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1 INTRODUCTION

The programme of session types [Honda et al. 1998; Vasconcelos 2012] aims to formulate behavioural
type systems that capture the notion of a sessionÐa structured, concurrent interaction between
communicating agents. Very little is usually assumed about these agents: their only shared resource
is usually a set of channels through which they can send and receive messages. On the other hand,
ever since its inception it has been clear that linear logic [Girard 1987] has a deep and mystifying
relationship with concurrency. Abramsky [1994] argued that 𝜋-calculi [Milner et al. 1992] and
linear logic should be in a Curry-Howard correspondence [Bellin and Scott 1994]. Consequently,
one should be able to use formulas of linear logic as types that specify concurrent interactions,
thereby constructing a system of session types that is logically motivated. Session types and linear
types have recently undergone a swift rapprochement beginning with the work of Caires and
Pfenning [Caires and Pfenning 2010; Caires et al. 2016].

Despite these advances, the 𝜋-calculi that have been developed for Linear Logic suffer from dire
expressive poverty. The typable processes are free of deadlock and nondeterminism, at the price of
being unable to model even benign forms of race. One striking omission is that it is difficult to write
down a well-typed process that represents two distinct clients being served by a server listening on
a single channel. The goal of the present paper is to introduce a logical device, namely the strong
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coexponential modalities, that will allow us to give a linear type to this extremely common pattern
of concurrent interaction.

1.1 The Problem

Caires and Pfenning [2010] proposed a Curry-Howard correspondence in which Intuitionistic
Linear Logic is used as a type system for the 𝜋-calculus [Milner et al. 1992]. This correspondence
allows one to interpret formulas of linear logic as session types, i.e., as specifications of disciplined
communication over a named channel. A few years later Wadler [2014] extended this interpretation
to Classical Linear Logic (CLL). Wadler’s system, which is called Classical Processes (CP), perfectly
corresponds to Girard’s original one-sided sequent system for CLL [1987]. Its typing judgments are
of the form 𝑃 ⊢ Γ, where 𝑃 is a 𝜋-calculus process, and Γ is a list 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 of name-session
type pairs, with 𝐴𝑖 a formula of Classical Linear Logic. The operational semantics of CP led Wadler
to the following interpretation of the connectives.

⊗ output O input
N offer a choice ⊕ make a choice
! server ? client

We follow a convention by which the multiplicative connectives ⊗, O associate to the right. Thus a
type like 𝐴 ⊗ 𝐵 O𝐶 is 𝐴 ⊗ (𝐵 O𝐶) and can be read as: output a (channel of type) 𝐴, then input a
(channel of type) 𝐵, and proceed as 𝐶 .

While the interpretation of the first four connectives is intuitive, something seems to have
gone awry with the exponentials [Wadler 2014, ğ3.4]. We claim that the computational behaviour
of exponentials in CP does not in fact accommodate what we would think of as client-server
interaction. To begin, we consider the following aspects to be the main characteristics of a client-
server architecture [van Steen and Tanenbaum 2017, ğğ2.3, 3.4]:

(i) There is a server process, which repeatedly provides a service.
(ii) There is a pool of client processes, each of which requests the said service.
(iii) There is a unique end point at which the clients may issue their requests to the server.
(iv) The underlying network is inherently unreliable: clients may be served out-of-order, i.e., in a

nondeterministic manner.

While Wadler’s interpretation faithfully captures (i) and (iii), it does not immediately enable the
representation of (ii). Because of its deterministic behaviour, CP is incapable of modelling (iv).
A CP term 𝑆 ⊢ 𝑥 : !𝐴 can indeed ‘serve’ sessions of type 𝐴 over the channel 𝑥 . However, the

reading of a term 𝐶 ⊢ 𝑦 : ?𝐴 as a process which behaves as a pool of clients along channel 𝑦 is not
so crisp. Recall the three rules of ?, namely weakening, dereliction, and contraction. In CP:

𝑄 ⊢ Γ

𝑄 ⊢ Γ, 𝑥 : ?𝐴
?𝑤

𝑄 ⊢ Γ, 𝑦 : 𝐴

?𝑥 [𝑦] . 𝑄 ⊢ Γ, 𝑥 : ?𝐴
?𝑑

𝑄 ⊢ Γ, 𝑥 : ?𝐴,𝑦 : ?𝐴

𝑄 [𝑥/𝑦] ⊢ Γ, 𝑥 : ?𝐴
?𝑐

Wadler interprets these rules as client formation. Weakening stands for the empty case of a pool of
no clients. Dereliction represents a single client following session𝐴. Given that𝑄 [𝑥/𝑦] denotes the
term obtained by renaming all free occurrences of 𝑦 in 𝑄 to 𝑥 , contraction enables the aggregation
of two client pools: two sessions of type ?𝐴 can be collapsed into one.
We argue that, of those interpretations, only the one for dereliction is tenable. In the case of

weakening, we see that at least one process is involved in the premise. Hence, the ‘pool’ formed has
at least one client in it, albeit one that does not communicate with the server. Likewise, contraction
does not combine different clients, but different sessions owned by the same client. Beginning with
a single process 𝑃 ⊢ 𝑥 : 𝐴,𝑦 : 𝐴 we can use dereliction twice followed by contraction to obtain
?𝑤 [𝑥] . ?𝑤 [𝑦] . 𝑃 ⊢ 𝑤 : ?𝐴. This process will ask for two channels that communicate with session
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𝐴. Nevertheless, the result is still a single process, and not a pool of clients. Dually, the type !𝐴
merely connotes a shared channel: a non-linearized, non-session channel which is used to spawn
an arbitrary number of new sessions, each one of type 𝐴 [Caires and Pfenning 2010, ğ3].

