations that can be expressed in the reference theory:

𝐷 ::= 𝐷 + 𝐷 convex combination

𝑃 program

𝑃 ::= x← 𝐹 (t); 𝑃 query

return 𝜑 return

𝜑 ::= 𝑢 =? 𝑣 𝜑 ∧ 𝜑 ¬𝜑 test

where (𝐹 : 𝐺𝑝 → 𝐺𝑞) ∈ Orcl, x is a list of 𝑞 distinct variables,

t, 𝑢, 𝑣 ∈ T (Fun∪Vars1∪Rnd) with t : 𝐺𝑝
and𝑢, 𝑣 are of same arity.

For succinctness we write 𝑢 ≠? 𝑣 instead of the formula ¬(𝑢 =? 𝑣).

Definition 3.3 (distinguisher code). A distinguisher code 𝑐 is an
object derived from the token 𝐷 in the above grammar. We say that

𝑐 is non-branching if it does not contain + operators.

Intuitively, x← 𝐹 (t) is used to query the oracle 𝐹 on some inputs

t. The term tmay contain random group elements (Rnd), modelling

the uniform sampling of some bitstrings. The final return 𝜑 eval-

uates a test over bitstrings as the output of the algorithm (1 if

satisfied, 0 otherwise). Finally, the probabilistic branching operator

𝑐1 + 𝑐2 executes either 𝑐1 or 𝑐2 with probability
1

2
. This introduces

uncertainty on the simulator’s side, which receives queries without

knowing in general which branch is effectively being executed.

The syntax is presented in a theoretically-minimal form to lighten

the framework, but convenient syntax extensions can easily be en-

coded. For instance, branching may be allowed not only at toplevel

but at any point of the code, encoding 𝑞; (𝐷 +𝐷) by (𝑞;𝐷) + (𝑞;𝐷 ′).
Another common mechanism is the use of instructions assert 𝜑 ; 𝑐

that start building the final test of the distinguisher during the code.

Semantics. We now formalise how to interpret a code 𝑐 as an

actual distinguisher, that is, an algorithm 𝐷 = J𝑐K returning values

of {0, 1}. We make explicit which oracles 𝐷 may take by writing

explicitly J𝑐K𝜔 , where 𝜔 is called an oracle system, that is a token

𝜔 ∈ {real, sim(𝑆) | 𝑆 simulator}

indicating in which world the code 𝑐 is being executed. Referring

to Section 2.1, we thus have to define a transition system →𝐷

modelling the execution of the code 𝑐 with oracle system 𝜔 . Its set

of states S will contain the following elements:

input(𝑐) 𝑐 code

output(𝑏) 𝑏 ∈ {0, 1}
(𝑐, 𝜎) 𝑐 code, 𝜎 : Vars1 ∪ Rnd→ 𝐺

In a state (𝑐, 𝜎), the code 𝑐 simply indicates the remaining instruc-

tions to execute. In particular, the query states are those of the form

(x← 𝐹 (t); 𝑐, 𝜎). The (total) mapping 𝜎 models the execution store,
it maps each symbolic atomic data to a bitstring. For convenience,

we overload the notations from substitutions. We will allow our

distinguisher to have access to a family of algorithms implementing

the oracle system 𝜔 , as defined below.

Definition 3.4 (implementation). A family of algorithms O =

{O𝑔}𝑔∈Orcl implements the oracle system 𝜔 when each O𝑔 operates
on tuples of bitstrings accordingly to the arity of 𝑔, and:

(1) if 𝜔 = real then it holds that:

(a) ∀𝐹 ∈ Orcl∗
0
, O𝐹 is a keyed permutation and O−1

𝐹
= O𝐹−1 ;

(b) OC = 𝐶 {O𝐹 |𝐹 ∈𝑄 } ;
(2) if 𝜔 = sim(𝑆), writing 𝑄 ′ = 𝑄 ∪ {𝐹 −1 | 𝐹 ∈ 𝑄∗}, we derive

from 𝑆 a collection of simulators 𝑆𝐹 , respectively answering to

queries to 𝐹 ∈ 𝑄 ′, and it should hold that:

(a) ∀𝐹 ∈ 𝑄 ′, O𝐹 = 𝑆
OC
𝐹

;

(b) if 𝐶𝑄
is a keyed permutation, then OC is a keyed permuta-

tion as well and O−1

C = OC−1 .

Putting everything together, we define in Figure 5 the transition

relation on states that model the executions of distinguisher codes.

The figure uses the following notations:
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• given 𝑛 variables x = 𝑥1, . . . , 𝑥𝑛 and 𝑛 bitstrings t = 𝑡1, . . . , 𝑡𝑛 ,

𝜎 [x ↦→ t] is the store that coincide with 𝜎 on dom(𝜎) ∖ {x} and
that maps each 𝑥𝑖 to 𝑡𝑖 ;

• if 𝑡 ∈ T (Vars1 ∪ Rnd ∪ Fun), 𝑡𝜎 refers to the bitstring obtained

by applying 𝜎 homomorphically to 𝑡 , interpreting the functions

of Fun in the natural way as functions over bitstrings;

• if 𝜑 is formula (as those of the return statements of distinguish-

ers), 𝜑𝜎 ∈ {0, 1} is the result of the evaluation of 𝜑 (1 meaning

“satisfied”), interpreting =?

as bitstring equality.

input(𝑐) → (𝑐, 𝜎) (Init)

(𝑐1 + 𝑐2, 𝜎) → (𝑐1, 𝜎) (Left)

(𝑐1 + 𝑐2, 𝜎) → (𝑐2, 𝜎) (Right)

(x← 𝐹 (t); 𝑐, 𝜎) → (𝑐, 𝜎 [x ↦→ O𝐹 (t𝜎)]) (Query)

(return 𝜑, 𝜎) → output(𝜑𝜎) (Return)

Figure 5: Semantics of the code 𝑐 with oracle access to O

Intuitively, Rule (Init) samples a store, thus modelling the fact

that random group elements are sampled uniformly at random.

Rules (Left) and (Right) simply execute one branch among the

possible two with probability
1

2
. Rule (Query) executes a query by

calling to the oracles initialised consistently by Rule (Init), and

finally Rule (Return) concludes the algorithm by evaluating the

test 𝜑 in the store as expected. All in all we obtain:

Definition 3.5 (code semantics). Given a distinguisher code 𝑐 , we

write J𝑐K for the corresponding distinguisher, i.e., the algorithm

that, with access to a family of oraclesO, is induced by the transition
system of Figure 5. Given 𝑏 ∈ {0, 1} and 𝜔 oracle system, we write:

Pr[J𝑐K𝜔 = 𝑏]

to refer to the probability Pr [J𝑐K = 𝑏] where J𝑐K has oracle access

to a family O implementing 𝜔 sampled uniformly at random from

the (finite) set of all such families. This sampling of O intuitively

corresponds to the sampling of ideal functions in the security game.

