
Toward Complete Stack Safety for Capability Machines

Aïna Linn Georges, Armaël Guéneau, Alix Trieu, Lars Birkedal
Aarhus University

Denmark
{ageorges,armael,alix.trieu,birkedal}@cs.au.dk

Abstract
Capability machines are computers that provide support for
fine grained control over memory accesses. Pointers are re-
placed by capabilities, unforgeable tokens of authority that
represent the ability to access a memory location. As such,
capability machines are an attractive target for secure compi-
lation, and this interest is further compounded by the recent
commitment from Arm to develop an industrial prototype of
CHERI-based capability machines1. It is thus no surprise that
numerous recent works have proposed techniques for en-
forcing well-bracketed control-flow (WBCF) and local state
encapsulation (LSE) [4, 6, 7], temporal stack safety [8], or
temporal heap safety [3]. However, these solutions still fall
short of ensuring what we believe to be complete stack safety.
In this paper, we review recent propositions from the litera-
ture and identify limitations. We further propose a potential
solution using a new form of capabilities.
1 Background
Capability machines are computers that provide support for
fine grained control over memory accesses. Pointers are re-
placed by capabilities, unforgeable tokens of authority that
represent the ability to access a memory location. Capabili-
ties are represented by a range of authority (e.g., [𝑏, 𝑒)), a per-
mission (e.g., read, read-write, read-write-execute, etc), and
the current address it points to, thus the capability (𝑝,𝑏, 𝑒, 𝑎)
provides permission 𝑝 over range [𝑏, 𝑒) and currently points
to address 𝑎.
Capability machines are an attractive target for secure

compilation as illustrated by numerous recent works show-
ing how to enforce WBCF and LSE [4, 6, 7], temporal stack
safety [8], or temporal heap safety [3].

We start by reviewing what guarantees on stack memory
can be enforced by the different secure calling conventions
proposed in the literature, but omit how these calling con-
ventions operate due to space constraint.

Consider the code in Listing 1. This is a variant of the
classical “awkward example” [2], which works as follows.
Function f possesses some local statemodeled by the variable
x (line 3), which is set to 0 before calling some arbitrary
adversarial code adv(). After the call returns, x is set to 1
before calling the adversary again. Finally, x is checked to
1https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-
morello.html

PrisC’21, January 17, 2021, Online
2021.

be still equal to 1 at the end. This example relies heavily on
WBCF and LSE for the assertion to succeed. If LSE is not
ensured, then the second call to advmay modify x. Similarly,
if WBCF is not enforced, then during its second call on line
7, adv could keep the return pointer to line 8, call f, which
would then set x to 0 before calling adv again who can finally
use the return pointer to line 8 and fail the assertion.

Using a secure calling convention as proposed by Georges
et al. [4], Skorstengaard et al. [6, 7], it can be verified that the
assertion does not fail in presence of arbitrary code. How-
ever, the calling convention proposed by Skorstengaard et al.
[7] requires a prohibitive amount of memory clearing which
makes it hardly usable in practice. Georges et al. [4] improves
on this by introducing uninitialized capabilities, a new kind
of capabilities that represent the permission to read, only af-
ter having written first. Leveraging uninitialized capabilities,
the amount of required memory clearing is reduced from
a quadratic amount to a linear one. Finally, StkTokens [6]
is a calling convention proposing to use linear capabilities,
which cannot be duplicated. The calling convention requires
no memory clearing, but it may be difficult to efficiently
implement linear capabilities in hardware, and some popular
programming idioms (e.g., passing stack references in calls)
may not be possible to implement [5, §3.6.2].

In another direction, Tsampas et al. [8] study the issue of
temporal stack safety. Consider the code in Listing 2, &x on
line 12 is a pointer to a location containing another pointer.
After the call to f, there is now a pointer at &x to the location
l previously occupied by z on line 11. The value of l depends
on a global variable N. It should be noted that l is stale after
the return and should not be allowed to be passed down.
Nevertheless, l is passed to h through g. For well chosen
values of K and N, it is possible that l coincides with where
the return pointer of h is stored and thus the store at line 2
can lead to the control-flow being hijacked.