More alarmingly, there is no way to combine two distinct processes 𝑃 ⊢ 𝑧 : 𝐴 and 𝑄 ⊢ 𝑤 : 𝐴 into
a single process pool(𝑥 ; 𝑧. 𝑃,𝑤 .𝑄) ⊢ 𝑥 : ?𝐴 communicating along a shared channel. As a remedy,
Wadler introduces the Mix rule:

Mix
𝑃 ⊢ Γ 𝑄 ⊢ Δ

𝑃 | 𝑄 ⊢ Γ,Δ

Mix was carefully considered for inclusion in Linear Logic, but was rejected [Girard 1987, ğV.4].
Informally, it allows two completely independent, non-intercommunicating processes to run ‘in
parallel.’ We may then use contraction to merge them into a single client pool:

𝑃 ⊢ 𝑧 : 𝐴

?𝑥 [𝑧] . 𝑃 ⊢ 𝑥 : ?𝐴
?𝑑

𝑄 ⊢ 𝑤 : 𝐴

?𝑦 [𝑤] . 𝑃 ⊢ 𝑦 : ?𝐴
?𝑑

?𝑥 [𝑧] . 𝑃 | ?𝑦 [𝑤] . 𝑄 ⊢ 𝑥 : ?𝐴,𝑦 : ?𝐴
Mix

?𝑥 [𝑧] . 𝑃 | ?𝑥 [𝑤] . 𝑄 ⊢ 𝑥 : ?𝐴
?𝑐

The operational semantics of the Mix rule in CP are studied by Atkey et al. [2016]. To formulate
them correctly one needs also to add the rule

Mix0

stop ⊢ ·

Mix0 has a flavour of inconsistency to it, but it is otherwise useful. On the technical level, it
lets us show that the operational semantics, which adds a reaction 𝑃 | 𝑄 −→ 𝑃 ′ | 𝑄 whenever
𝑃 −→ 𝑃 ′, is well-behaved (terminating, deadlock-free, and deterministic). In terms of computational
interpretation, Mix0 represents a stopped process. This solves the second problem we pointed out
above, viz. the formation of a vacuously empty client pool:

stop ⊢ ·
Mix0

stop ⊢ 𝑥 : ?𝐴
?𝑤

Nevertheless, Mix and Mix0 are unbecoming rules. To begin, they are respectively equivalent to
⊥ ⊸ 1 and 1 ⊸ ⊥, and thereby conflate the two units. Moreover, it is well-known [Abramsky et al.
1996; Atkey et al. 2016; Bellin 1997; Girard 1987; Wadler 2014] that Mix is equivalent to

𝐴 ⊗ 𝐵 ⊸ 𝐴 O 𝐵 (∗)

where 𝐶 ⊸ 𝐷
def
= 𝐶⊥ O 𝐷 .

Admitting this implication is unwise. At first glance, (∗) merely weakens the separation between
these connectives, and hence damages the interpretation of O as input, and ⊗ as output. However,
we argue that deeper problems lurk just beneath the surface. Abramsky et al. [1996, ğ3.4.2] describe
a perspective on CLL which reads 𝐴 O 𝐵 as connected concurrency (information necessarily flows
between𝐴 and 𝐵 [Girard 1987, ğV.4]) and𝐴⊗𝐵 as disjoint concurrency (no information flow between
𝐴 and 𝐵 whatsoever). The implication (∗) makes ⊗ a special case of O. Hence, flow between the
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components of 𝐴 ⊗ 𝐵 is permitted, but not obligatory [Abramsky and Jagadeesan 1994, ğ3.2]. Thus,
(∗) allows us to pretend that there is flow of information between two clients.1

Nevertheless, generating the actual flow of information is seemingly impossible. Using Mix we
can put together two clients 𝐶𝑖 ⊢ 𝑐𝑖 : 𝐴, and get a single process 𝐶0 | 𝐶1 ⊢ 𝑐0 : 𝐴, 𝑐1 : 𝐴. As the
comma stands for O, we can only cut this with a server 𝑆 ⊢ 𝑠 : 𝐴⊥ ⊗ 𝐴⊥. But, by the interpretation
of ⊗ as disjoint concurrency, we see that the two client sessions will be served by disjoint server
components. In other words, the server will not allow information to flow between clients, which
does not conform to our usual conception of a stateful server! To enable this kind of flow, a server
must use O. As we cannot cut a O (in the server) with another O (in the client pool), we are
compelled to also accept the converse implication 𝐴 O 𝐵 ⊸ 𝐴 ⊗ 𝐵 in order to convert one of the
two O’s to ⊗. This forces ⊗ = O, which inescapably leads to deadlock [Atkey et al. 2016, ğ4.2].
Requiring ⊗ = O, a.k.a. compact closure [Abramsky et al. 1996; Barr 1991], is often deemed

necessary for concurrency. In fact, Atkey et al. [2016] argue that this conflation of dual connectives

(1 = ⊥, ⊗ = O, and so on) is the source of all concurrency in Linear Logic. The objective of this
paper is to argue that there is another way: we aim to augment the Caires-Pfenning interpretation
of propositions-as-sessions with a certain degree of concurrency without adding Mix. We also wish
to introduce just enough nondeterminism to convincingly model client-server interactions in a
style that satisfies points (i)ś(iv).
We shall achieve both of these goals with the introduction of coexponentials.2