Algebraic distinguishers. Now that we have a formal syntax and

semantics for specifying distinguishers, we have characterised the

class of distinguishers we plan to study in this paper.

Definition 3.6 (algebraic). A distinguisher 𝐷 is algebraic if 𝐷 =

J𝑐K for some code 𝑐 and Pr [J𝑐Kreal = 1] is overwhelming.

Proposition 3.7 (algebraic differentiability). If 𝐷 = J𝑐K is
an algebraic distinguisher, the following points are equivalent:

(i) 𝐷 is universal
(ii) for all simulators 𝑆 running in polynomial time in the security

parameter 𝜂, Pr [J𝑐Ksim(𝑆) = 1] is non-overwhelming

Example 3.8. Let us go back to the running example of Feistel

networks we introduced in Section 2.4. Consider the case where 𝐶

is a 3-round network. Figure 6 presents two distinguisher’s codes

against𝐶 , Daisy and David. The only difference between the two is

the order of their queries.

Daisy:

1 𝑥1 ← 𝐹1 (𝑟1)
2 𝑥2 ← 𝐹2 (𝑟2)
3 𝑧, 𝑧′ ← C(𝑥1⊕𝑟2, 𝑟1)
4 return 𝑧 =? 𝑟1 ⊕ 𝑥2

David:

1 𝑥2 ← 𝐹2 (𝑟2)
2 𝑥1 ← 𝐹1 (𝑟1)
3 𝑧, 𝑧′ ← C(𝑥1⊕𝑟2, 𝑟1)
4 return 𝑧 =? 𝑟1 ⊕ 𝑥2

with 𝑟1, 𝑟2 ∈ Rnd

Figure 6: Two distinguishers for 3-round Feistel

First, we observe that the final test 𝜑 = (𝑧 =? 𝑟1 ⊕ 𝑥2) holds
in the real world with probability 1 since, by definition of Feistel

networks, if we write 𝑥𝑖 = 𝐹𝑖 (𝑟𝑖 ) and (𝑧, 𝑧′) = 𝐶𝑄 (𝑥1 ⊕ 𝑟2, 𝑟1):
𝑧 = 𝑟1 ⊕ 𝐹2 (𝑥1 ⊕ 𝑟2 ⊕ 𝐹1 (𝑟1))
= 𝑟1 ⊕ 𝐹2 (𝑟2)
= 𝑟1 ⊕ 𝑥2 .

In particular, both Daisy and David are algebraic. However, only the

latter is universal: using the characterisation of Proposition 3.7, it

means that there exists a simulator, Susan, that can answer Daisy’s

queries in a way that 𝜑 holds. Rephrasing, Susan has to compute,

with access to a random permutation 𝑅 : 𝐺2 → 𝐺2
, two bitstrings

𝑥1 and 𝑥2 that verify the relation

𝜋
1/2 (𝑅(𝑥1 ⊕ 𝑟2, 𝑟1)) = 𝑟1 ⊕ 𝑥2 (★)

where 𝑟1, 𝑟2 are two values sampled uniformly at random by Daisy

and David. In particular, Susan has a negligible probability of guess-

ing 𝑟1, 𝑟2, but obtains their values through queries. The only differ-

ence between Daisy and David is then what queries have effectively

been sent to Susan at the time she has to compute 𝑥1 and 𝑥2. For

example, when interacting with Daisy, Susan has already received

𝑟1 (argument of the first query) and 𝑟2 (argument of the second

query) at the time she has to compute 𝑥2. On the contrary, she

only received 𝑟2 when playing against David. It is then sufficient

to observe that, intuitively, it is not possible to compute a value

𝑥2 that satisfies relation (★) without knowing the values of both

𝑟1 and 𝑟2: this explains why Susan can win against Daisy but not

David. The next section formalises this intuition.

4 SYMBOLIC ANALYSIS OF UNIVERSALITY
We now characterise simulator’s constraints, thus formalising the

concepts outlined in Example 3.8. This is inspired from standard

notions in symbolic frameworks [15, 26, 27, 42].

4.1 Constraint Systems
First-order terms were used to model the distinguisher’s compu-

tations; we introduce now a refined notion of second-order terms,

expressing the specific restrictions of the simulator (such as not

being able to guess random group elements sampled by the distin-

guisher). For that we first define frames, modelling the information

available to the simulator as a finite set of entries.

Definition 4.1 (frame). A frame is a substitution of the form

Φ = {ax1 ↦→ t1, . . . , ax𝑝 ↦→ t𝑝 }
where the domain of Φ consists of special variables from a dedicated

set Axioms = {ax𝑖 }𝑖∈N of so-called axioms, and the t𝑖 ’s are terms.
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As intuited above, frames model the simulator’s knowledge. Con-

sider for example a distinguisher sampling a bitstring 𝑟 and sending

the query 𝑥 ← 𝐹 (𝑟 ) to the simulator, which therefore receives the

value of 𝑟 . This is modelled by an entry ax𝑖 ↦→ (𝐹, 𝑟 ) recorded in

a frame, for some 𝐹 ∈ Cst identifying the primitive used. Thus,

although the simulator cannot guess the value of 𝑟 a priori, it will
be able to access it by reference, using the computation 𝜋

2/2 (ax𝑖 ).
More generally, the simulator’s computations are modelled by:

Definition 4.2 (second-order terms). If we consider the set Priv =

𝑄 ∪ {𝐹 −1 | 𝐹 ∈ 𝑄∗} ∪ Rnd, a second-order term 𝜉 is a term of

T ((F ∪ A ∪ Axioms) ∖ Priv) .

We also consider a set of so-called second order variables Vars2 =

{𝑋,𝑌, 𝑍, . . .}, where each 𝑋 ∈ Vars2
has amultiplicity 𝑖 ∈ N, which

is sometimes made explicit by writing 𝑋 : 𝑖 .

A second-order variable 𝑋 : 𝑖 is thus a placeholder for a second-

order term—that is, a simulator’s computation—that may only use

the first 𝑖 values sent by the distinguisher. Consistently, we call

a second-order substitution Σ a mapping from second-order vari-

ables to second-order terms in a way that respects multiplicities,

that is, for all (𝑋 : 𝑖) ∈ dom(Σ), 𝑋Σ only contains axioms from

{ax1, . . . , ax𝑖 }. Using all of this, we can finally define constraint sys-
tems, that gather a frame (modelling the aggregated knowledge of

the simulator), deducibility constraints (expressing the simulator’s

ability to compute the answers it gives to queries), and a formula 𝜑

(indicating the relations that the simulated terms should verify).

Definition 4.3 (constraint system). A constraint system is a tuple

Γ = (Φ,D, 𝜑), where Φ is a frame, 𝜑 is a formula (as those used in

the return instructions of distinguisher codes), and D is a set of

so-called deducibility constraints 𝑋 ⊢? x (𝑋 ∈ Vars2
, x ∈ T (Vars1)).

