
Characterizing Functions Mappable Over GADTs

Patricia Johann and Pierre Cagne[0000−0003−3990−726X]

Appalachian State University, Boone NC 28608, USA
{johannp,cagnep}@appstate.edu

Abstract. It is well-known that GADTs do not admit standard map
functions of the kind supported by ADTs and nested types. In addition,
standard map functions are insufficient to distribute their data-changing
argument functions over all of the structure present in elements of deep
GADTs, even just deep ADTs or nested types. This paper develops an
algorithm that characterizes those functions on a (deep) GADT’s type
arguments that are mappable over its elements. The algorithm takes
as input a term t whose type is an instance of a (deep) GADT G, and
returns a set of constraints a function must satisfy to be mappable over
t. This algorithm, and thus this paper, can in some sense be read as
defining what it means for a function to be mappable over t: f is map-
pable over an element t of G precisely when it satisfies the constraints
returned when our algorithm is run on t and G. This is significant: to
our knowledge, there is no existing definition or other characterization
of the intuitive notion of mappability for functions over GADTs.

Keywords: GADTs · map functions · initial algebra semantics

1 Introduction

Initial algebra semantics [5] is one of the cornerstones of the modern theory of
data types. It has long been known to deliver practical programming tools —
such as pattern matching, induction rules, and structured recursion operators —
as well as principled reasoning techniques — like relational parametricity [15] —
for algebraic data types (ADTs). Initial algebra semantics has also been devel-
oped for the syntactic generalization of ADTs known as nested types [6], and it
has been shown to deliver analogous tools and techniques for them as well [11].
Generalized algebraic data types (GADTs) [14,16,17] generalize nested types —
and thus further generalize ADTs — syntactically:

ADTs nested types GADTs
syntactically

generalized by
syntactically

generalized by
(1)

Given their ubiquity in modern functional programming, an important open
question is whether or not an initial algebra semantics can be defined for
GADTs in such a way that a semantic analogue of (1) holds as well.

The standard initial algebra semantics of ADTs provides a functor D : Set →
Set interpreting each such data type D, where Set is the category of sets and func-
tions between them interpreting types [4]. The construction of D is sufficiently

2 P. Johann, P. Cagne

uniform in its set argument to ensure not only that the data constructors of D are
interpreted as natural transformations, but also that the standard map function1

mapD : ∀A B→ (A→ B)→ (D A→ D B)

for D is interpreted by D’s functorial action. The naturality of the interpreta-
tions of D’s constructors, which captures their polymorphic behavior, is reflected
in syntax by the pattern-matching clauses defining mapD on data constructed
using them.

As a concrete example, consider the standard data type

data List : Set→ Set where
nil : ∀A→ List A
cons : ∀A→ A→ List A→ List A

(2)

The data type List is interpreted as a functor List : Set → Set mapping each set
A to the set of finite sequences of elements of A. The data constructor nil is inter-
preted as the natural transformation whose component at a set A is the function
of type 1→ List Amapping the single element of the singleton set 1 to the empty
sequence, and the data constructor cons is interpreted as the natural transforma-
tion whose component at a set A is the function of type A×List A→ List Amap-
ping the pair (a, (a1, . . . , an)) to (a, a1, . . . , an). The functorial action of List on
a function f : A→ B is the function of type List A→ List B taking a sequence
(a1, . . . , an) to the sequence (f a1, . . . , f an). This functorial action indeed inter-
prets the standard map function for lists, defined by pattern matching as follows:

mapList : ∀A B→ (A→ B)→ (List A→ List B)
mapList f nil = nil
mapList f (cons a l) = cons (f a) (mapList f l)

Nested types generalize ADTs by allowing their constructors to take as ar-
guments data whose types involve instances of the nested type other than the
one being defined. The return type of each of its data constructors must still be
precisely the instance being defined, though. This is illustrated by the following
definitions of the nested types PTree of perfect trees and Bush of bushes:

data PTree : Set→ Set where
pleaf : ∀A→ A→ PTree A
pnode : ∀A→ PTree (A× A)→ PTree A

data Bush : Set→ Set where
bnil : ∀A→ Bush A
bcons : ∀A→ A→ Bush (Bush A)→ Bush A

1 Although our results apply to GADTs in any programming language, we use Agda
syntax for code in this paper. But while Agda allows type parameters to be implicit,
we always write all type parameters explicitly. Throughout, we use sans serif font for
code snippets and italic font for mathematics (specifically, for meta-variables).

Characterizing Functions Mappable Over GADTs 3

A nested type N with at least one data constructor at least one of whose argument
types involves an instance of N that itself involves an instance of N is called a truly
nested type. The type of the data constructor bcons thus witnesses that Bush is a
truly nested type. Because the recursive calls to a nested type’s type constructor
can be at instances of the type other than the one being defined, a nested type
thus defines an entire family of types that must be constructed simultaneously.
That is, a nested type defines an inductive family of types. By contrast, an ADT
is usually understood as a family of inductive types, one for each choice of its type
arguments. This is because every recursive call to an ADT’s type constructor
must be at the very same instance as the one being defined.

The initial algebra semantics of nested types given in [11] provides a
semantic analogue of the first inclusion in (1). Every nested type N has a map
function mapN : ∀A B→ (A→ B)→ (N A→ N B), and mapN coincides with
the standard map function when N is an ADT. If we think of each element
of a nested type N as a “container” for data arranged at various “positions”
in the underlying “shape” determined by the data constructors of N used to
build it, then, given a function f of type A→ B, the function mapN f is the
expected shape-preserving-but-possibly-data-changing function that transforms
an element of N with shape S containing data of type A into another element
of N also of shape S but containing data of type B by applying f to each of
its elements. The function mapN is interpreted by the functorial action of the
functor N : Set → Set interpreting N whose existence is guaranteed by [11].
Like mapN itself, this functor specializes as expected when N is an ADT.

Since GADTs, like nested types, can also be regarded as containers in which
data can be stored, we might expect every GADT G to support a shape-
preserving-but-possibly-data-changing map function

mapG : ∀A B→ (A→ B)→ (G A→ G B) (3)

We might also expect to have initial algebra semantics interpreting G’s construc-
tors as natural transformations and mapG as the functorial action of the functor
interpreting G. But this expection is perhaps too ambitious; see Section 5 for a
discussion. In particular, a proper GADT — i.e., a GADT that is not a nested
type (and thus is not an ADT) — need not support a map function as in (3).
For example, the GADT2

data Seq : Set→ Set where
const : ∀A→ A→ Seq A
pair : ∀A B→ Seq A→ Seq B→ Seq (A× B)

of sequences does not. If it did, then the clause of mapSeq for an element of Seq of
the form pair x y for x : Seq A and y : Seq B would be such that if f : (A× B)→ C

2 The type of Seq is actually Set→ Set1, but to aid readability we elide the explicit
tracking of Agda universe levels in this paper. The data type Seq may be familiar
to Haskell programmers as a fragment of the GADT Term introduced in [14] to
represent terms in a simply-typed language. This fragment of Term is enough for the
purposes of our discussion.

4 P. Johann, P. Cagne

then mapSeq f (pair x y) = pair u v : Seq C for some appropriately typed u and v.
But there is no way to achieve this unless C is of the form A′ × B′ for some
A′ and B′, u : Seq A′ and v : Seq B′, and f = f1 × f2 for some f1 : A→ A′

and f2 : B→ B′. The non-uniformity in the type-indexing of proper GADTs —
which is the very reason a GADT programmer is likely to use GADTs in the
first place — thus turns out to be precisely what prevents them from supporting
standard map functions.