1.2 Roadmap

First, in ğ2 we discuss the expression of the usual exponential modalities of linear logic (!?) as
least and greatest fixed points. This leads us to a different definition of !, which we call the strong
exponential. By taking a ‘multiplicative dual’ of these fixed point expressions, we reach two novel
modalities, the strong coexponentials, for which we write ¡ and £. We refine coexponentials back
into a weak form that is similar to the usual exponentials, and show that they coincide with weak
exponentials in the presence of Mix and the Binary Cut rule.
Following that, in ğ3 we introduce a process calculus with strong coexponentials, which we

call CSLL (Client-Server Linear Logic). This new system is in the style of Kokke et al. [2019a],
which replaces the one-sided sequents with hypersequents. It is argued that coexponentials enable
the collection of an arbitrary number of clients following session 𝐴 into a client pool, which
communicates on a channel that follows session £𝐴. Conversely, the rules for ¡ express the formation
of a server, which can be cut with a client pool to serve its requests.
In ğ4 we present an extended example that illustrates the computational behaviour of coexpo-

nentials, namely an implementation of the Compare-and-Set (CAS) synchronization primitive. Our
system neatly encapsulates the racy yet atomic behaviour implicit in such operations.

In ğ5 we explore the implications of coexponentials in a session-typed functional language. We
extend Wadler’s GV with constructs for client-server interaction, and translate them to coexponen-
tials in CSLL. We take advantage of the higher-level notation to give several examples that would
be tedious to program directly in CSLL.
We survey related work in ğ6, and make some concluding remarks in ğ7.

1This is evident in the Abramsky-Jagadeesan game semantics for MLL+MIX: a play in 𝐴 ⊗ 𝐵 projects to plays for 𝐴 and 𝐵,

but the Opponent can switch components at will. The fully complete model consists of history-free strategies, so there can

only be non-stateful Opponent-mediated flow of information between 𝐴 and 𝐵.
2The word ‘coexponential’ was used in Lafont and Streicher [1991, ğ6.4] to refer the ? connective.
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2 EXPONENTIALS, FIXED POINTS, AND COEXPONENTIALS

2.1 Exponentials as Fixed Points

The exponential (‘of course’) modality of linear logic ! is used to mark a replicable formula. While
describing a combinatory presentation of linear logic, Girard and Lafont [1987, ğ3.2] noticed that
!𝐴 can potentially be expressed as the fixed point

!𝐴 � 1 N𝐴 N (!𝐴 ⊗ !𝐴)

The three additive conjuncts on the RHS correspond to the three rules of the dual connective
?, namely weakening, dereliction, and contraction. As N is a negative connective, the choice of
conjunct rests on the ‘user’ of the formula,3 who may pick one of the three conjuncts at will.
One may thus be led to believe that, were we to allow fixed points for all functors, we could

obtain !𝐴 as the fixed point of a functor. Baelde [2012, ğ2.3] discusses this in the context of a system
of higher-order CLL with least and greatest fixed points. Using the functors

𝐹𝐴 (X)
def
= 1 N𝐴 N (X ⊗ X) 𝐺𝐴 (X)

def
= ⊥ ⊕ 𝐴 ⊕ (X O X)

one defines

!𝐴
def
= 𝜈𝐹𝐴 ?𝐴

def
= 𝜇𝐺𝐴

where 𝜇 and 𝜈 stand for the least and greatest fixed point respectively. Just by expanding the fixed
point rules, one then obtains certain derivable rules.While those for ? are the usual onesÐweakening,
dereliction, and contractionÐthe rule for ! is radically different:

StrongExp
⊢ Γ, 𝐵 ⊢ 𝐵⊥, 1 ⊢ 𝐵⊥, 𝐴 ⊢ 𝐵⊥, 𝐵 ⊗ 𝐵

⊢ Γ, !𝐴

As foreshadowed by the use of a greatest fixed point, this rule is coinductive. To prove !𝐴 from
context Γ one must use it to construct a ‘seed’ value (or ‘invariant’) of type 𝐵. Moreover, this
value must be discardable (⊢ 𝐵⊥, 1), derelictable (⊢ 𝐵⊥, 𝐴), and copyable (⊢ 𝐵⊥, 𝐵 ⊗ 𝐵). This is eerily
reminiscent of the free commutative comonoids used to build certain categorical models of Linear
Logic [Melliès 2009, ğ7.2]. Because of the arbitrary choice of ‘seed’ type 𝐵, the system using this
rule does not produce good behaviour under cut elimination: the normal forms do not satisfy
the subformula property [Baelde 2012, ğ3]: not all detours are eliminated. We call the modality
introduced by StrongExp the strong exponential.
Baelde shows that the standard ! rule can be derived from StrongExp. But while the strong

exponential can simulate the standard exponential, it also enables a host of other computational
behaviours under cut elimination. Put simply, the standard exponential ensures uniformity: each
dereliction of !𝐴 into an 𝐴 must be reduced to the very same proof of 𝐴 every time. This makes
sense in at least two ways. First, when we embed intuitionistic logic into linear logic through the

Girard translation, we expect that in a proof of (𝐴 → 𝐵)𝑜
def
= !𝐴𝑜

⊸ 𝐵𝑜 each use of the antecedent
!𝐴 produces the same proof of 𝐴. Second, we know that one way to construct the exponential in
many ‘degenerate’ models of linear logic [Barr 1991; Melliès et al. 2018] is through the formula

!𝐴
def
= N

𝑛∈N

𝐴⊗𝑛/∼𝑛

where 𝐴⊗𝑛 def
= 𝐴 ⊗ · · · ⊗ 𝐴, and 𝐴⊗𝑛/∼𝑛 stands for the equalizer of 𝐴⊗𝑛 under its 𝑛! symmetries.