Definition 4.4 (solution). A solution Σ of a constraint system

(Φ,D, 𝜑) is a second-order substitution such that there exists a

substitution 𝜎 (called a first-order solution of Σ) such that:

(1) Σ computes 𝜎 : ∀(𝑋 ⊢? x) ∈ D, 𝑋ΣΦ =E x𝜎
(2) the formula is satisfied: 𝜑𝜎 holds when interpreting =?

as =E

Example 4.5. Consider again our running example, and in partic-

ular, the distinguisher Daisy and David introduced in Example 3.8.

The task of a simulator playing against them is to answer to the

two queries in a way that the final test 𝜑 holds:

𝜋
1/2 (C(𝑥1 ⊕ 𝑟2, 𝑟1)) =? 𝑟1 ⊕ 𝑥2 (𝜑)

This is intuitively expressed by the two constraint systems ΓDaisy =

(Φ,D, 𝜑) and ΓDavid = (Φ′,D′, 𝜑), with 𝐹 ∈ Cst and:

Φ = {ax1 ↦→ (𝐹, 𝑟1), ax2 ↦→ (𝐹, 𝑟2)} D = {𝑋 : 1 ⊢? 𝑥1, 𝑌 : 2 ⊢? 𝑥2}
Φ′ = {ax1 ↦→ (𝐹, 𝑟2), ax2 ↦→ (𝐹, 𝑟1)} D′ = {𝑋 : 1 ⊢? 𝑥2, 𝑌 : 2 ⊢? 𝑥1}

The system ΓDavid has no solutions: computing a suitable value of

𝑥2 requires to have access to the values of both 𝑥1 and 𝑥2, whereas

ΓDavid requires to compute 𝑥2 only from 𝑟2. This reflects the fact

that David is universal. On the contrary, ΓDaisy has the following
solution, thus describing how a simulator can win against Daisy,

given an arbitrary constant 𝑐 ∈ Cst:

Σ = {𝑋 ↦→ 𝑐, 𝑌 ↦→ 𝜋
2/2 (ax1) ⊕ 𝜋1/2 (C(𝑐 ⊕ 𝜋2/2 (ax2), 𝜋2/2 (ax1)))}

4.2 Consistent Solutions
So far we defined a notion of constraint systemmodelling the task of

the simulator against a given distinguisher. But against a branching

distinguisher 𝐷 = 𝐷1 + · · · +𝐷𝑛 , the simulator has to win against all
branches 𝐷𝑖 ; that is, 𝐷 is universal iff the constraint systems that

we will associate to each 𝐷𝑖 have no solutions. However, we also

have to account for the simulator’s uncertainty about the executed

branch. Indeed, consider for example, for 𝑟, 𝑠 ∈ Rnd:

𝐷 = 𝑥 ← 𝐹 (𝑟 ); 𝑦 ← 𝐹 (𝑠); 𝑃
𝐷 ′ = 𝑥 ← 𝐹 (𝑠); 𝑦 ← 𝐹 (𝑟 ⊕ 𝑠); 𝑃 ′

From the point of view of the simulator, the first two queries of 𝐷

and𝐷 ′ both appear as 𝐹 -evaluations on two random group elements.

When playing against𝐷+𝐷 ′, the simulator hence cannot infer from

them, with significant probability, whether it is interacting with

the branch 𝐷 or 𝐷 ′. It will in particular have to answer identically

when interacting with either of them. Exploits of this mechanism

can be found, e.g., in the attack on 4-round Even-Mansour ciphers

from [39]. We formalise this notion of branch indistinguishability

by the classical notion of static equivalence [2].

Definition 4.6 (static equivalence). Let Φ and Ψ be two frames.

We say that they are statically equivalent, written Φ ∼ Ψ, if

(1) dom(Φ) = dom(Ψ)
(2) for all ax𝑖 ∈ dom(Φ), if ax𝑖Φ : 𝐺𝑝

then ax𝑖Ψ : 𝐺𝑝

(3) for all second order terms 𝜉, 𝜁 , we have 𝜉Φ =E 𝜁Φ iff 𝜉Ψ =E 𝜁Ψ

Example 4.7. In the distinguishers 𝐷 and 𝐷 ′ described above, the
simulator cannot distinguish between the first two queries of the

two branches, which is modelled by the static equivalence of

Φ𝐷 = {ax1 ↦→ (𝐹, 𝑟 ), ax2 ↦→ (𝐹, 𝑠)}
Φ𝐷′ = {ax1 ↦→ (𝐹, 𝑟 ), ax2 ↦→ (𝐹, 𝑟 ⊕ 𝑠)}

where 𝐹 ∈ Cst is a token modelling that a query to the function 𝐹

has been made. If we consider, instead, a distinguisher 𝐷0 whose

first two queries are 𝐹 (𝑟 ) and 𝑃 (𝑠) for some other primitive 𝑃 :

𝐺 → 𝐺 , it would corresponds to the frame:

Φ𝐷0
= {ax1 ↦→ (𝐹, 𝑟 ), ax2 ↦→ (𝑃, 𝑠)}

This frame is not statically equivalent to Φ𝐷 nor Φ𝐷′ . Indeed, if

we take 𝜉 = 𝜋
1/2 (ax2) and 𝜁 = 𝐹 in the definition, the test “𝜉 = 𝜁 ”

holds in Φ𝐷 and Φ𝐷′ but not in Φ𝐷0
. This models the fact that, after

receiving two queries from 𝐷 + 𝐷 ′ + 𝐷0, a simulator can know

whether it is playing against 𝐷 + 𝐷 ′ or 𝐷0. Consider then that the

third queries of 𝐷 and 𝐷 ′ are, respectively, 𝐹 (𝑡) and 𝐹 (𝑠) for some

fresh random group element 𝑡 . This leads to the extended frames:

Φ+𝐷 = Φ𝐷 ∪ {ax3 ↦→ (𝐹, 𝑡)}
Φ+𝐷′ = Φ𝐷′ ∪ {ax3 ↦→ (𝐹, 𝑠)}

which are not statically equivalent any more. Indeed, the test

𝜋
2/2 (ax1) = 𝜋

2/2 (ax2) ⊕ 𝜋2/2 (ax3)

holds in Φ+
𝐷′ but not in Φ

+
𝐷
. This formalises the fact that a simulator

having received its third query from 𝐷 + 𝐷 ′ can use this equality

test to infer whether it is playing against 𝐷 or 𝐷 ′.
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To reflect this in the model, we finally introduce an original no-

tion of solution consistency: it formalises this idea that indistinguish-

able branch prefixes should be treated identically by simulators.

Definition 4.8 (consistency). Let Γ1, . . . , Γ𝑛 be constraint systems,

with Γ𝑖 = (Φ𝑖 ,D𝑖 , 𝜑𝑖 ) and Σ a common solution to all of them with

respective first-order solutions 𝜎𝑖 . In the following we write Φ[ℓ]
the frameΦ restricted to its first ℓ axioms.We say that Σ is consistent
if, for all 𝑖, 𝑗 ∈ [1, 𝑛], and for all 𝑋 : ℓ ∈ D𝑖 , 𝑌 : ℓ ∈ D𝑗 ,

Φ𝑖 [ℓ]𝜎𝑖 ∼ Φ𝑗 [ℓ]𝜎 𝑗 ⇒ 𝑋Σ = 𝑌Σ .