Although not every function on a proper GADT’s type arguments is
mappable over its elements, it is nevertheless reasonable to ask: which functions
can be mapped over an element of a proper GADT in a shape-preserving-but-
possibly-data-changing way? To answer this question we first rewrite the type
of mapG in (3) as ∀A B→ G A→ (A→ B)→ G B. This rewriting mirrors our
observation above that those functions that are mappable over an element of a
GADT can depend on that element. More precisely, it suggests that the type of
the map function for G should actually be

mapG : ∀A B→ (e : G A)→ (A→e B)→ G B (4)

where A→e B is a type, dependent on an element e : G A, containing exactly
those functions from A to B that can be successfully mapped over e.

In this paper we develop an algorithm characterizing those functions that
should be in the type A→e B. Our algorithm takes as input a term t whose type is
(an instance of) a GADT G at type A, and returns a set of constraints a function
must satisfy in order to be mappable over t. Our algorithm, and thus this paper,
can in some sense be read as defining what it means for a function to be mappable
over t. This is significant: to our knowledge, there is no existing definition or other
characterization of the intuitive notion of mappability for functions over GADTs.

The crux of our algorithm is its ability to separate t’s “essential structure”
as an element of G — i.e., the part of t that is essential for it to have the
shape of an element of G — from its “incidental structure” as an element of
G — i.e., the part of t that is simply data in the positions of this shape. The
algorithm then ensures that the constraints that must be met in order for f
to be mappable come only from t’s essential structure as an element of G. The
separation of a term into essential and incidental structure is far from trivial,
however. In particular, it is considerably more involved than simply inspecting
the return types of G’s constructors. As for ADTs and other nested types, a
subterm built using one of G’s data constructors can be an input term to another
one (or to itself again). But if G is a proper GADT then such a dependency
between constructor inputs and outputs can force structure to be essential in the
overall term even though it would be incidental in the subterm if the subterm
were considered in isolation, and this can impose constraints on the functions
mappable over it. This is illustrated in Examples 2 and 3 below, both of which
involve a GADT G whose data constructor pairing can construct a term suitable
as input to projpair.

Our algorithm is actually far more flexible than just described. Rather than
simply considering t to be an element of the top-level GADT in its type, the

Characterizing Functions Mappable Over GADTs 5

algorithm instead takes as an additional argument a specification — i.e., a type
expression over designated variables — one of whose instances t should be con-
sidered an element of. The specification D can either be a “shallow” data type of
the form Gβ (with designated variable β) indicating that t is to be considered an
element of a simple variable instance of G, or a deep3 data type such as G (Gβ)
(with designated variable β) indicating that t should be considered an element of
a more complex instance of G. The algorithm then returns a set of constraints a
function must satisfy in order to be mappable over t relative to that given specifi-
cation. We emphasize that the separation of essential and incidental structure in
terms can become quite complicated when D is a deep data type. For example, if
D is G (Gβ) then those functions that are mappable over its relevant subterms rel-
ative to Gβ must be computed before those that are mappable over the term itself
relative to G (Gβ) can be computed. Runs of our algorithm on deep specifications
are given in Examples 5 and 10 below, as well as in our accompanying artifact [7].

Although we use Agda syntax in this paper for convenience, the overarching
setting for this work is not intended to be dependent type theory, but rather
a language akin to a small pure fragment of Haskell. We deliberately remain
language-agnostic, but the intended type system should be an impredicative
extension of System F containing a fixpoint operator data_where as described
in (5) and (6) below.

This paper is organized as follows. Motivating examples highlighting the del-
icacies of the problem our algorithm solves are given in Section 2. Our algorithm
is given in Section 3, and fully worked out sample runs of it are given in Section 4.
Our conclusions, related work, and some directions for future work are discussed
in Section 5. An Agda implementation of our algorithm is available at [7], along
with a collection of examples on which it has been run. This includes examples
involving deep specifications and mutually recursively defined GADTs, as well as
other examples that go beyond just the illustrative ones appearing in this paper.

2 The Problem and Its Solution: An Overview

In this section we use well-chosen example instances of the mapping problem for
GADTs and deep data structures both to highlight its subtlety and to illustrate
the key ideas underlying our algorithm that solves it. For each example consid-
ering a function f to be mapped over a term t relative to the essential structure
specified by D we explain, intuitively, how to obtain the decomposition of t into
the essential and incidental structure specified by D and what the constraints are
that ensure that f is mappable over t relative to it. Example 1 illustrates the fun-
damental challenge that arises when mapping functions over GADTs. Example 2
and Example 3 highlight the difference between a term’s essential structure and
its incidental structure. Example 4 and Example 5 show why the specification is
3 An ADT/nested type/GADT is deep if it is (possibly mutually inductively) defined
in terms of other ADTs/nested types/GADTs (including, possibly, itself). For ex-
ample, List (List N) is a deep ADT, Bush (List (PTree A)) is a deep nested type, and
Seq (PTree A), and List (Seq A) are deep GADTs.

6 P. Johann, P. Cagne

an important input to the algorithm. By design, we handle the examples only in-
formally in this section to allow the reader to build intuition. The results obtained
by running our algorithm on their formal representations are given in Section 4.

Our algorithm will treat all GADTs in the class G, whose elements have the
following general form when written in Agda:

data G : Setk→ Set where
c1 : t1
...
cm : tm

(5)

Here, k and m can be any natural numbers, including 0. Writing v for a tuple
(v1, ..., vl) whose length l is clear from context, and identifying a tuple (a) with
the element a, each data constructor ci, i ∈ {1, ...,m}, has type ti of the form

∀α→F ci
1 α→ ...→F ci

ni
α→ G (Kci

1 α, ...,K
ci
k α) (6)

Here, for each j ∈ {1, ..., ni}, F ci
j α is either a closed type, or is αd for some

d ∈ {1, ..., |α|}, or is Dci
j (φci

j α) for some user-defined data type constructor Dci
j

and tuple φci
j α of type expressions at least one of which is not closed. The types

F ci
j α must not involve any arrow types. However, each Dci

j can be any GADT in
G, including G itself, and each of the type expressions in φci

j α can involve such
GADTs as well. On the other hand, for each ` ∈ {1, ..., k}, Kci

` α is a type expres-
sion whose free variables come from α, and that involves neither G itself nor any
proper GADTs.4 When |α| = 0 we suppress the initial quantification over types
in (6). All of the GADTs appearing in this paper are in the class G; this class is im-
plemented in the accompanying code [7] as part of type-expr, with formation con-
straints as described immediately following the definition of _‖_`_. All GADTs
we are aware of from the literature whose constructors’ argument types do not
involve arrow types are also in G. Our algorithm is easily extended to GADTs
without this restriction provided all arrow types involved are strictly positive.

Our first example picks up the discussion for Seq on page 3. Because the
types of the inputs of const and pair are not deep, it is entirely straightforward.

Example 1. The functions f mappable over

t = pair (pair (const tt) (const 2)) (const 5) : Seq ((Bool× Int)× Int) (7)

relative to the specification Seqβ are exactly those of the form (f1 × f2) × f3
for some f1 : Bool→ X1, f2 : Int→ X2, and f1 : Int→ X3, and some types X1,
X2, and X3. Intuitively, this follows from two analyses similar to that on page 3,
one for each occurrence of pair in t. Writing the part of a term comprising its
4 Formally, a GADT is a proper GADT if it has at least one restricted data constructor,
i.e., at least one data constructor ci with type as in (6) for which Kci

` α 6= α for at
least one ` ∈ {1, ..., k}.