To solve this issue, Tsampas et al. propose that capabilities
are extended with “lifetime” information, basically the call
depth of the function’s stackframe, and that capabilities with
longer lifetime may not be used to store a capability with
shorter lifetime. This would disallow the store on line 9 in the
example. The main difficulty in implementing this proposal
is that in order to allow for a call depth of size 2𝑛 , 𝑛 bits
are required in the encoding of a capability. This is possibly
expensive as it would already require 10 bits just to allow to
use List.map on a list with 1000 elements.

1

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-morello.html

PrisC’21, January 17, 2021, Online Aïna Linn Georges, Armaël Guéneau, Alix Trieu, Lars Birkedal

1 void adv(void);
2 void f(void) {
3 static int x = 0;
4 x = 0;
5 adv();
6 x = 1;
7 adv();
8 assert (x == 1);
9 }

Listing (1) Awkward example

The examples are given in a C-like
syntax, but we actually consider
the underlying assembly code.

1 int N, K;
2 void h(int* x) { *x = 0; }
3 void g(int* x) {
4 char* t[K];
5 h(x); }
6 void f(int** x) {
7 char* t[N];
8 int z;
9 *x = &z; }
10 int main(void) {
11 int* x;
12 f(&x);
13 g(x);
14 return 0; }

Listing (2) Example violating temporal stack
safety

1 void adv(int* x)
2 void f(void) {
3 int x, y = 0;
4 adv(&x);
5 x = 0;
6 adv(&y);
7 assert (x == 0); }
8 int compare(char* x, char* y)
9 int compare_secret(char* in) {
10 char* secret = ...;
11 int x = compare(secret , in);
12 return x; }

Listing (3) Issues with passing stack references

2 Complete stack safety
While combining WBCF, LSE and temporal stack safety is
desirable, we believe this is not sufficient to achieve complete
stack safety. Indeed, when considering a high level call stack
with push and pop operations, we would like that when an
item is pushed, the items below become inaccessible: this
corresponds roughly to LSE. Only the item at the top can be
popped, this corresponds to WBCF. Finally, when an item
is popped, it becomes inaccessible from the stack. This last
point is only partially solved by temporal stack safety.
Consider for instance that you are implementing a func-

tion that checks whether an input is equal to some secret
string, and you found a formally verified piece of code that
compares two strings in constant-time: it would make sense
to use it as a library routine. The bottom half of Listing 3
showcases such a scenario, where compare_secret checks
whether an input is equal to the secret by invoking the for-
mally verified compare. Assuming that compare_secret is
invoked by some adversarial code with a random input, the
comparison will most likely fail. However, it turns out that
the verified comparison function compare copies both inputs
on its stack, but it does not scrub its stack before returning!
On a regular machine, the adversary could recover the secret
by abusing pointer arithmetic, even though intuitively, stack
safety should forbid it. This is an instance of use after free.
Finally, LSE is too restrictive as it is a common program-

ming idiom in C to pass stack references as arguments. For
instance, consider f in Listing 3. It passes references to local
variables to an adversary: x in a first call, then y in a second
call. Variable x is set to 0 before the second call, and checked
to not have been modified afterwards. The intuition2 is that
the adversary should not be allowed to keep references to x
in between calls as it is a stack variable whose lifetime may
be short; it would thus be unsafe to keep a reference to it
in a global variable for instance. This can be thought of as
some sort of “fine grained” local state encapsulation.
2As also argued by rule 17.6 of the MISRA-C guideline [1].

While these issues were not considered by previous works,
they are partly solved by some of them. Thanks to its exces-
sive memory clearing, fine grained local state encapsulation
is possible and use after free is prevented by the calling con-
vention of Skorstengaard et al. [7], but it does not support
temporal stack safety. Though a vast improvement on perfor-
mance, the new calling convention of Georges et al. [4] does
not prevent use after free anymore. Similarly, StkTokens [6]
does not prevent use after free either.