4.3 Main Result
We have gathered all ingredients to formalise our main theorem.

As in Example 4.7, we associate a constant 𝐹 to each oracle symbol

𝐹 ∈ Orcl, so that we can store in frames which oracle calls have

been performed. Given a non-branching distinguisher code 𝑐 ,

Γ(𝑐) = Transl(∅, ∅, 𝑐)
will refer to the translation of 𝑐 into a constraint system, where:

Transl(Φ,D, return 𝜑) = (Φ,D, 𝜑)
Transl(Φ,D, 𝑥1, . . . , 𝑥𝑞 ← 𝐹 (t); 𝑐) = Transl(Φ,D, 𝑐𝜎)

if 𝐹 ∈ Orcl ∖𝑄 , and 𝜎 = {𝑥𝑖 ↦→ 𝜋𝑖/𝑞 (𝐹 (t)) }
𝑞

𝑖=1

Transl(Φ,D, x← 𝐹 (t); 𝑐) = Transl(Φ′,D ∪ {𝑋 ⊢? x}, 𝑐)
if 𝐹 ∈ 𝑄 , Φ′ = Φ ∪ {ax|dom(Φ) |+1 ↦→ 𝐹, t}, and 𝑋 : |dom(Φ′) | fresh

We assumed for simplicity that variables are adequately alpha-

renamed so that variables are only bound once by queries. Under

this assumption, our main result is stated as follows:

Main theorem. Let𝐷 = J𝑐1+· · ·+𝑐𝑛K be an algebraic distinguisher
for some non-branching distinguisher codes 𝑐𝑖 . Then the following
points are equivalent:

(i) 𝐷 is universal
(ii) the constraint systems Γ(𝑐1), . . . , Γ(𝑐𝑛) have no common, con-

sistent solutions Σ

We provide a formal proof of this result in the appendix, but give

below an outline of the arguments we use.

Step 1: Reducing the class of simulators. The first step of our

appendix proof is to reduce the problem to the study of simulators

that are deterministic and perform a bounded number of oracle

queries. This is a standard reduction relying on the fact that if

a probabilistic simulator 𝑆 wins with overwhelming probability

against a distinguisher 𝐷 , then in particular at least one execution

of 𝑆 wins against 𝐷 with higher probability.

Step 2: Soundness of the reference theory. We show that if two

ground terms are equal (resp. different) in the equational theory,

then their interpretation as bitstrings are equal (resp. different) with

overwhelming probability. Similarly, we show that if two frames

are statically equivalent then they induce indistinguishable distri-

butions. We obtain this convenient correspondence between the

symbolic and computational frameworks by using characterisa-

tions of computational soundness found in [16]. This justifies among

other things the implication (i)⇒ (ii) of the main theorem. Specifi-

cally, the computational indistinguishability of statically equivalent

frames justifies the consistency requirement of the theorem.

Step 3: Completeness. To establish the other implication (ii)⇒(i),
we have to show that if a constraint system Γ has no solutions,

then no simulators can satisfy its constraints with overwhelming

probability. However, impossibility results seem to suggest the

contrary [65]: one typical problem is the blowup of the number

of collisions when xoring increasingly many random group ele-

ments. These collisions are not captured by symbolic models, and

become overwhelmingly probable when performing a number of

xors that is proportional to the security parameter 𝜂. Our proof

therefore amounts to combinatorial arguments relying on the fact

that our grammar only allows to specify distinguishers that perform

a constant number of operations. We show that this restriction is

necessary in Appendix 6.2, i.e., we construct an unsound example

in an extension of our syntax with parametric loops.

4.4 Constraint Solving
Themain theorem reduces the decision of universality to a combina-

tion of symbolic notions (constraint systems and static equivalence):

the natural next step is to search for decidability results for them.

They are indeed standard, at least in the context of security proto-

cols, and have received in-depth academic scrutiny.

Constraint satisfiability. Constraint systems have been studied

in [15, 25–28, 41, 42]. However, in (Φ,D, 𝜑), our generic grammar

for 𝜑 is very permissive compared to the related work that typically

only allows for conjunctions of (dis)equations; our prototype imple-

mentation therefore operates in a more restricted setting fitting the

decidability results from the literature. It is known for example that

the satisfiability problem (“has one constraint system a solution?”)

is decidable for subterm convergent theories [15] (a class of theories
including our equational theory for inverse cancellation) and group
theories [41, 42] (which is more general than our theory of XOR).

There then exists some combination results to obtain decidability

in the union of the two disjoint theories [28], under some technical

assumptions. However, the problem we study in the context of

branching distinguishers (common solutions to several constraint

systems) is less standard. In many cases though, the simulator con-

straints we obtain are simple enough to reduce the problem to a

single-constraint setting (our prototype only answers when it man-

ages to do so). Still, for future perspectives, one may note that our

non-standard problem can be encoded as an equivalence in some

cases. For example (Φ1,D, 𝜑1) and (Φ2,D, 𝜑2) have no common

solutions iff (Φ1,D, 𝜑1) and (Φ2,D,¬𝜑2) have the same set of so-

lutions. This equivalence of constraint systems has typically been

studied in the context of subterm convergent [15, 25, 27] and group

theories [41], although we are not aware of combination results

unlike in the case of satisfiability.

Static equivalence. The decidability of static equivalence has also
been extensively studied [2, 6, 24, 29, 33]. As in the case of con-

straint systems, the problem is decidable for subterm-convergent

theories [2, 29] (and is even NP-complete [27]), for XOR [33], and

combination results allow to obtain decidability for the union of

disjoint theories [6, 33]. It is however important to remark that

the cited references study the problem of static equivalence for

ground frames (in our context, this corresponds to the case where

the responses of the simulator are never injected in subsequent
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(a) 2-round Lai-Massey construction (b) 2-round Feistel sandwich of permutations

(c) 2-round unbalanced Feistel injection

(d) 2-round Confusion-Diffusion network

(e) Single-Permutation Davies-Meyer construction

Figure 7: Schematic description of some constructions on which we evaluate our prototype

distinguisher queries). A typical example where this is insufficient

is the universal attack on 4-round Even-Mansour ciphers of [39],

involving a complex consistency argument that we were therefore

not able to handle with our prototype (see Section 5). One may

again note that, as in the case of satisfiability, the question of static

equivalence with variables reduces to classical notions of process

equivalence that are for example studied in [15, 25, 27].

In practice. All in all, our main theorem reduces universality to

symbolic notions that are studied in the literature, althought not

always under the exact same assumptions. However, the profusion

of results still allowed us, with limited design effort, to cover many

examples with our prototype AutoDiff by reducing the problems to

settings where decidability is known. Our prototype proceeds this

way, and issues a warning when it strays away from the cases where

its correctness is established. We leave to future work the design of

a complete decision procedure for our notion of constraint solving

to obtain the strict decidability of distinguisher’s universality.