Decoding the categorical language, this means that we take one N component for each multiplicity
𝑛, and each component consists of exactly 𝑛 copies of the same proof of 𝐴.

3Also known as external choice. In the language of game semantics, the opponent.
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In contrast, the ! rules derived from their fixed point presentation merely create an infinite tree
of occurrences of 𝐴, and not all of them need be proven in the same way.

2.2 Deriving Coexponentials

Both exponentials (qua fixed points) are given by a tree where each fork is marked with a connective
(⊗ for !, O for ?). The leaves of the tree are either marked with 𝐴, or with the corresponding unit.
Turning this process on its head leads to two dual modalities, which we call the coexponentials.

More concretely, we define two functors by dualising the connective that adorns forks. We must
not forget to change the units accordingly: we swap 1 (the unit for ⊗) with ⊥ (the unit for O). Let

𝐻𝐴 (X)
def
= ⊥ N𝐴 N (X O X) 𝐾𝐴 (X)

def
= 1 ⊕ 𝐴 ⊕ (X ⊗ X)

The strong coexponentials are then defined by

¡𝐴
def
= 𝜈𝐻𝐴 £𝐴

def
= 𝜇𝐾𝐴

We define (£𝐴)⊥
def
= ¡𝐴⊥, and vice versa. This gives the following derived rules.

⊢ £𝐴
£𝑤

⊢ Γ, 𝐴

⊢ Γ, £𝐴
£𝑑

⊢ Γ, £𝐴 ⊢ Δ, £𝐴

⊢ Γ,Δ, £𝐴
£𝑐

⊢ Γ, 𝐵 ⊢ 𝐵⊥,⊥ ⊢ 𝐵⊥, 𝐴 ⊢ 𝐵⊥, 𝐵 O 𝐵

⊢ Γ, ¡𝐴
¡

The rules for £ are distributed forms of the structural rules, while the ¡ rule gives a strong coexponential,
analogous to the strong version of ! described in the previous section. The corresponding ‘weak’
coexponential is given by replacing the above ¡ rule with

⊢
⊗

£Γ, 𝐴

⊢
⊗

£Γ, ¡𝐴
¡

£Γ stands for the context obtained by applying £ to every formula in Γ, and
⊗

folds this context
with a tensor. Unfortunately, the presence of this folding operation means that this rule is not
well-behaved in proof-theoretic terms.

2.3 Exponentials vs. Coexponentials under Mix and Binary Cuts

In fact, we can show that, in the presence of additional rules, (weak) exponentials and (weak)
coexponentials are interderivable up to provability. This is not merely a theoretical result: it
demonstrates that, under the bonnet, Wadler’s use of Mix for the formation of a client pool (which
we sketched in ğ1.1) secretly introduces the coexponential modalities proposed here.

The requisite rules are Mix, and one of the binary cut or multicut rules:

BiCut
⊢ Γ, 𝐴, 𝐵 ⊢ Δ, 𝐴⊥, 𝐵⊥

⊢ Γ,Δ

MultiCut
⊢ Γ, 𝐴1, . . . , 𝐴𝑛 ⊢ Δ, 𝐴1

⊥, . . . , 𝐴𝑛
⊥

⊢ Γ,Δ

BiCut cuts two formulas at once, andMultiCut an arbitrary number. These rules were first proposed
in the context of Linear Logic by Abramsky [1993b] in the compact setting (⊗ = O). They are
logically equivalent, but only the second one satisfies cut elimination [Atkey et al. 2016, ğ4.2]. We
recall some folklore facts regarding the interderivability of certain formulas and Mix-like inference

rules. Recall that 𝐶 ⊸ 𝐷
def
= 𝐶⊥ O 𝐷 . Some form of the following lemma may be found across the

relevant literature [Abramsky et al. 1996; Atkey et al. 2016; Bellin 1997; Girard 1987; Wadler 2014].
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Lemma 2.1. The following rules are logically interderivable.

(i) The axiom 1 ⊸ ⊥ and the Mix0 rule.

(ii) The axiom ⊥ ⊸ 1 and the Mix rule.

(iii) The axiom 𝐴 ⊗ 𝐵 ⊸ 𝐴 O 𝐵 and the Mix rule.

(iv) The axiom 𝐴 O 𝐵 ⊸ 𝐴 ⊗ 𝐵 and the BiCut rule.

(v) BiCut and MultiCut.

Moreover, Mix0 is derivable from the axiom rule ⊢ 𝐴⊥, 𝐴 and BiCut.

Armed with this, we can prove that:

Theorem 2.2. In CLL withMix and BiCut, exponentials and coexponentials coincide up to provability.

That is: if we replace ? and ! in the rules for the exponentials with £ and ¡ respectively, the resultant

rule is provable using the coexponential rules, and vice versa.

This theorem confirms that exponentials and coexponentials are indeed symmetric with respect
to multiplicativity. It also explains why exponentials can represent client-server interactions
after introducing Mix [Kokke et al. 2019a; Wadler 2014]. Finally, the theorem extends to strong
exponentials vs. strong coexponentials; the proof there is even simpler: under Mix and BiCut we
have ⊗ = O, so 𝐹𝐴, 𝐻𝐴 and 𝐺𝐴, 𝐾𝐴 are pairwise logically equivalent.

3 PROCESSES

In the rest of the paper we will argue that the logical observations we made in ğ2 have a computa-
tional interpretation as client-server interaction. To this end we will introduce a process calculus
for CLL equipped with a bespoke form of strong coexponentials. Our system shall introduce a
certain amount of nondeterminism, yet it will remain Mix-free.