Characterizing Functions Mappable Over GADTs 7

essential structure relative to the given specification in blue and the parts of the
term comprising its incidental structure in black, our algorithm also deduces the
following essential structure for t:

pair (pair (const tt) (const 2)) (const 5) : Seq ((Bool× Int)× Int)

The next two examples are more involved: G has purposely been crafted so
that its data constructor pairing can construct a term suitable as the second
component of a pair whose image by inj can be input to projpair.

Example 2. Consider the GADT

data G : Set→ Set where
const : G N
flat : ∀A→ List (G A)→ G (List A)
inj : ∀A→ A→ G A
pairing : ∀A B→ G A→ G B→ G (A× B)
projpair : ∀A B→ G (G A× G (B× B))→ G (A× B)

The functions mappable over

t = projpair (inj (inj (cons 2 nil), pairing (inj 2) const)) : G (List N × N)

relative to the specification Gβ are exactly those of the form f1 × idN for some
type X and function f1 : List N → X. This makes sense intuitively: The call
to projpair requires that a mappable function f must at top level be a product
f1 × f2 for some f1 and f2, and the outermost call to inj imposes no constraints
on f1×f2. In addition, the call to inj in the first component of the pair argument
to the outermost call to inj imposes no constraints on f1, and neither does the
call to cons or its arguments. On the other hand, the call to pairing in the second
component of the pair argument to the second call to inj must produce a term
of type G (N× N), so the argument 2 to the rightmost call to inj and the call
to const require that f2 is idN. Critically, it is the naturality of the constructor
const that forces f2 to be idN and not just any function of type N→ N here. Our
algorithm also deduces the following essential structure for t:

projpair (inj (inj (cons 2 nil), pairing (inj 2) const)) : G (List N × N) (8)

Note that, although the argument to projpair decomposes into essential structure
and incidental structure as inj (inj (cons 2 nil), pairing (inj 2) const) when consid-
ered as a standalone term relative to the specification Gβ, the fact that the
output of pairing can be an input for projpair ensures that t has the decompo-
sition in (8) relative to Gβ when this argument is considered in the context of
projpair. Similar comments apply throughout this paper.

Example 3. The functions f mappable over

t = projpair (inj (flat (cons const nil), pairing (inj 2) const)) : G (List N × N)

8 P. Johann, P. Cagne

relative to the specification Gβ for G as in Example 2 are exactly those of the
form mapList idN × idN. This makes sense intuitively: The call to projpair requires
that a mappable function f must at top level be a product f1×f2 for some f1 and
f2, and the outermost call to inj imposes no constraints on f1 × f2. In addition,
the call to flat in the first component of the pair argument to inj requires that
f1 is mapList f3 for some f3, and the call to cons in flat’s argument imposes no
constraints on f3, but the call to const as cons’s first argument requires that f3
is idN. On the other hand, by the same analysis as in Example 2, the call to
pairing in the second component of the pair argument to inj requires that f2 is
idN. Our algorithm also deduces the following essential structure for t:

projpair (inj (flat (cons const nil), pairing (inj 2) const)) : G (List N × N)

Again, the fact that the output of pairing can be a input for projpair in the
previous two examples highlights the importance of the specification relative to
which a term is considered. But this can already be seen for ADTs, which feature
no such loops. This is illustrated in Examples 4 and 5 below.

Example 4. The functions f mappable over

t = cons (cons 1 (cons 2 nil)) (cons (cons 3 nil) nil) : List (List N)

relative to the specification Listβ are exactly those of the form f : List N→ X for
some type X. This makes sense intuitively since any function from the element
type of a list to another type is mappable over that list. The function need
not satisfy any particular structural constraints. Our algorithm also deduces the
following essential structure for t:

cons (cons 1 (cons 2 nil)) (cons (cons 3 nil) nil)

Example 5. The functions f mappable over

t = cons (cons 1 (cons 2 nil)) (cons (cons 3 nil) nil) : List (List N)

relative to the specification List (Listβ) are exactly those of the form mapList f
′

for some type X ′ and function f ′ : N → X ′. This makes sense intuitively: The
fact that any function from the element type of a list to another type is mappable
over that list requires that f : List N→ X for some type X as in Example 4. But
if the internal list structure of t is also to be preserved when f is mapped over it,
as indicated by the essential structure List (Listβ), then X must itself be of the
form ListX ′ for some type X ′. This, in turn, entails that f is mapListf

′ for some
f ′ : N→ X ′. Our algorithm also deduces the following essential structure for t:

cons (cons 1 (cons 2 nil)) (cons (cons 3 nil) nil) : List (List N)

The specification List (Listβ) determining the essential structure in Ex-
ample 5 is deep by instantiation, rather than by definition. That is, inner
occurrence of List in this specification is not forced by the definition of the data

Characterizing Functions Mappable Over GADTs 9

type List that specifies its top-level structure. The quintessential example of a
data type that is deep by definition is the ADT

data Rose : Set→ Set where
rnil : ∀A→ Rose A
rnode : ∀A→ A→ List (Rose A)→ Rose A

of rose trees, whose data constructor rnode takes as input an element of Rose at
an instance of another ADT. Reasoning analogous to that in the examples above
suggests that no structural constraints should be required to map appropriately
typed functions over terms whose specifications are given by nested types that
are deep by definition. We will see in Example 9 that, although the runs of our
algorithm are not trivial on such input terms, this is indeed the case.

With more tedious algorithmic bookkeeping, results similar to those of the
above examples can be obtained for data types — e.g., Bush (List (PTree A)),
Seq (PTree A), and List (Seq A) — that are deep by instantiation [7].

3 The Algorithm

In this section we give our algorithm characterizing the functions that are map-
pable over GADTs. The algorithm adm takes as input a data structure t, a tuple
of type expressions f representing functions to be mapped over t, and a specifi-
cation Φ. Recall from the introduction that a specification is a type expression
over designated variables in the ambient type calculus. It recursively traverses
the term t recording the set C of constraints f must satisfy in order to be map-
pable over t viewed as an element of an instance of Φ. The elements of C are
ordered pairs of the form 〈_,_〉, whose components are compatible in the sense
made precise in the paragraphs immediately following the algorithm. A call

adm t f Φ

is made only if there exists a tuple (Σ1β, ..., Σkβ) of type expressions such that

– Φ = G (Σ1β, ..., Σkβ) for some data type constructor G ∈ G ∪ {×,+} and
some type expressions Σ`β, for ` ∈ {1, ..., k}

and

– if Φ = ×(Σ1β,Σ2β), then t = (t1, t2), and k = 2, f = (f1, f2)
– if Φ = +(Σ1β,Σ2β) and t = inl t1, then k = 2, f = (f1, f2)
– if Φ = +(Σ1β,Σ2β) and t = inr t2, then k = 2, f = (f1, f2)
– if Φ = G (Σ1β, ..., Σkβ) for some G ∈ G then

1) t = c t1...tn for some appropriately typed terms t1, ..., tn and some data
constructor c for G with type of the form in (6),

2) t : G (Kc
1w, ...,K

c
kw) for some tuple w = (w1, ..., w|α|) of type expres-

sions, and G (Kc
1w, ...,K

c
kw) is exactly G (Σ1s, ..., Σks) for some tuple

s = (s1, ..., s|β|) of types, and

10 P. Johann, P. Cagne

3) for each ` ∈ {1, ..., k}, f` has domain Kc
`w

These invariants will be preserved by each recursive call to adm below.
The free variables in the type expressions Σ`β for ` ∈ {1, ..., k} can be taken

to be among the variables in β, since the calls adm t f G (Σ1β, ..., Σkβ) and
adm t f G (Σ1β+, ..., Σkβ+) return the same set C (up to renaming) whenever
β is a subtuple of the tuple β+. We can therefore take β to have minimal length.