5 PROTOTYPE AND AUTOMATED ATTACKS
Based on the presented approach, we implement AutoDiff, an auto-

mated tool for indifferentiability attacks with two modes:

• verification: on input of a candidate distinguisher code 𝑐 , AutoDiff
applies our main theorem to check whether J𝑐K is universal.

• synthesis: AutoDiff attempts to generate a candidate universal

distinguisher that is then tested as in verification mode. This is a

heuristics: it does not guarantee that, if 𝐶 is universally differen-

tiable, a universal distinguisher will effectively be found.

We stress again that the verification of fixed attack codes (Ver-

ification Mode) is non-trivial, due to the universal quantification

over all simulators inherent to the definition of indifferentiability.

In both modes, the users specifies the construction 𝐶 in the refer-

ence theory; the inverse 𝐶−1

should also be specified in case 𝐶 is

invertible, but the tool checks for safety that they are effectively

inverses one from each other by solving a unification problem.

We evaluate the verification mode by formalising and corrobo-

rating existing indifferentiability attacks from the literature, while

the synthesis mode is tasked to rediscover indifferentiability attacks

without guidance. The benchmarks include constructions presented

previously in our paper (Feistel networks, Iterated Even-Mansour

ciphers) and some others presented in this section, among others

in Figures 7a to 7e. All the experiments were executed on an 8-core

machine with 1.80GHz Intel Core i7-10510U CPU and 16GB of RAM.

Our tool is open-source and it is available here:

https://github.com/miguel-ambrona/autodiff

5.1 Verifying Attacks
We verify existing attacks from the literature as well as negative

examples (invalid attacks) in Table 1. The approach is compatible

with attacks under weaker security notions, e.g., the IND-CCA attack

on 3-round Feistel [7] or the IND-CPA attack on palindromic Feistel

networks (that are Feistel networks where the round functions

𝐹1, . . . , 𝐹𝑘 form a palindrome, i.e., 𝐹1 = 𝐹𝑘 , 𝐹2 = 𝐹𝑘−1
, and so on). It

is known that these networks suffer from many vulnerabilities, in

particular using the following (universal) distinguisher code 𝐷Fpal ,

with 𝑟0, 𝑟1 ∈ Rnd two distinct random group elements:

1 𝑥0, 𝑥1 ← C(𝑟0, 𝑟1);
2 𝑦1, 𝑦0 ← C(𝑥1, 𝑥0);
3 return 𝑟0 =? 𝑦0 ∧ 𝑟1 =? 𝑦1

We note that the analysis of the attack on 4-round IEM [39], our

tool threw a warning stating that the underlying static equivalence

problem contains variables and, therefore, is out of the scope where

our procedure is sound (as mentioned in Section 4.4).

5.2 Synthesising Attacks
We now present two fully automated heuristics that only take the

construction as an input to derive a universal distinguisher against

it. The naive approach would be to try all distinguisher codes by

increasing size and leverage the verification mode to discard invalid
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Table 1: Performances of AutoDiff (Verification Mode)

Attack type Construction #Rounds Attack reference Result

IND-CPA Palindromic Feistel network (PFN) ⩽ 10 Distinguisher 𝐷Fpal ✓ < 1 ms

IND-CCA

Feistel Network (FN)

3 Barbosa and Farshim [7, Section 7] ✓ < 1 ms

I
n
d
i
ff
e
r
e
n
t
i
a
b
i
l
i
t
y

3 Figure 6 (Daisy) E < 1 ms

3 Figure 6 (David) ✓ < 1 ms

5 Coron et al. [31, Section 2] ✓ 8 ms

6 Greedy attack E 11 ms

Iterated Even-Mansour (IEM)

3 Lampe and Seurin [54, Section 3.2] ✓ 6 ms

4 Dai et al. [39, Section 3] ✗ 165 s

Unbalanced Feistel injection 2 Barbosa and Farshim [8, Figure 8] ✓ < 1 ms

Merkle-Damgård — Kelsey and Kohno [52] ✓ < 1 ms

Confusion-Diffusion Network (CDN) 2 Dodis et al. [44, Section 3] ✓ 2 ms

✓ Universality proved E Universality disproved ✗ Unable to conclude

attacks—this is however intractable in practice. Instead, we devel-

oped two generic heuristics that exploit the internal structure of the

construction𝐶 to synthesise more promising candidate distinguish-

ers. Intuitively, they exploit the fact that the definition of𝐶 has some

structure—at least more than an ideal function—and therefore veri-

fies non-trivial identities. They propose two different approaches

for deriving such relations, and then synthesise a distinguisher

accordingly. We give more details below, using the same notations

as in the reference theory, for a construction 𝐶𝑄
: 𝐺𝑝in → 𝐺𝑝out

.

Heuristic 1: Relations first. This heuristic tries to find a pair of

binary relations 𝜑1, 𝜑2 such that, in the real world, inputs x1𝜑1x2

related by 𝜑1 get mapped into outputs 𝐶 (x1)𝜑2𝐶 (x2) related by

𝜑2, expecting that it will be hard for the simulator to replicate this

behaviour using only the ideal function 𝑅. For that we first consider

sequences of variables (x𝑖 : 𝐺𝑝in , y𝑖 : 𝐺𝑝out ) where 𝑖 ∈ {1, . . . , ℓ}
for some ℓ ∈ N. Intuitively, each y𝑖 represents the output of 𝐶

for the input x𝑖 . The heuristic then generates a system of equa-

tions as follows. It generates two arbitrary terms 𝜑1 (x1, . . . , xℓ ) and
𝜑2 (y1, . . . , yℓ ). For each pair of such terms, our algorithm considers:

𝜑1 (x1, . . . , xℓ ) =?

0 ∧ 𝜑2 (y1, . . . , yℓ ) =?

0 ∧∧ℓ
𝑖=1

y𝑖 =? 𝐶 (x𝑖 )
with, in addition, some extra disequality constraints to guarantee

that 𝜑1 or 𝜑2 would not be zero in the simulated world.

The described system is then solved using unification modulo

theory, that is, we instantiate the variables of the system by ground

terms of T (F ∪ Rnd) in a way the constraints are satisfied. This

can be used to build a distinguisher, that performs the necessary

oracle calls to compute the instantiated terms. As several (partial)

orders of queries may be possible, we found it relevant to try out

the codes corresponding to each possible permutations; we have

however not observed in practice significant blow-ups, since there

are still some partial dependencies in the order that often reduce

the possibilities. Finally, the distinguisher returns 𝜑2 as its final test.

The heuristics then submits the distinguisher to verification; in case

of failure, it tries the procedure again with other terms 𝜑1 and 𝜑2,

until all terms of a given size 𝑠 have been tried (𝑠 = 7 in Table 2).