We first explain how the coexponentials capture the intuitive shape of client pool formation (ğ3.1).
Following that, we briefly discuss three technical design decisions that pertain to the coexponentials
used in our system (ğğ3.2ś3.4). Finally, we introduce the system in ğ3.5, and its metatheory in ğ3.6.

3.1 £ Means Client, ¡ Means Server

Recall the three rules for £, namely

⊢ £𝐴
£𝑤

⊢ Γ, 𝐴

⊢ Γ, £𝐴
£𝑑

⊢ Γ, £𝐴 ⊢ Δ, £𝐴

⊢ Γ,Δ, £𝐴
£𝑐

We can read £𝐴 as the session type of a channel shared by a pool of clients.

• £𝑤 allows the vacuous formation of a empty client pool.
• £𝑑 allows the formation of a client pool consisting of exactly one client.
• £𝑐 can be used to aggregate two client pools together.

The last point requires some elaboration. Each premise of £𝑐 can be seen as a client pool with
an external interface (Γ and Δ respectively). The rule allows us to combine these into a single
process. This new process still behaves as a client pool, but it also retains both external interfaces.
In contrast, the ?𝑐 rule only allowed us to collapse two shared channels that belonged to a single

process. Moreover, it did not allow us to mix two external interfacesÐone had to use Mix for that.
Finally, the ‘weak’ ¡ rule, i.e.,

⊢
⊗

£Γ, 𝐴

⊢
⊗

£Γ, ¡𝐴
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can be read as the introduction rule for a dual server session type. It states that a process serving 𝐴,
and all of whose other interactions have a client role (£) with respect to a set of non-interacting (⊗)
services, can itself be ‘co-promoted’ to a server ¡𝐴.

Note that our intuitive explanations are almost identical to those of Wadler [2014]; the difference
is that our rules have the right branching structure to support the underlying intuition.

3.2 Design Decision #1: Server State and The Strong Rules

The first change with respect to the above is the switch to the strong rule, namely

⊢ Γ, 𝐵 ⊢ 𝐵⊥,⊥ ⊢ 𝐵⊥, 𝐴 ⊢ 𝐵⊥, 𝐵 O 𝐵

⊢ Γ, ¡𝐴

This rule evokes the structure of a ‘stateful’ server serving 𝐴’s, with external interface Γ. Within
the server there exists an internal server protocol 𝐵. This comes with four ingredients: a process
that provides a 𝐵, interacting along Γ (initialization); a way to silently consume 𝐵 (finalization);
a way to ‘convert’ a 𝐵 to an 𝐴 (serving a client); and a way to fork one 𝐵 into two connected 𝐵’s
(forking two subservers).

We use this strong rule in order to avoid the uniformity property that was discussed in ğ2.1: the
weak coexponential rule gives trivial servers providing identical 𝐴’s to all clients. In contrast, this
rule will allow a server to provide a different 𝐴 each time it is called upon to do so.

3.3 Design Decision #2: Replacing Trees with Lists

The strong coexponential rule arose by taking the greatest fixed point of

𝐻𝐴 (X)
def
= ⊥ N𝐴 N (X O X)

As discussed in ğğ2.1 and 2.2, this rule represents a tree-like structure. Nothing stops us from
replacing it with a list-like structure.4 We use the functors

𝐻 ′
𝐴 (X)

def
= ⊥ N (𝐴 O X) 𝐾 ′

𝐴 (X)
def
= 1 ⊕ (𝐴 ⊗ X)

and acquire the strong server rule derived from 𝐻 ′
𝐴, viz.

⊢ Γ, 𝐵 ⊢ 𝐵⊥,⊥ ⊢ 𝐵⊥, 𝐴 O 𝐵

⊢ Γ, ¡𝐴

The main benefit is that the resulting system more closely reflects the pattern of client-server
interaction: clients form a queue rather than a tree, and servers no longer have to fork subprocesses.
This rule also requires fewer ingredients: an initialization of the internal protocol, a finalization,
and a component that spawns a session to serve one additional client.

To optimize this further, wemake theO implicit, and replace⊥with a general Δ in the finalization:

Server
⊢ Γ, 𝐵 ⊢ 𝐵⊥,Δ ⊢ 𝐵⊥, 𝐴, 𝐵

⊢ Γ,Δ, ¡𝐴

4It is worth noting that Girard considered list-like exponentials [1987, ğV.5(ii)], but rejected them as they were not able to

reproduce contraction. This is not a requirement for modelling client-server interaction.
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This second rule can be immediately derived from the first one:

⊢ Γ, 𝐵 ⊢ 𝐵⊥,Δ

⊢ Γ,Δ, 𝐵 ⊗ 𝐵⊥
⊢ 𝐵⊥, 𝐵

⊢ 𝐵⊥ O 𝐵,⊥

⊢ 𝐵⊥, 𝐴, 𝐵 ⊢ 𝐵⊥, 𝐵

⊢ 𝐵⊥, 𝐵, 𝐵 ⊗ 𝐵⊥, 𝐴

⊢ 𝐵⊥ O 𝐵,𝐴 O (𝐵 ⊗ 𝐵⊥)

⊢ Γ,Δ, ¡𝐴

There is a surreptitious twist here: the ‘new’ internal server protocol is not 𝐵, but 𝐵 ⊗ 𝐵⊥. This
leads to internal back-and-forth communication in the server. Γ is consumed to produce a 𝐵. This is
‘passed’ to each process serving each client. Finally, it is reflected back to the initilization process,

and ‘finalized’ into a Δ. The ⊥ rule is invertible, so instantiating Δ
def
= ⊥ in Server gives back the

preceding rule. Hence, these two rules are logically equivalent.