The algorithm is given as follows by enumerating each of its legal calls. Each
call begins by initializing a set C of constraints to ∅.

A. adm (t1, t2) (f1, f2) ×(Σ1β,Σ2β)
1. Introduce a tuple g = g1, ..., g|β| of fresh variables, and add the con-

straints 〈Σ1g, f1〉 and 〈Σ2g, f2〉 to C.
2. For j ∈ {1, 2}, if Σjβ = βi for some i then do nothing and go to the

next j if there is one. Otherwise, Σjβ = D (ζ1β, ..., ζrβ), where D is a
data type constructor in G ∪{×,+} of arity r, so make the recursive call
adm tj (ζ1g, ..., ζrg) D (ζ1β, ..., ζrβ) and add the resulting constraints
to C.

3. Return C.
B. adm (inl t) (f1, f2) +(Σ1β,Σ2β)

1. Introduce a tuple g = (g1, ..., g|β|) of fresh variables, and add the con-
straints 〈Σ1g, f1〉 and 〈Σ2g, f2〉 to C.

2. If Σ1β = βi for some i then do nothing. Otherwise, Σ1β =
D (ζ1β, ..., ζrβ), where D is a data type constructor in G ∪ {×,+} of
arity r, so make the recursive call adm t (ζ1g, ..., ζrg) D (ζ1β, ..., ζrβ)
and add the resulting constraints to C.

3. Return C.
C. adm (inr t) (f1, f2) +(Σ1β,Σ2β)

1. Introduce a tuple g = (g1, ..., g|β|) of fresh variables, and add the con-
straints 〈Σ1g, f1〉 and 〈Σ2g, f2〉 to C.

2. If Σ2β = βi for some i then do nothing. Otherwise, Σ2β =
D (ζ1β, ..., ζrβ), where D is a data type constructor in G ∪ {×,+} of
arity r, so make the recursive call adm t (ζ1g, ..., ζrg) D (ζ1β, ..., ζrβ)
and add the resulting constraints to C.

3. Return C.
D. adm (c t1, ..., tn) (f1, ..., fk) G (Σ1β, ..., Σkβ)

1. Introduce a tuple g = (g1, ..., g|β|) of fresh variables and add the con-
straints 〈Σ`g, f`〉 to C for each ` ∈ {1, ..., k}.

2. If c t1, ..., tn : G (Kc
1w, ...,K

c
kw) for some tuple w = (w1, ..., w|α|) of types,

let γ = (γ1, ..., γ|α|) be a tuple of fresh type variables and solve the system
of matching problems

Σ1β ≡ Kc
1γ

Σ2β ≡ Kc
2γ

...

Σkβ ≡ Kc
kγ

Characterizing Functions Mappable Over GADTs 11

to get a set of assignments, each of the form β ≡ ψγ or σβ ≡ γ for some
type expression ψ or σ. This yields a (possibly empty) tuple of assign-
ments βi ≡ ψiγ for each i ∈ {1, ..., |β|}, and a (possibly empty) tuple of
assignments σi′β ≡ γi′ for each i′ ∈ {1, . . . , |γ|}. Write βi ≡ ψi,pγ for the
pth component of the former and σi′,qβ ≡ γi′ for the qth component of
the latter. An assignment βi ≡ γi′ can be seen as having form βi ≡ ψγi′
or form σβi ≡ γi′ , but always choose the latter representation. (This is
justified because adm would return an equivalent set of assignments —
i.e., a set of assignments yielding the same requirements on f — were the
former chosen. The latter is chosen because it may decrease the number
of recursive calls to adm.)

3. For each i′ ∈ {1, . . . , |γ|}, define τi′βγ to be either σi′,1β if this exists,
or γi′ otherwise.

4. Introduce a tuple h = (h1, ..., h|γ|) of fresh variables for i′ ∈ {1, ..., |γ|}.
5. For each i ∈ {1, . . . , |β|} and each constraint βi ≡ ψi,pγ, add the con-

straint 〈ψi,ph, gi〉 to C.
6. For each i′ ∈ {1, . . . , |γ|} and each constraint σi′,qβ ≡ γi′ with q > 1,

add the constraint 〈σi′,qg, σi′,1g〉 to C.
7. For each j ∈ {1, . . . , n}, let Rj = F c

j (τ1βγ, ..., τ|γ|βγ).
– if Rj is a closed type, then do nothing and go to the next j if there

is one.
– if Rj = βi for some i or Rj = γi′ for some i′, then do nothing and
go to the next j if there is one.

– otherwise Rj = D (ζj,1βγ, ..., ζj,rβγ), where D is a type constructor
in G ∪ {×,+} of arity r, so make the recursive call

adm tj (ζj,1gh, ..., ζj,rgh) Rj

and add the resulting constraints to C.
8. Return C.

We note that the matching problems in Step D.2 above do indeed lead to
a set of assignments of the specified form. Indeed, since invariant 2) on page 9
ensures that G (Kc

1w, ...,K
c
kw) is exactly G (Σ1s, ..., Σks), each matching problem

Σ`β ≡ K`γ whose left- or right-hand side is not already just one of the βs or one
of the γs must necessarily have left- and right-hand sides that are top-unifiable [8],
i.e., have identical symbols at every position that is a non-variable position in
both terms. These symbols can be simultaneously peeled away from the left-
and right-hand sides to decompose each matching problem into a unifiable set
of assignments of one of the two forms specified in Step D.2. We emphasize that
the set of assignments is not itself unified in the course of running adm.

It is only once adm is run that the set of constraints it returns is to be
solved. Each such constraint must be either of the form 〈Σ`g, f`〉, of the form
〈ψi,ph, gi〉, or of the form 〈σi′,qg, σi′,1g〉. Each constraint of the first form must
have top-unifiable left- and right-hand components by virtue of invariant 2) on
page 9. It can therefore be decomposed in a manner similar to that described

12 P. Johann, P. Cagne

in the preceding paragraph to arrive at a unifiable set of constraints. Each
constraint of the second form simply assigns a replacement expression ψi,ph to
each newly introduced variable gi. Each constraint of the third form must again
have top-unifiable left- and right-hand components. Once again, invariant 2) on
page 9 ensures that these constraints are decomposable into a unifiable set of
constraints specifying replacements for the gs.

Performing first-order unification on the entire system of constraints resulting
from the decompositions specified above, and choosing to replace more recently
introduced gs and hs with ones introduced later whenever possible, yields a
solved system comprising exactly one binding for each of the fs in terms of
those later-occurring variables. These bindings actually determine the collection
of functions mappable over the input term to adm relative to the specification Φ.
It is not hard to see that our algorithm delivers the expected results for ADTs
and nested types (when Φ is the type itself), namely, that all appropriately
typed functions are mappable over each elements of such types. (See Theorem 1
below.) But since there is no already existing understanding of which functions
should be mappable over the elements of GADTs, we actually regard the solved
system’s bindings for the fs as defining the class of functions mappable over a
given element of a GADT relative to a specification Φ.