Heuristic 2: Expressions first. This heuristic tries, instead, to find
a linear combination of expressions that is symbolically equal to 0

in the real world, but in a non-trivial manner so that it is hard for

the simulator to replicate this behaviour. For some number arbitrary

Table 2: Performances of AutoDiff (Synthesis Mode)

Construction #Rounds Attack type

Heuristics

#1 #2

FN

2 IND-CPA ✓ < 1 s ✓ < 1 s

3 IND-CCA ✓ < 1 s ✓ < 1 s

4

Indiff.

✓ 3 s �
5 ✓ 53 s �
6 ✗ 73 s �

PFN

2 IND-CPA ✓ < 1 s ✓ < 1 s

3

IND-CCA

✓ < 1 s ✓ < 1 s

4 ✓ 2 s ✓ < 1 s

5 ✓ 67 s ✓ < 1 s

6 ✗ 75 s ✓ < 1 s

1 IND-CPA ✗ < 1 s ✓ < 1 s

IEM 2

Indiff.

✗ < 1 s ✓ 50 s

3 ✗ 1 s �

LM (Fig.7a)

1

Indiff.

✓ < 1 s ✓ < 1 s

2 ✓ 21 s �

FPS (Fig.7b) 2

Indiff.

✓ 2 s �
UFI (Fig.7c) 2 ✗ < 1 s ✓ < 1 s

CDN (Fig.7d) 2 ✓ < 1 s ✓ 10 s

DMC (Fig.7e) — ✗ < 1 s ✓ 16 s

✓ Attack found ✗ No attack found � Timeout (>100 seconds)

parameters 𝑑 (the results of Table 2 are for 𝑑 = 5), it generates all

terms of T (Orcl ∪ Rnd) of size 𝑑 or less, up to bijective renaming

of random group elements. It then starts testing ⊕-combinations of

some of these terms, until finding a combination 𝑒 that is non-null

in general, but null after replacing each occurrence of C(t) by the

real-world definition 𝐶 (t). Intuitively, answering queries in a way

that 𝑒 evaluates to 0 in the simulated world is expectedly hard. As in

the first heuristics, distinguishers are then derived from 𝑒 bymaking

the oracle queries necessary to compute it, followed by return 𝑒 =?

0.

The process keeps going until a universal distinguisher is found or

all possible linear combinations have been exhausted.

Results. Our results on attack synthesis are gathered in Table 2.

An attack that does not require to invoke the round functions is

classified as IND-CCA, and as IND-CPA if it only uses the main oracle
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and not its inverse. We point out that, as the above description

suggests, the heuristics are defined with a general purpose and are

not specifically tailored to our set of benchmarks. Also observe

that our heuristics complement each other well in that an attack is

found for most of the case studies by at least one of them. Heuristic

1 remarkably synthesises a universal attack against 5-round Feistel

network fully automatically. On the other hand, none of our heuris-

tics could attack the iterated Even-Mansour construction with more

than 2 rounds. We expect that improving our heuristics by making

use of branching may lead to covering these missing cases.

6 DISCUSSION AND EXTENSIONS
We discuss here some side results and related research directions,

as well as technical limits and improvements of our contributions.

6.1 Collision Finding
We also experimented our approach in other domains of cryptogra-

phy, for instance, finding collisions to hash functions. We reduce

this problem to a similar (yet much more elementary) notion of

constraint solving that can be analysed by a fragment of AutoDiff
(or most other general-purpose symbolic tools). As an illustrative

example, consider the 64 basic ways to construct a hash function

𝐻 : {0, 1}∗ → {0, 1}𝜂 from a block cipher 𝐸 : {0, 1}𝜂 × {0, 1}𝜂 →
{0, 1}𝜂 , the PGV functions, proposed by Preneel et al. [61]. These

were classified, according to different levels of security, into several

groups, which were later refined [20], one of the relevant studied

properties being collision resistance. It was concluded that only 12

of them satisfied strong notions of security.

We express collisions for these hash function candidates in a

natural way, i.e., as equality constraints. In these terms, collision

resistance therefore rephrases to unification in the reference theory,

that is, the question of finding, given two terms 𝑢, 𝑣 , a substitution

𝜎 such that 𝑢𝜎 =E 𝑣𝜎 , if any. We could then leverage the constraint

solving algorithms developed in AutoDiff; this resulted in AutoDiff
automatically identifying the same set of 12 distinguished functions.

6.2 Assumption of Boundedness
Algebraic distinguishers have two main restrictions:

(1) they only perform operations from the reference theory, and

(2) the number of operations they perform is fixed, i.e., it does not

increase with the security parameter 𝜂.

The first restriction is the reason we are able to carry out a sym-

bolic analysis at all. One could however wonder whether one could

get rid of the second one, for example, by allowing distinguisher

codes to perform loops of length 𝜂. We can actually show that this

assumption is necessary; by that we mean that there exists a distin-

guisher 𝐷 , performing a number of operations proportional to 𝜂,

against a construction𝐶 that will be considered as universal by our

main theorem while there exists a simulator 𝑆 winning against 𝐷 .

This relies on the following simple observation, recalling similar

impossibility results in security-protocol analysis [65]:

Proposition 6.1. Let 𝐸 be a set of 𝜂 + 1 pairwise distinct 𝜂-
bitstrings. Then there exists a non-empty subset 𝑃 ⊆ 𝐸, efficiently
computable from 𝐸, such that

∑
𝑥 ∈𝑃 𝑥 = 0 (where

∑
means xoring).

Proof. It suffices to observe that there exists 2
𝜂+1

subsets of 𝐸

but only 2
𝜂
different bitstrings; by the pigeonhole principle, there

needs to exist 𝑃1, 𝑃2 ⊆ 𝐸 distinct such that

∑
𝑥 ∈𝑃1

𝑥 =
∑
𝑥 ∈𝑃2

𝑥 .

By the self-cancellation property of xor, we therefore obtain the

expected conclusion by taking the symmetric difference 𝑃 = 𝑃1Δ𝑃2.

The set 𝑃 can then easily be computed from 𝐸 by Gaussian elimina-

tion, seeing 𝐺 as the vector space GF(2)𝜂 . □

This shows that our symbolic model, that does not capture any

algebraic relations between random group elements, is unsound if

there are 𝜂 + 1 of them. In the bounded case, our proof of the main

theorem precisely relies on the fact that the probability that a non-

empty subset 𝑃 ⊆ 𝐸 of null sum exists is negligible if 𝐸 contains

a bounded number of uniformly sampled bitstrings (rather than

𝜂 + 1). But let us construct a concrete counterexample, given the

construction 𝐶 (𝑥) = 𝑥 and a primitive 𝐹 : 𝐺 → 𝐺 . Consider then

the following (unbounded) distinguisher code:

1 𝑥0 ← 𝐹 (𝑟0); . . . ;𝑥𝜂 ← 𝐹 (𝑟𝜂 );
2 𝑥 ← C(𝑟 );
3 return (𝑥0, . . . , 𝑥𝜂 ) ≠? (0, . . . , 0) ∧ (𝑥 = 𝑟 ∨ 𝜑)

with random group elements 𝑟, 𝑟0, . . . , 𝑟𝜂 , and where the formula

𝜑 =
∧𝜂

𝑖=0
(𝑥𝑖 =?