3.4 Design Decision #3: Nondeterminism through Permutation

Using list-shaped rules for ¡ forces us to revise the rules for £. To define a cut elimination procedure
the rules must now match the dual functor 𝐾 ′

𝐴, and hence become

⊢ £𝐴

⊢ Γ, £𝐴 ⊢ Δ, 𝐴

⊢ Γ,Δ, £𝐴

The cut elimination procedure for these rules leads to a confluent dynamics. This is unsatisfactory
from the perspective of client-server interaction: a proper model requires some nondeterminism in
the order in which clients are served. There are many ways to introduce this kind of behaviour. We
choose the simplest one: we identify derivations up to permutation of client formation in pools.
That is, we quotient them under the least congruence ≡ generated from

⊢ Γ, £𝐴 ⊢ Δ, 𝐴

⊢ Γ,Δ, £𝐴 ⊢ Σ, 𝐴

⊢ Γ,Δ, Σ, £𝐴
≡

⊢ Γ, £𝐴 ⊢ Σ, 𝐴

⊢ Γ, Σ, £𝐴 ⊢ Δ, 𝐴

⊢ Γ,Δ, Σ, £𝐴

This amounts to quotienting lists up to permutation. Thus, when a client pool interacts with a
server, the cut elimination procedure may silently choose to serve any of the constituent clients.

Trees and nondeterminism. The careful reader might notice that the original, tree-like ‘distributed
contraction’ rule £𝑐 inherently supported a certain amount of nondeterminism: if we were to
quotient derivations up to permutation of the premises of £𝑐 , then the cut elimination procedure
would have some choice of whether to serve the left or right subtree first. Switching to list-like
functors forbids this move, and seemingly imposes a much stricter discipline.
Nevertheless, the tree structure is awkward and rigid in another way. For example, consider a

client pool whose tree structure is informally [[𝑐0, 𝑐1], [𝑐2, 𝑐3]]. As nondetermistic choices are only
made at each node, the clients cannot be served in any order. For example, if 𝑐0 is served first then
𝑐1 must be served nextÐas it is in the same subtree. From a conventional client-server perspective
this is arguably not a sufficient amount of nondeterminism. In contrast, our formulation allows full
permutations of the client pool.

3.5 Introducing CSLL

Based on the above considerations, we introduce the system CSLL of Client-Server Linear Logic.
Following recent presentation of CLL-based systems of session types [Kokke et al. 2019a], CSLL is

structured around hyperenvironments. Thus the logical system underlying CSLL is not one-sided
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sequent calculus like CP, but a hypersequent system [Avron 1991]. In this kind of presentation
process constructors are more finely decoupled. For example, the original CP output/⊗ constructor
𝑥 [𝑦] . (𝑃 | 𝑄) is a combination of a parallel composition with an output prefix. Hypersequent systems
allow us to separately type these two constructs, and bring the language closer to 𝜋-calculus.

One-sided sequent systems for CLLÐsuch as Girard’s original presentation [1987]Ðuse sequents
of the form ⊢ Γ where Γ is an environment, i.e., an unordered list of formulas. We assign distinct
names to each formula. The environment Γ = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 stands for𝐴1 O . . .O𝐴𝑛 . Hence, a
comma stands for O. Environments are identical up to permutation. We write · for the empty one.

A hyperenvironment adds another layer: it is an unordered list of environments. We separate envi-
ronments by vertical lines. If each environment Γ𝑖 stands for the formula 𝐴𝑖 , the hyperenvironment
G = Γ1 | · · · | Γ𝑛 stands for the formula 𝐴1 ⊗ · · · ⊗ 𝐴𝑛 . Hence, | stands for ⊗. Hyperenvironments
are identical up to permutation, and we write ∅ for the empty one. We also stipulate that variable
names be distinct within and across environments.

The syntax and the type system of CSLL are defined in Fig. 1. The types are the formulas of CLL.
Note that the choice between curly braces, parantheses and brackets in the syntax of processes is
merely typographical, and does not bear formal meaning. However, curly braces are meant to evoke
parameters, whereas parentheses and brackets evoke bindings in continuations. A generic judgment
of the type system has the shape 𝑃 ⊢ G where 𝑃 is a process, and G is a hyperenvironment.

Most typing rules are identical to HCP, and in the interest of brevity we only discuss the important
ones. Hyperenvironment components are introduced by the nullary and binary hypermix rules,
HMix0 and HMix2. These are ‘Mix’ rules only in name. HMix2 forms the disjoint parallel composition
of two processes: their environments are joined with |, which stands for ⊗.5 HMix0 is the stopped
process; its hyperenvironment is the empty one, which stands for the unit of ⊗, namely 1.6

The Cut and Tensor rules eliminate hyperenvironment components. The premises of Cut ensure
that the two variables that are being connectedÐviz. 𝑥 and 𝑦Ðare in different ‘parallel components’
of 𝑃 . Notice that the external environments of these two components, namely Γ and Δ, are then
brought together in the conclusion. A similar pattern permeates the Tensor and M-True rules. It is
instructive to follow the derivation of the original CP rules for ⊗ and 1, which we will silently use:

𝑃 ⊢ Γ, 𝑦 : 𝐴 𝑄 ⊢ Δ, 𝑥 : 𝐵

𝑃 | 𝑄 ⊢ Γ, 𝑦 : 𝐴 | Δ, 𝑥 : 𝐵

𝑥 [𝑦] . (𝑃 | 𝑄) ⊢ Γ,Δ, 𝑥 : 𝐴 ⊗ 𝐵

stop ⊢ ∅

𝑥 [] . stop ⊢ 𝑥 : 1

The exponential rules WhyNotW, WhyNotD, WhyNotC and OfCourse are formulated in the style
of Kokke et al. [2019a]. In OfCourse we use vector notation (®−) as a shorthand for lists of names
and types. Note thatÐin contrast to all previous systemsÐwe notate 𝑃 as a parameter rather than
as the continuation in the process !𝑥{®𝑦; 𝑃}. This because 𝑃 does not behave like a continuation.
For example, it has its own distinct commuting conversion.