Theorem 1. Let N be a nested type of arity k in G, let w = (w1, . . . , wk) com-
prise instances of nested types in G, let t : Nw where Nw contains n free type
variables, let β = (β1, . . . , βn), and let N (Σ1β, . . . , Σkβ) be in G. The solved
system resulting from the call

adm t (Σ1f, . . . , Σkf) N (Σ1β, . . . , Σkβ)

for f = (f1, . . . , fn) has the form
⋃n
i=1{〈gi,1, fi〉, 〈gi,2, gi,1〉, . . . , 〈gi,ri−1, gi,ri〉},

where each ri ∈ N and the gi,j are pairwise distinct variables. It thus imposes
no constraints on the functions mappable over elements of nested types.

Proof. The proof is by cases on the form of the given call to adm. The con-
straints added to C if this call is of the form A, B, or C are all of the form
〈Σjg,Σjf〉 for j = 1, 2, and the recursive calls made are all of the form
adm t′ (ζ1g, ..., ζrg) D (ζ1β, ..., ζrβ) for some t′, some (ζ1, ..., ζr), and some
nested type D. Now suppose the given call is of the form D. Then Step D.1
adds the constraints 〈Σig,Σif〉 for i = 1, . . . , k to C. In Step D.2, |α| = k, and
Kc
iw = wi for i = 1, . . . , k for every data constructor c for every nested type,

so that the matching problems to be solved are Σiβ ≡ γi for i = 1, . . . , k. In
Step D.3 we therefore have τiβγ = Σiβ for i = 1, . . . , k. No constraints involv-
ing the variables h introduced in Step D.4 are added to C in Step D.5, and no
constraints are added to C in Step D.6 since the γs are all fresh and therefore
pairwise distinct. For each Rj that is of the form D (ζj,1βγ, . . . , ζj,rβγ), where
D is a nested type, the recursive call added to C in Step D.7 is of the form
adm tj (ζj,1gh, . . . , ζj,rgh) D (ζj,1βγ, . . . , ζj,rβγ), which is again of the same
form as in the statement of the theorem. For Rjs not of this form there are no

Characterizing Functions Mappable Over GADTs 13

recursive calls, so nothing is added to C. Hence, by induction on the first argu-
ment to adm, all of the constraints added to C are of the form 〈Ψφ, Ψψ〉 for some
type expression Ψ and some φs and ψs, where the φs and ψs are all pairwise
distinct from one another.

Each constraint of the form 〈Ψφ, Ψψ〉 is top-unifiable and thus leads to a
sequence of assignments of the form 〈φi, ψi〉. Moreover, the fact that τiβγ = Σiβ
in Step D.3 ensures that no hs appear in any ζj,igh, so the solved constraints
introduced by each recursive call can have as their right-hand sides only gs
introduced in the call from which they spawned. It is not hard to see that the
entire solved system resulting from the original call must comprise the assign-
ments 〈g1,1, f1〉, ..., 〈g1,n, fn〉 from the top-level call, as well as the assignments
〈gji+1,1, gji,1〉, ..., 〈gji+1,n, gji,n〉, for ji = 0, ...,mi − 1 and i = 1, ..., n, where mi

is determined by the subtree of recursive calls spawned by fi. Re-grouping this
“breadth-first” collection of assignments “depth-first” by the trace of each fi for
i = 1, ..., n, we get a solved system of the desired form.

4 Examples

Example 6. For t as in Example 1, the call adm t f Seqβ1 results in the
sequence of calls:

call 1 adm t f Seqβ1
call 2.1 adm pair (const tt) (const 2) h1

1 Seq γ1
1

call 2.2 adm const 5 h1
2 Seq γ1

2

call 2.1.1 adm const tt h2.1
1 Seq γ2.1

1

call 2.1.2 adm const 2 h2.1
2 Seq γ2.1

2

The steps of adm corresponding to these calls are given in the table below, with
the most important components of these steps listed explicitly:

step matching τ R ζ constraints
no. problems added to C

1 β1 ≡ γ1
1 × γ1

2 τ1β1γ
1
1γ

1
2 = γ1

1

τ2β1γ
1
1γ

1
2 = γ1

2

R1 = Seq γ1
1

R2 = Seq γ1
2

ζ1,1β1γ
1
1γ

1
2 = γ1

1

ζ2,1β1γ
1
1γ

1
2 = γ1

2

〈g11 , f〉
〈h1

1 × h1
2, g

1
1〉

2.1 γ1
1 ≡ γ2.1

1 × γ2.1
2 τ1γ

1
1γ

2.1
1 γ2.1

2 = γ2.1
1

τ2γ
1
1γ

2.1
1 γ2.1

2 = γ2.1
2

R1 = Seq γ2.1
1

R2 = Seq γ2.1
2

ζ1,1γ
1
1γ

2.1
1 γ2.1

2 = γ2.1
1

ζ2,1γ
1
1γ

2.1
1 γ2.1

2 = γ2.1
2

〈g2.11 , h1
1〉

〈h2.1
1 × h2.1

2 , g2.11 〉
2.2 γ2

1 ≡ γ2.2
1 τ1γ

1
2γ

2.2
1 = γ1

2 R1 = γ1
2 〈g2.21 , h1

2〉
2.1.1 γ2.1

1 ≡ γ2.1.1
1 τ1γ

2.1
1 γ2.1.1

1 = γ2.1
1 R1 = γ2.1

1 〈g2.1.11 , h2.1
1 〉

2.1.2 γ2.1
2 ≡ γ2.1.2

1 τ1γ
2.1
2 γ2.1.2

1 = γ2.1
2 R1 = γ2.1

2 〈g2.1.21 , h2.1
2 〉

Since the solution to the generated set of constraints requires that f has the form
(g2.1.11 ×g1.2.11)×g2.21 , we conclude that the most general functions mappable over
t relative to the specification Seqβ1 are those of the form (f1×f2)×f3 for some
types X1, X2, and X3 and functions f1 : Bool → X1, f2 : Int → X2, and
f3 : Int→ X3. This is precisely the result obtained informally in Example 1.

14 P. Johann, P. Cagne

Example 7. For G and t as in Example 2 the call adm t f Gβ1 results in the
sequence of calls:

call 1 adm t f Gβ1
call 2 adm t2 Gh1

1 × G(h1
2 × h1

2) G(Gγ1
1 × G(γ1

2 × γ1
2))

call 3 adm t3 (Gg21 ,G(g
2
2 × g22)) Gγ1

1 × G(γ1
2 × γ1

2)

call 4.1 adm inj (cons 2 nil) g31 Gγ2
1

call 4.2 adm pairing (inj 2) const g32 × g32 G(γ2
2 × γ2

2)

call 4.2.1 adm inj 2 g4.21 Gγ2
2

call 4.2.2 adm const g4.21 Gγ2
2

where
t = projpair (inj (inj (cons 2 nil), pairing (inj 2) const))
t2 = inj (inj (cons 2 nil), pairing (inj 2) const)
t3 = (inj (cons 2 nil), pairing (inj 2) const)

The steps of adm corresponding to these calls are given in Table 1, with the
most important components of these steps listed explicitly. Since the solution
to the generated set of constraints requires that f has the form g4.11 × N, we
conclude that the most general functions mappable over t relative to the spec-
ification Gβ1 are those of the form f ′ × idN for some type X and some function
f ′ : List N→ X. This is precisely the result obtained intuitively in Example 2.