0 ∨ 𝑥𝑖 =? 𝑟𝑖 ) ∧
∑𝜂

𝑖=0
𝑥𝑖 =

?

0

models that the set {𝑥0, . . . , 𝑥𝜂 } ∖ {0} is a subset of {𝑟0, . . . , 𝑟𝜂 }
of null sum. Intuitively, the distinguisher sends 𝜂 + 1 random val-

ues 𝑟𝑖 to the simulator, and then checks that either (1) C(𝑟 ) = 𝑟 ,

which holds with overwhelming probability iff the distinguisher

is executed in the real world; (2) or that 𝜑 holds. The constraint

system corresponding to this distinguisher has no solutions, but by

Proposition 6.1, there exists a simulator satisfying this requirement.

Note that this example uses the expressivity of grammar for

return formulas to its fullest (in particular, disjunctions), unlike

most decidability results on constraint systems. The example is

however not an artifact of our permissive formalism: provided we

extend the reference theory with free symbols h ∈ Fun (intuitively

modelling publicly available random functions), the above return
statement can be encoded with formulas that only allows conjunc-

tions of equations 𝑢 =? 𝑣 and disequations 𝑢 ≠? 𝑣 between terms of

arity 1. We do not detail the full encoding, but mention for example:

• (𝑢,𝑢 ′) ≠? (𝑣, 𝑣 ′) can be encoded by 𝑢 ⊕ h(𝑢 ′) ≠? 𝑣 ⊕ h(𝑣 ′), thus
allowing to model comparisons of tuples;

• 𝑥𝑖 =
?

0 ∨ 𝑥𝑖 =? 𝑟𝑖 by h(0) ⊕ h(𝑥𝑖 ) ⊕ h(𝑟𝑖 ) ⊕ h(𝑥𝑖 ⊕ 𝑟𝑖 ) =?

0, thus

allowing to model most disjunctions of interest.

6.3 Extending the Reference Theory
In this paper, we limited ourselves to a reference theory modelling

xor and inverse-cancellation. But from a decidability standpoint,

the hypotheses under which constraint satisfiability is known to be

decidable are usually preserved by addition of free function symbols.

Such function symbols would typically model, in our context, public

permutations as seen in general confusion-diffusionmechanisms, or

to some extent in Substitution-Permutation networks such as AES.

More generally, our reference theory is rather restricted compared

to the amount of theories that have been studied in unification

theory, which suggests that our approach may benefit from scope

improvements with reasonable effort.
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6.4 Proofs of Universality
A natural follow-up question is whether our approach can prove in-
differentiability, i.e., check the validity of a given simulator. Actually,

simulators may be specified in calculi of communicating processes

such as the applied pi calculus [1]. Consider 𝐶 (𝑥) = 𝑥 ⊕ 𝐹 (𝑥) for
example, and a simulator 𝑆𝑅 that emulates queries to 𝐹 (𝑥) by re-

turning 𝑅(𝑥) ⊕ 𝑥 . In the applied pi calculus, the real and simulated

oracle systems can be modelled by the processes 𝑃real and 𝑃sim:

𝑃real = ! in(𝑞𝑐 , 𝑥); out(𝑞𝑐 , 𝑥 ⊕ 𝐹 (𝑥)) | ! in(𝑞𝐹 , 𝑥); out(𝑞𝐹 , 𝐹 (𝑥))
𝑃sim = ! in(𝑞𝑐 , 𝑥); out(𝑞𝑐 , 𝑅(𝑥)) | ! in(𝑞𝐹 , 𝑥); out(𝑞𝐹 , 𝑅(𝑥) ⊕ 𝑥)

These processes model an unbounded number of queries to (1) the

main oracle C, under the form of an input from the adversary on a

channel 𝑞𝑐 , written in(𝑞𝑐 , 𝑥), answered by output 𝑢 ∈ {𝐶 (𝑥), 𝑅(𝑥)},
written out(𝑞𝑐 , 𝑢); and to (2) the primitive 𝐹 , similarly. An interest-

ing lead is whether the validity of 𝑆 can be reduced to the decision

of processes equivalences [1, 27], e.g., trace equivalence, modelling

the impossibility to distinguish between the two processes.

7 CONCLUSION
We have developed and implemented symbolic methods for syn-

thesising universal distinguishers against indifferentiability. Our

method covers a broad set of examples from the literature, including

Feistel networks and Iterated Even-Mansour blockciphers. Inter-

esting directions for future work include decidability of constraint

solving, and support for public permutations in our syntax (e.g., for

larger Confusion-Diffusion networks, or Substitution-Permutation

networks), or adapting the approach to prove indifferentiability.
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A PROOF OF THE MAIN THEOREM
Main theorem. Let𝐷 = J𝑐1+· · ·+𝑐𝑛K be an algebraic distinguisher
for some non-branching distinguisher codes 𝑐𝑖 . Then the following
points are equivalent:

(i) 𝐷 is universal
(ii) the constraint systems Γ(𝑐1), . . . , Γ(𝑐𝑛) have no common, con-

sistent solutions Σ

A.1 Some notations
We interpret ground terms 𝑢 and ground frames Φ as distributions

of bitstrings J𝑢K and distributions of stores JΦK, respectively, where
a store is a mapping from axioms to bitstrings. We interpret:

• random group elements as uniformly sampled bitstrings

• symbols of Fun in the natural way

• symbols of Orcl∗
0
(resp. Orcl0 ∖Orcl∗

0
) as function uniformly sam-

pled from the set of all keyed permutations (resp. all functions)

of adequate domain.

We also write Pr [𝜙 ← D : 𝐸] to refer to the probability of the event
𝐸 conditioned by drawing a store 𝜙 with respect to the distribution

of stores D. Finally, given two distributions on stores D1 and D2,

we say that they are indistinguishable, written D1 ≈ D2, when for

all algorithms 𝑆 from stores to {0, 1} running in polynomial time

in the security parameter, we have that���Pr[𝜙 ← D1 : 𝑆 (𝜙) = 0] − Pr[𝜙 ← D2 : 𝑆 (𝜙) = 0]
���

is negligible. They are strongly distinguishable if there exists a poly-
nomial algorithm 𝑆 such that the above quantity is overwhelming.