The coexponential rules QueW, QueA and Claro follow the patterns described in ğğ3.1ś3.4. The
rule QueW (W stands for ‘weaken’) constructs an empty client pool. The rule QueA (A stands for
‘absorb’) combines a client and a pool into a slightly larger pool. The interfaces of the client pool
and the client are necessarily disjoint, as they are separated by a | in the premise. All the processes
in the resultant pool race to communicate with a server at the single endpoint 𝑥 .
Correspondingly, Claro constructs a process that offers a service at the single endpoint 𝑦. Its

continuation 𝑃 functions as both the initialization and the finalization of the server, over channels 𝑖
and 𝑓 respectively. This rule is similar to the Server rule of ğ3.3, but in the interest of brevity it

5Mix would join them with a comma, which would stand for a O.
6Mix0 would stand for the unit of O, namely ⊥.
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𝐴, 𝐵, . . . F 1 | ⊥ | 𝐴 O 𝐵 | 𝐴 ⊗ 𝐵 | 𝐴 ⊕ 𝐵 | 𝐴 N 𝐵 | £𝐴 | ¡𝐴 | ?𝐴 | !𝐴

Γ,Δ, . . . F · | Γ, 𝑥 : 𝐴 (environments)

G,H , . . . F ∅ | G | Γ (hyperenvironments)

𝑃,𝑄, . . . F stop (terminated process)

| 𝑥 ↔ 𝑦 (link between 𝑥 and 𝑦)

| 𝜈𝑥𝑦. 𝑃 (connect 𝑥 and 𝑦)

| 𝑃 | 𝑄 (parallel composition)

| 𝑦.case{𝑃 ;𝑄} (receive choice over 𝑦)

| 𝑦 [inl] . 𝑃 | 𝑦 [inr] . 𝑃 (send choice over 𝑦)

| 𝑦 (𝑥). 𝑃 | 𝑦 [𝑥] . 𝑃 (receive/send 𝑥 over 𝑦)

| 𝑦 (). 𝑃 | 𝑦 [] . 𝑃 (receive/send end-of-session at 𝑦)

| £𝑥 [] . 𝑃 (create new client interface 𝑥 )

| £𝑥 [𝑦] . 𝑃 (send client interface 𝑦 over 𝑥 )

| ¡𝑦{𝑧 ′,𝑤 ′, 𝑦 ′. 𝑄}(𝑧,𝑤). 𝑃 (serve over 𝑦)

| ?𝑥 [] . 𝑃 | ?𝑥 [𝑦] . 𝑃 | ?𝑥 [𝑦0, 𝑦1] . 𝑃 (weakening, dereliction and contraction)

| !𝑥{®𝑦; 𝑃} (promotion)