Example 8. For G and t as in Example 3 we have

Kconst = N
Kflat α = Listα
K inj α = α
Kpairing α1 α2 = α1 × α2

Kprojpair α1 α2 = α1 × α2

The call adm t f Gβ1 results in the sequence of calls:

call 1 adm t f Gβ1
call 2 adm t2 Gh1

1 × G(h1
2 × h1

2) G(Gγ1
1 × G(γ1

2 × γ1
2))

call 3 adm t3 (Gg21 ,G(g
2
2 × g22)) Gγ1

1 × G(γ1
2 × γ1

2)

call 4.1 adm flat (cons const nil) g31 Gγ2
1

call 4.2 adm pairing (inj 2) const g32 × g32 G(γ2
2 × γ2

2)

call 4.1.1 adm cons const nil Gh4.1
1 List (Gγ4.1

1)

call 4.2.1 adm inj 2 g4.21 Gγ2
2

call 4.2.2 adm const g4.21 Gγ2
2

call 4.1.1.1 adm const g4.1.11 G γ4.1
1

call 4.1.1.2 adm nil Gg4.1.11 List(Gγ4.1
1)

where

t = projpair (inj (flat (cons const nil), pairing (inj 2) const))
t2 = inj (flat (cons const nil), pairing (inj 2) const)
t3 = (flat (cons const nil), pairing (inj 2) const)

Characterizing Functions Mappable Over GADTs 15

ca
ll

m
at

ch
in

g
τ

R
ζ

co
n
st

ra
in

ts
n
o.

p
ro

b
le

m
s

ad
d
ed

to
C

1
β
1
≡
γ
1 1
×
γ
1 1

τ 1
β
1
γ
1 1
γ
1 2
=
γ
1 1

τ 2
β
1
γ
1 1
γ
1 2
=
γ
1 2

R
1
=

G
(G
γ
1 1
×

G
(γ

1 2
×
γ
1 2
))

ζ 1
,1
β
1
γ
1 1
γ
1 2
=

G
γ
1 1
×

G
(γ

1 2
×
γ
1 2
)
〈g

1 1
,f
〉

〈h
1 1
×
h
1 2
,g

1 1
〉

2
G
γ
1 1
×

G
(γ

1 2
×
γ
1 2
)
≡
γ
2 1

τ 1
γ
1 1
γ
1 2
γ
2 1
=

G
γ
1 1
×

G
(γ

1 2
×
γ
1 2
)

R
1
=

G
γ
1 1
×

G
(γ

1 2
×
γ
1 2
)

ζ 1
,1
γ
1 1
γ
1 2
γ
2 1
=

G
γ
1 1

ζ 1
,2
γ
1 1
γ
1 2
γ
2 1
=

G
(γ

1 2
×
γ
1 2
)

〈G
g
2 1
×

G
(g

2 2
×
g
2 2
),

G
h
1 1
×

G
(h

1 2
×
h
1 2
)〉

3
ζ 1
γ
2 1
γ
2 2
=
γ
2 1

ζ 2
γ
2 1
γ
2 2
=
γ
2 2
×
γ
2 2

〈G
g
3 1
,G
g
2 1
〉

〈G
(g

3 2
×
g
3 2
),

G
(g

2 2
×
g
2 2
)〉

4.
1

γ
2 1
≡
γ
4
.1

1
τ 1
γ
2 1
γ
4
.1

1
=
γ
2 1

R
1
=
γ
2 1

〈g
4
.1

1
,g

3 1
〉

4.
2

γ
2 2
×
γ
2 2
≡
γ
4
.2

1
×
γ
4
.2

2
τ 1
γ
2 2
γ
4
.2

1
γ
4
.2

2
=
γ
2 2

τ 2
γ
2 2
γ
4
.2

1
γ
4
.2

2
=
γ
2 2

R
1
=

G
γ
2 2

R
2
=

G
γ
2 2

ζ 1
,1
γ
2 1
γ
4
.2

1
γ
4
.2

2
=
γ
2 2

ζ 2
,1
γ
2 1
γ
4
.2

1
γ
4
.2

2
=
γ
2 2

〈g
4
.2

1
×
g
4
.2

1
,g

3 2
×
g
3 2
〉

4.
2.
1

γ
2 2
≡
γ
4
.2
.1

1
τ 1
γ
2 2
γ
4
.2
.1

1
=
γ
2 2

R
1
=
γ
2 2

〈g
4
.2
.1

1
,g

4
.2

1
〉

4.
2.
2

γ
2 2
≡

N
R

1
=

1
〈g

4
.2
.2

1
,g

4
.2

1
〉

〈N
,g

4
.2
.2

1
〉

T
ab

le
1.

C
al
ls

fo
r
E
xa

m
pl
e
7

ca
ll

m
at

ch
in

g
τ

R
ζ

co
n
st

ra
in

ts
n
o.

p
ro

b
le

m
s

ad
d
ed

to
C

1
β
1
≡
γ
1 1
×
γ
1 1

τ 1
β
1
γ
1 1
γ
1 2
=
γ
1 1

τ 2
β
1
γ
1 1
γ
1 2
=
γ
1 2

R
1
=

G
(G
γ
1 1
×

G
(γ

1 2
×
γ
1 2
))

ζ 1
,1
β
1
γ
1 1
γ
1 2
=

G
γ
1 1
×

G
(γ

1 2
×
γ
1 2
)
〈g

1 1
,f
〉

〈h
1 1
×
h
1 2
,g

1 1
〉

2
G
γ
1 1
×

G
(γ

1 2
×
γ
1 2
)
≡
γ
2 1

τ 1
γ
1 1
γ
1 2
γ
2 1
=

G
γ
1 1
×

G
(γ

1 2
×
γ
1 2
)

R
1
=

G
γ
1 1
×

G
(γ

1 2
×
γ
1 2
)

ζ 1
,1
γ
1 1
γ
1 2
γ
2 1
=

G
γ
1 1

ζ 1
,2
γ
1 1
γ
1 2
γ
2 1
=

G
(γ

1 2
×
γ
1 2
)

〈G
g
2 1
×

G
(g

2 2
×
g
2 2
),

G
h
1 1
×

G
(h

1 2
×
h
1 2
)〉

3
ζ 1
γ
2 1
γ
2 2
=
γ
2 1

ζ 2
γ
2 1
γ
2 2
=
γ
2 2
×
γ
2 2

〈G
g
3 1
,G
g
2 1
〉

〈G
(g

3 2
×
g
3 2
),

G
(g

2 2
×
g
2 2
)〉

4.
1

γ
2 1
≡

L
is

t
γ
4
.1

1
τ 1
γ
2 1
γ
4
.1

1
=
γ
4
.1

1
R

1
=

L
is

t
(G
γ
4
.1

1
)

ζ 1
,1
γ
2 1
γ
4
.1

1
=

G
γ
4
.1

1
〈g

4
.1

1
,g

3 1
〉

〈L
is

t
h
4
.1

1
,g

4
.1

1
〉

4.
2

γ
2 2
×
γ
2 2
≡
γ
4
.2

1
×
γ
4
.2

2
τ 1
γ
2 2
γ
4
.2

1
γ
4
.2

2
=
γ
2 2

τ 2
γ
2 2
γ
4
.2

1
γ
4
.2

2
=
γ
2 2

R
1
=

G
γ
2 2

R
2
=

G
γ
2 2

ζ 1
,1
γ
2 1
γ
4
.2

1
γ
4
.2

2
=
γ
2 2

ζ 2
,1
γ
2 1
γ
4
.2

1
γ
4
.2

2
=
γ
2 2

〈g
4
.2

1
×
g
4
.2

1
,g

3 2
×
g
3 2
〉

4.
1.
1

G
γ
4
.1

1
≡
γ
4
.1
.1

1
τ 1
γ
4
.1

1
γ
4
.1
.1

1
=

G
γ
4
.1

1
R

1
=

G
γ
4
.1

1

R
2
=

L
is

t(
G
γ
4
.1

1
)