A.2 First direction
Let us prove first the direction (i)⇒(ii) of the theorem, by con-

traposition. Consider a distinguisher 𝐷 = J𝑐1 + · · · + 𝑐𝑛K, with 𝑐𝑖

non branching for all 𝑖 , against a construction 𝐶𝑄
and assume that

there exists a solution Σ to each Γ(𝑐𝑖 ) that satisfies the consistency
requirement. Let us also call 𝜎1, . . . , 𝜎𝑛 the first-order solutions of

Σ in the constraint systems Γ(𝑐1), . . . , Γ(𝑐𝑛), respectively. Our goal
is to construct a simulator that wins the security game against 𝐷

with overwhelming probability. To obtain the desired conclusion,

it suffices to prove the following points:

Proposition A.1. Then we have:
(1) if 𝑢 =E 𝑣 then Pr [𝑒, 𝑓 ← J𝑢, 𝑣K : 𝑒 = 𝑓 ] is overwhelming
(2) if 𝑢 ≠E 𝑣 then Pr [𝑒, 𝑓 ← J𝑢, 𝑣K : 𝑒 = 𝑓 ] is negligible
(3) if 𝑢 is deducible from Φ, then there exists a polynomial time algo-

rithm 𝑆 from stores to bitstrings such that Pr [𝜙, 𝑒 ← JΦK, J𝑢K :

𝑆 (𝜙) = 𝑒] is overwhelming
(4) if Φ ∼ Ψ, then JΦK ≈ JΨK
(5) if Φ ̸∼ Ψ, then JΦK and JΨK are strongly distinguishable.

Item (4) is not needed obtaining the conclusion, but rather as an

intermediary argument. Once we obtain all these items, it suffices

to instantiate all equality and disequality constraints in each 𝑐𝑖 by

𝜎𝑖 ; they will all be satisfied by Items (3) and (1), and the deducibility

constraints as well by Item (2). Besides, in case some deducibility

constraints are solved by different second-order terms, we know by

consistency of Σ that the underlying frames are not statically equiv-

alent. In particular by Item (5) there exists a polynomial algorithm

for distinguishing the two simulator states with overwhelming prob-

abilities, allowing to answer the two queries differently. Regarding

the proof of these items, we have in the reference theory:

• (1) holds in a straightforward manner (the probability is even 1),

as all equations of the reference theory hold with probability 1

for their bitstring interpretations;

• (1)⇒(3) by [16, Proposition 1];

• (1∧2)⇒(5) by [16, Proposition 1];

• (4)⇒(2) by [16, Proposition 2].

It therefore only remains to prove Item (4). For that we use the

following characterisation, corresponding to [16, Proposition 3]

and applicable to the reference theory by Item (1). The proposition

makes reference, given a frame Φ, to its ideal semantics JΦKideal:

Proposition A.2. If for every ground frame Φ, JΦK ≈ JΦKideal,
then Item (2) of Proposition (A.1) holds.

The precise definition of the distribution of stores JΦKideal is
not needed in our proofs: indeed, the theory of xor is specifically

studied in [16], and the following result is already established (as a

combination of [16, Theorem 6, Theorem 7, Proposition 8]):

Proposition A.3. If Φ is a frame that is only constructed from
random group elements, 0, and ⊕, then JΦK ≈ JΦKideal.

To conclude the whole proof, it therefore suffices to prove that for

all frames Φ in the reference theory, there exists a frame Ψ such that

JΦK ≈ JΨK and Φ only uses ⊕ as a non-constant function symbol.

For that it suffices to design a procedure that removes gradually C
and C−1

symbols from Φ while keeping the same frame distribution

as the initial one. Since we consider ideal random functions, it

suffices to replace each subterm of Φ rooted with 𝑓 ∈ {C,C−1},
by fresh random group elements, where 𝑓 (𝑢) and 𝑓 (𝑣) should be

mapped to the same random group element when 𝑢 =E 𝑣 .

A.3 Converse direction
Now let 𝐷 = J𝑐1 + · · · + 𝑐𝑛K be a distinguisher, and 𝑆 be a simula-

tor winning against 𝐷 with overwhelming probability. We want

to construct a consistent solution to Γ(𝑐1), . . . , Γ(𝑐𝑛). We can as-

sume 𝑆 to be deterministic: if there exists a convex combination of

deterministic simulators winning with overwhelming probability

1 − 𝜀 (𝜂) against 𝐷 , then one of these simulators wins with proba-

bility greater or equal than 1 − 𝜀 (𝜂) against 𝐷 as well. Besides, we

can also argue that it suffices to consider simulators performing a

constant number of oracle queries. Indeed, up to the addition of

dummy deducibility constraints and constant entries to the frame,

we can always assume that each Γ(𝑐𝑖 ) = (Φ,D, 𝜑) is of the form
Φ = {ax1 ↦→ 𝑡1, . . . , ax𝑛 ↦→ 𝑡𝑛}
D = {𝑋1 : 1 ⊢? 𝑥1, . . . , 𝑋𝑛 : 𝑛 ⊢? 𝑥𝑛} .

Consider a simulator 𝑆 computing bitstrings 𝑥1, . . . , 𝑥𝑛 with access

to the corresponding substores sampled from JΦK. There are only
2
|𝜑 |+ |𝑡1 |

subterms of the system when the simulator computes 𝑥1,

therefore it has no effect on constraint satisfiability to perform

oracle calls on other terms; all other calls 𝑅(𝑡) can be replaced by

any bitstring without affecting constraint satisfiability. Assuming

the maximum number of calls have been performed, and taking

into account that 𝑡2 may have been instantiated by a computation
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𝜎 , its size may be up to |𝑡2𝜎 | ⩽ 𝑒 = |𝑡2 |2 |𝜑 |+ |𝑡1 |
. Applying the

same reasoning as for the first computation, here is then at most

2
2
|𝜑 |+|𝑡

1
|+𝑒

non-spurious oracle calls that may not be replaceable by

constants. Iterating this process by induction allows us to conclude

that the simulator can be assumed to perform a bounded number

of oracle calls without loss of generality. In particular, writing 𝐴𝑖

the algorithm derived from 𝑆 to compute 𝑥𝑖 , the determinism and

constant number of oracle calls show that 𝐴𝑖 only samples a fixed

number of random values (one for each oracle call). Besides:

Proposition A.4. Let 𝑥1, . . . , 𝑥𝑛 be a constant number of values
sampled independently uniformly at random. Then, with overwhelm-
ing probability, the only subset 𝑃 ⊆ {𝑥1, . . . , 𝑥𝑛} of null sum is 𝑃 = ∅.

Proof. The proof can easily be obtained by recurrence as, assum-

ing 𝑥1, . . . , 𝑥𝑛−1 verify this property, the probability of a collision

(that is, that 𝑥𝑛 =
∑
𝑥 ∈𝑃 𝑥 for some subset 𝑃 ⊆ {𝑥1, . . . , 𝑥𝑛−1}) is

bounded by 2
𝑛−𝜂

, which is negligible due to 𝑛 being constant. □

In particular, combining this result with the abovementioned

conclusion that the number of samplings of 𝑆 is constant, we obtain

that there is a negligible probability of collision between any linear

combination of computations of the simulators, unless the collision

holds with probability 1—which exactly means that a symbolic

solution verifying the same equalities as 𝑆 can be derived. We

therefore obtain the expected conclusion, which concludes the

proof.
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