3 Monotone capabilities
The calling convention of Georges et al. [4] seems the most
practical to use, but does not prevent use after free nor pro-
vide temporal stack safety. Their calling convention uses
a combination of local capabilities and uninitialized capa-
bilities. Local capabilities are capabilities that can only be
stored on the stack (to simplify). An uninitialized capabil-
ity with authority over range [𝑏, 𝑒) and currently pointing
to address 𝑎 gives read authority over [𝑏, 𝑎). When used to
write to 𝑎, the boundary is automatically increased so that
read authority is now given over [𝑏, 𝑎 + 1). Intuitively, by
making the stack capability local and uninitialized, a caller
knows that any reference to its stack variables are necessar-
ily stored on the stack, and a callee cannot read what is left
on the stack by uninitializedness of the capability. However,
this does not protect a callee from its caller as shown by
the previous example of Listing 3. We introduce monotone
capabilities which can be used to prevent use after free and
provide temporal stack safety. Assuming that the stack is
growing upward, a monotone capability is a local capability
that can only be stored above where it has read authority.
This ensures temporal stack safety as in Listing 2, by prevent-
ing passing down a reference to a stack variable to the caller.
By combinining uninitialized and monotone capabilities, a
callee is ensured that its caller cannot have kept a capability
with read authority over its stackframe. Additionally, it is
no longer necessary to scrub its stackframe, thus rendering
dead store elimination less harmful [9].

2

Toward Complete Stack Safety for Capability Machines PrisC’21, January 17, 2021, Online

Acknowledgments
This work was supported by a Villum Investigator grant (no.
25804), Center for Basic Research in Program Verification
(CPV), from the VILLUM Foundation.

References
[1] Motor Industry Software Reliability Association et al. 2008. MISRA-C:

2004: Guidelines for the Use of the C Language in Critical Systems. MIRA.
[2] Derek Dreyer, Georg Neis, and Lars Birkedal. 2010. The impact of

higher-order state and control effects on local relational reasoning. In
Proceeding of the 15th ACM SIGPLAN international conference on Func-
tional programming, ICFP 2010, Baltimore, Maryland, USA, September
27-29, 2010. 143–156. https://doi.org/10.1145/1863543.1863566

[3] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff,
Sam Ainsworth, Lucian Paul-Trifu, Brooks Davis, Hongyan Xia, Ed-
ward Tomasz Napierala, Alexander Richardson, John Baldwin, David
Chisnall, Jessica Clarke, Khilan Gudka, Alexandre Joannou, A. Theodore
Markettos, Alfredo Mazzinghi, Robert M. Norton, Michael Roe, Peter
Sewell, Stacey D. Son, Timothy M. Jones, Simon W. Moore, Peter G.
Neumann, and Robert N. M. Watson. 2020. Cornucopia: Temporal
Safety for CHERI Heaps. In 2020 IEEE Symposium on Security and
Privacy, S&P 2020, San Francisco, CA, USA, May 18-21, 2020. 608–625.
https://doi.org/10.1109/SP40000.2020.00098

[4] Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin
Timany, Alix Trieu, Sander Huyghebaert, Dominique Devriese, and
Lars Birkedal. 2021. Efficient and Provable Local Capability Revocation
using Uninitialized Capabilities. Proc. ACM Program. Lang. POPL (2021).
(Conditionally accepted).

[5] Lau Skorstengaard. 2019. Formal Reasoning about Capability Machines.
Ph.D. Dissertation. Aarhus University.

[6] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2019. Stk-
Tokens: enforcing well-bracketed control flow and stack encapsulation
using linear capabilities. Proc. ACM Program. Lang. 3, POPL (2019),
19:1–19:28. https://doi.org/10.1145/3290332

[7] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2020. Rea-
soning about a Machine with Local Capabilities: Provably Safe Stack
and Return Pointer Management. ACM Trans. Program. Lang. Syst. 42,
1 (2020), 5:1–5:53. https://doi.org/10.1145/3363519

[8] Stelios Tsampas, Dominique Devriese, and Frank Piessens. 2019. Tempo-
ral Safety for Stack Allocated Memory on Capability Machines. In 32nd
IEEE Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ,
USA, June 25-28, 2019. 243–255. https://doi.org/10.1109/CSF.2019.00024

[9] Zhaomo Yang, Brian Johannesmeyer, Anders Trier Olesen, Sorin
Lerner, and Kirill Levchenko. 2017. Dead Store Elimination (Still)
Considered Harmful. In 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017. 1025–
1040. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/yang

3

https://doi.org/10.1145/1863543.1863566
https://doi.org/10.1109/SP40000.2020.00098
https://doi.org/10.1145/3290332
https://doi.org/10.1145/3363519
https://doi.org/10.1109/CSF.2019.00024
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/yang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/yang

	Abstract
	1 Background
	2 Complete stack safety
	3 Monotone capabilities
	Acknowledgments
	References