ζ 1
,1
γ
4
.1

1
γ
4
.1
.1

1
=
γ
4
.1

1

ζ 2
,1
γ
4
.1

1
γ
4
.1
.1

1
=

G
γ
4
.1

1

〈G
g
4
.1
.1

1
,G
h
4
.1

1
〉

4.
2.
1

γ
2 2
≡
γ
4
.2
.1

1
τ 1
γ
2 2
γ
4
.2
.1

1
=
γ
2 2

R
1
=
γ
2 2

〈g
4
.2
.1

1
,g

4
.2

1
〉

4.
2.
2

γ
2 2
≡

N
R

1
=

1
〈g

4
.2
.2

1
,g

4
.2

1
〉

〈N
,g

4
.2
.2

1
〉

4.
1.
1.
1
γ
4
.1

1
≡

N
R

1
=

1
〈g

4
.1
.1
.1

1
,g

4
.1
.1

1
〉

〈N
,g

4
.1
.1
.1

1
〉

4.
1.
1.
2

G
γ
4
.1

1
≡
γ
4
.1
.1
.2

1
τ 1
γ
4
.1

1
γ
4
.1
.1
.2

1
=

G
γ
4
.1

1
R

1
=

1
〈G
g
4
.1
.1
.2

1
,G
g
4
.1
.1

1
〉

T
ab

le
2.

C
al
ls

fo
r
E
xa

m
pl
e
8

16 P. Johann, P. Cagne

The steps of adm corresponding to these call are given in Table 2, with the
most important components of these steps listed explicitly. Since the solution
to the generated set of constraints requires that f has the form List N × N, we
conclude that the only function mappable over t relative to the specification Gβ1
is idList N × idN. This is precisely the result obtained informally in Example 3.

Example 9. For t as in Example 4 the call adm t f Listβ1 results in the
sequence of calls:

call 1 adm t f Listβ1
call 2 adm cons (cons 3 nil) nil) g11 Listβ1
call 2.1 adm nil g21 Listβ1

The steps of adm corresponding to these call are given in the table below, with
the most important components of these steps listed explicitly:

step matching τ R ζ constraints
no. problems added to C

1 β1 ≡ γ1
1 τ1β1γ

1
1 = β1 R1 = β1

R2 = Listβ1

ζ2,1β1γ
1
1 = β1 〈g11 , f〉

2 β1 ≡ γ2
1 τ1β1γ

2
1 = β1 R1 = β1

R2 = Listβ1

ζ2,1β1γ
2
1 = β1 〈g21 , g11〉

2.1 β1 ≡ γ2.1
1 τ1β1γ

2.1
1 = β1 R1 = 1 〈g2.11 , g21〉

Since the solution to the generated set of constraints requries that f has the
form g2.11 , we conclude that any function of type List N→ X (for some type X)
is mappable over t relative to the specification Listβ1.

Example 10. For t as in Example 5 the call adm t f List (Listβ1) results in
the following sequence of calls:

call 1 adm t f Listβ1
call 2.1 adm cons 1 (cons 2 nil) g11 Listβ1
call 2.2 adm cons (cons 3 nil) nil) List g11 List (Listβ1)

call 2.1.1 adm cons 2 nil g2.11 Listβ1
call 2.2.1 adm cons 3 nil g2.21 Listβ1
call 2.2.2 adm nil List g2.21 List (Listβ1)

call 2.1.1.1 adm nil g2.1.11 Listβ1
call 2.2.1.1 adm nil g2.2.11 Listβ1

Characterizing Functions Mappable Over GADTs 17

The steps of adm corresponding to these calls are given in the table below, with
the most important components of these steps listed explicitly:

step matching τ R ζ constraints
no. problems added to C

1 Listβ1 ≡ γ1
1 τ1β1γ

1
1 = Listβ1 R1 = Listβ1

R2 = List (Listβ1)
ζ1,1β1γ

1
1 = β1

ζ2,1β1γ
1
1 = Listβ1

〈List g11 , f〉

2.1 β1 ≡ γ2.1
1 τ1β1γ

2.1
1 = β1 R1 = β1

R2 = Listβ1

ζ2,2β1γ
2.1
1 = β1 〈g2.11 , g11〉

2.2 Listβ1 ≡ γ2.2
1 τ1β1γ

2.2
1 = Listβ1 R1 = Listβ1

R2 = List (Listβ1)
ζ1,1β1γ

2.2
1 = β1

ζ2,1β1γ
2.2
1 = Listβ1

〈List g2.21 , List g11〉

2.1.1 β1 ≡ γ2.1.1
1 τ1β1γ

2.1.1
1 = β1 R1 = β1

R2 = Listβ1

ζ2,2β1γ
2.1.1
1 = β1 〈g2.1.11 , g2.11 〉

2.2.1 β1 ≡ γ2.2.1
1 τ1β1γ

2.2.1
1 = β1 R1 = β1

R2 = Listβ1

ζ2,2β1γ
2.2.1
1 = β1 〈g2.2.11 , g2.21 〉

2.2.2 Listβ1 ≡ γ2.2.2
1 τ1β1γ

2.2.2
1 = Listβ1 R1 = 1 〈List g2.2.21 , List g2.21 〉

2.1.1.1 β1 ≡ γ2.1.1.1
1 τ1β1γ

2.1.1.1
1 = β1 R1 = 1 〈g2.1.1.11 , g2.1.11 〉

2.2.1.1 β1 ≡ γ2.2.1.1
1 τ1β1γ

2.2.1.1
1 = β1 R1 = 1 〈g2.2.1.11 , g2.2.11 〉

Since the solution to the generated set of constraints requires that f has the
form List g2.2.1.11 , we conclude that the most general functions mappable over
t relative to the specification List (Listβ1) are those of the form mapList f

′ for
some type X and function f ′ : N→ X.

5 Conclusion, Related Work, and Future Directions

This paper develops an algorithm for characterizing those functions on a deep
GADT’s type arguments that are mappable over its elements. This algorithm,
and thus this paper, can in some sense be read as defining what it means for a
function to be mappable over t. It thus makes a fundamental contribution to the
study of GADTs since there is to our knowledge, no already existing definition of
characterization of the intuitive notion of mappability for functions over them.
More generally, we know of no other careful study of mappability for GADTs.

The work reported here is part of a larger effort to develop a single, unified
categorical theory of data types: understanding mappability for GADTs can be
seen as a first step toward an initial algebra semantics for them that specializes
to the standard one for nested types (which itself subsumes the standard such
semantics for ADTs) whenever the GADTs in question is a nested type (or ADT).

Initial algebra semantics for GADTs have been studied in [10] and [12]. Both
of these works interpret GADTs as discrete functors; as a result, the functorial
action of the functor interpreting a GADT G cannot correctly interpret appli-
cations of G’s map function to non-identity functions. In addition, [10] cannot
handle truly nested data types such as Bush or the GADT G from Example 2.
These discrete initial algebra semantics for GADTs thus do not recover the usual
initial algebra semantics of nested types when instantiated to them.

The functorial completion semantics of [13], by contrast, does interpret
GADTs as non-discrete functors. However, this is achieved at the cost of adding
“junk” elements, unreachable in syntax but interpreting elements in the “map

18 P. Johann, P. Cagne

closure” of its syntax, to the interpretation of every proper GADT. Func-
torial completion for Seq, e.g., adds interpretations of elements of the form
mapSeq f (pair x y) even though these may not be of the form pair u v for any terms
u and v. Importantly, functorial completion adds no junk to interpretations of
nested types or ADTs, so unlike the semantics of [12], that of [13] does extend
the usual initial algebra semantics for them. But since the interpretations of [13]
are bigger than expected for proper GADTs, this semantics, too, is unacceptable.

A similar attempt to recover functoriality is made in [9] to salvage the method
from [10]. The overall idea is to relax the discreteness of the functors interpreting
GADTs by replacing the dependent products and sums in the development
of [10] with left and right Kan extensions, respectively. Unfortunately, this en-
tails that the domains of the functors interpreting GADTs must be the category
of all interpretations of types and all morphisms between them, which again
leads to the inclusion of unwanted junk elements in the GADT’s interpretation.

Containers [1,2] provide an entirely different approach to describing the
functorial action of an ADT or nested type. In this approach an element of
such a data type is described first by its structure, and then by the data that
structure contains. That is, a ADT or nested type D is seen as comprising a set
of shapes and, for each shape S, a set of positions in S. The functorial action of
the functor D interpreting D action does indeed interpret mapD: given a shape
and a labeling of its position by elements of A, we get automatically a data
structure of the same shape whose positions are labeled by elements of B as soon
as we have a function f : A→ B to translate elements of A to elements of B.

GADTs that go beyond ADTs and nested types have been studied from the
container point of view as indexed containers, both in [3] and again in [10]. The
authors of [3] propose encoding strictly positive indexed data types in terms of
some syntactic combinators they consider “categorically inspired”. But as far as
we understand their claim, map functions and their interpretations as functo-
rial actions are not worked out for indexed containers. The encoding in [3] is
nevertheless essential to understanding GADTs and other inductive families as
“structures containing data”. With respect to it, our algorithm actually dicovers
the shape of its input element, and thus can be understood as determining how
“containery” a given GADT is.

Acknowledgements This research was supported in part by NSF award CCR-
1906388. It was performed while visiting Aarhus University’s Logic and Se-
mantics group, which provided additional support via Villum Investigator grant
no. 25804, Center for Basic Research in Program Verification.

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Categories of Containers. In: Foundations of
Software Science and Computation Structures, pp. 23-38 (2003). https://doi.org/
10.1007/3-540-36576-1_2

https://doi.org/10.1007/3-540-36576-1_2
https://doi.org/10.1007/3-540-36576-1_2
https://doi.org/10.1007/3-540-36576-1_2
https://doi.org/10.1007/3-540-36576-1_2

Characterizing Functions Mappable Over GADTs 19

2. Abbott, M., Altenkirch, T., Ghani, N.: Containers - Constructing Strictly Positive
Types. Theoretical Computer Science 342, 3-27 (2005). https://doi.org/10.1016/j.
tcs.2005.06.002

3. Altenkirch, T., Ghani, N., Hancock, P., McBride, C., Morris, P.: Indexed Contain-
ers. Journal of Functional Programming 25 (e5) (2015). https://doi.org/10.1017/
S095679681500009X

4. Arbib. M., Manes, E.: Algebraic Approaches to Program Semantics. Springer (1986).
https://doi.org/10.1007/978-1-4612-4962-7

5. Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall (1997).
6. Bird, R., Meertens, L.: Nested Datatypes. In: Mathematics of Program Construc-

tion, pp. 52–67 (1998). https://doi.org/10.1007/BFb0054285
7. Cagne, P., Johann, P.: Accepted Artifact (APLAS 2022) supporting "Characterizing

Functions Mappable Over GADTs". https://doi.org/10.5281/zenodo.7004589
8. Dougherty, D., Johann, P.: An Improved General E-unification Method. Jour-

nal of Symbolic Computation 14, 303-320 (1992). DOI: https://doi.org/10.1016/
0747-7171(92)90010-2

9. Fiore, M.: Discrete Generalised Polynomial Functors. In: Automata, Languages, and
Programming, pp. 214-226 (2012). https://doi.org/10.1007/978-3-642-31585-5_22

10. Hamana, M., Fiore, M.: A Foundation for GADTs and Inductive Families: Depen-
dent Polynomial Functor Approach. In: Workshop on Generic Programming, pp.
59-70 (2011). https://doi.org/10.1145/2036918.2036927

11. Johann, P., Ghani, N.: Initial Algebra Semantics is Enough! In: Typed
Lambda Calculus and Applications, pp. 207-222 (2007). https://doi.org/10.1007/
978-3-540-73228-0_16

12. Johann, P., Ghani, N.: Foundations for Structured Programming with GADTs.
In: Principles of Programming Languages, pp. 297-308 (2008). https://doi.org/10.
1145/1328897.1328475

13. Johann, P., Polonsky, A.: Higher-Kinded Data Types: Syntax and Semantics. In:
Logic in Computer Science, pp. 1-13 (2019). https://doi.org/10.1109/LICS.2019.
8785657

14. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple Unification-
based Type Inference for GADTs. In: International Conference on Functional Pro-
gramming, pp. 50-61 (2006). https://doi.org/10.1145/1160074.1159811

15. Reynolds, J. C.: Types, Abstraction, and Parametric Polymorphism. Information
Processing 83(1), 513-523 (1983).

16. Sheard, T., Pasalic, E.: Meta-programming with Built-in Type Equality. In: Work-
shop on Logical Frameworks and Meta-languages, pp. 49-65 (2008). https://doi.org/
10.1016/j.entcs.2007.11.012

17. Xi, H., Chen, C., Chen, G.: Guarded Recursive Datatype Constructors. In: Prin-
ciples of Programming Languages, pp. 224–235 (2003). https://doi.org/10.1145/
604131.604150

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1007/978-1-4612-4962-7
https://doi.org/10.1007/978-1-4612-4962-7
https://doi.org/10.1007/BFb0054285
https://doi.org/10.1007/BFb0054285
https://doi.org/10.5281/zenodo.7004589
https://doi.org/10.5281/zenodo.7004589
https://doi.org/10.1016/0747-7171(92)90010-2
https://doi.org/10.1016/0747-7171(92)90010-2
https://doi.org/10.1007/978-3-642-31585-5_22
https://doi.org/10.1007/978-3-642-31585-5_22
https://doi.org/10.1145/2036918.2036927
https://doi.org/10.1145/2036918.2036927
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.1145/1328897.1328475
https://doi.org/10.1145/1328897.1328475
https://doi.org/10.1145/1328897.1328475
https://doi.org/10.1145/1328897.1328475
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1145/1160074.1159811
https://doi.org/10.1145/1160074.1159811
https://doi.org/10.1016/j.entcs.2007.11.012
https://doi.org/10.1016/j.entcs.2007.11.012
https://doi.org/10.1016/j.entcs.2007.11.012
https://doi.org/10.1016/j.entcs.2007.11.012
https://doi.org/10.1145/604131.604150
https://doi.org/10.1145/604131.604150
https://doi.org/10.1145/604131.604150
https://doi.org/10.1145/604131.604150

	Characterizing Functions Mappable Over GADTs