HMix0

stop ⊢ ∅

HMix2
𝑃 ⊢ G 𝑄 ⊢ H

𝑃 | 𝑄 ⊢ G | H

Cut
𝑃 ⊢ G | Γ, 𝑥 : 𝐴 | Δ, 𝑦 : 𝐴⊥

𝜈𝑥𝑦. 𝑃 ⊢ G | Γ,Δ

Ax

𝑥 ↔ 𝑦 ⊢ 𝑥 : 𝐴⊥, 𝑦 : 𝐴

Par
𝑃 ⊢ G | Γ, 𝑥 : 𝐴,𝑦 : 𝐵

𝑦 (𝑥). 𝑃 ⊢ G | Γ, 𝑦 : 𝐴 O 𝐵

Tensor
𝑃 ⊢ G | Γ, 𝑥 : 𝐴 | Δ, 𝑦 : 𝐵

𝑦 [𝑥] . 𝑃 ⊢ G | Γ,Δ, 𝑦 : 𝐴 ⊗ 𝐵

PlusL
𝑃 ⊢ G | Γ, 𝑥 : 𝐴

𝑥 [inl] . 𝑃 ⊢ G | Γ, 𝑥 : 𝐴 ⊕ 𝐵

PlusR
𝑄 ⊢ G | Γ, 𝑦 : 𝐵

𝑦 [inr] . 𝑄 ⊢ G | Γ, 𝑦 : 𝐴 ⊕ 𝐵

With
𝑃 ⊢ Γ, 𝑥 : 𝐴 𝑄 ⊢ Γ, 𝑥 : 𝐵

𝑥.case{𝑃 ;𝑄} ⊢ Γ, 𝑥 : 𝐴 N 𝐵

M-False
𝑃 ⊢ G | Γ

𝑥 (). 𝑃 ⊢ G | Γ, 𝑥 : ⊥

M-True
𝑃 ⊢ G

𝑥 [] . 𝑃 ⊢ G | 𝑥 : 1

WhyNotW
𝑃 ⊢ G | Γ

?𝑥 [] . 𝑃 ⊢ G | Γ, 𝑥 : ?𝐴

WhyNotD
𝑃 ⊢ G | Γ, 𝑦 : 𝐴

?𝑥 [𝑦] . 𝑃 ⊢ G | Γ, 𝑥 : ?𝐴

WhyNotC
𝑃 ⊢ G | Γ, 𝑦0 : ?𝐴,𝑦1 : ?𝐴

?𝑥 [𝑦0, 𝑦1] . 𝑃 ⊢ G | Γ, 𝑥 : ?𝐴

OfCourse

𝑃 ⊢ ®𝑦 : ? ®𝐵, 𝑥 : 𝐴

!𝑥{®𝑦; 𝑃} ⊢ ®𝑦 : ? ®𝐵, 𝑥 : !𝐴

QueW

𝑃 ⊢ G

£𝑥 [] . 𝑃 ⊢ G | 𝑥 : £𝐴

QueA

𝑃 ⊢ G | Γ, 𝑥 : £𝐴 | Δ, 𝑥 ′ : 𝐴

£𝑥 [𝑥 ′] . 𝑃 ⊢ G | Γ,Δ, 𝑥 : £𝐴

Claro
𝑃 ⊢ G | Γ, 𝑖 : 𝐵 | Δ, 𝑓 : 𝐵⊥ 𝑄 ⊢ 𝑧 : 𝐵⊥, 𝑧 ′ : 𝐵,𝑦 ′ : 𝐴

¡𝑦{𝑧, 𝑧 ′, 𝑦 ′. 𝑄}(𝑖, 𝑓 ). 𝑃 ⊢ G | Γ,Δ, 𝑦 : ¡𝐴

Fig. 1. The syntax and type system of CSLL.
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combines the premises ⊢ Γ, 𝐵 and ⊢ 𝐵⊥,Δ into one process. However, these functionalities continue
to be logically disjoint components of 𝑃 , as their interfaces are separated by a | in the premise. The
process 𝑄 is a ‘worker’ process which is spawned every time a client is to be served.
In all process constructs that involve a dot that is not within curly braces, e.g. 𝑦 (𝑥). 𝑃 , we call

the part that precedes it the prefix of the process (𝑦 (𝑥) in this case), and the part that succeeds it
the continuation (𝑃 in this case).

The bound names Bn(𝑃) of a process 𝑃 are defined as follows:

• 𝑥 and 𝑦 are bound in 𝑃 within 𝜈𝑥𝑦. 𝑃 .
• 𝑥 is bound in 𝑃 within 𝑦 (𝑥). 𝑃 and 𝑦 [𝑥] . 𝑃 .
• Within ¡𝑦{𝑧, 𝑧 ′, 𝑦 ′. 𝑄}(𝑖, 𝑓 ). 𝑃 we have that 𝑖 and 𝑓 are bound in 𝑃 , while 𝑧, 𝑧 ′, and 𝑦 ′ are
bound in 𝑄 . Note that 𝑦 is not bound, but rather ‘exported.’

• 𝑥 is bound in 𝑃 within £𝑦 [𝑥] . 𝑃 .
• 𝑥0 and 𝑥1 are bound in 𝑃 within ?𝑥 [𝑥0, 𝑥1] . 𝑃 .
• 𝑥 is bound in 𝑃 within ?𝑥 ′[𝑥] . 𝑃 .

In all other cases the set of bound names is empty. We define the free names Fn(𝑃) of a process
𝑃 to be the set of sets corresponding to the names occurring in the typing judgment of 𝑃 . For

example, the hyperenvironment G
def
= 𝑥 : 𝐴,𝑦 : 𝐵 | 𝑧 : 𝐶,𝑤 : 𝐷 determines the set of sets

⌊G⌋ = 𝑥,𝑦 | 𝑧,𝑤
def
= {{𝑥,𝑦}, {𝑧,𝑤}}. Kokke et al. [2019a] call this the name partition corresponding

to a hyperenvironment. Thus, if 𝑃 ⊢ G we define Fn(𝑃)
def
= ⌊G⌋. We will sometimes abusively write

Fn(𝑃) to mean the union of the name partition, i.e. the complete set of free names that occur in it.
As is usual, processes are identified up to 𝛼-equivalence.

We write 𝜋𝑦 for an arbitrary prefix communicating on channel 𝑦, and Bn(𝜋𝑦) for the variables
that it binds in its continuation. For example, 𝜋𝑦 could be 𝑦 (𝑥), and in this case Bn(𝜋𝑦) = {𝑥}.

Finally, notice that the typing cannot be inferred from the terms alone. For example, in M-False

the term 𝑥 () . 𝑃 does not specify in which environment Γ within its hyperenvironment the unit ⊥
should be introduced. This has an impact on the name partition Fn(𝑃) of a process 𝑃 .

3.6 Operational Semantics and Metatheory

Definition 3.1. Canonical terms are defined by the following clauses.

• 𝜋𝑥 . 𝑃 is canonical whenever 𝑃 is.
• 𝑃 | 𝑄 is canonical if both 𝑃 and 𝑄 are canonical.
• stop and 𝑥 ↔ 𝑦 are canonical.
• 𝑦.case{𝑃 ;𝑄} and !𝑥{®𝑦; 𝑃} are canonical.

In particular, 𝜈𝑥𝑦. 𝑃 is not canonical; it is a cut.
The above notion of canonicity is not definitive. For example, 𝜋𝑥 . 𝑃 could have been considered

canonical regardless of the canonicity of 𝑃 (similar to weak head normal form for 𝜆-calculus).
However, we choose to react 𝑃 further to make the ‘final result’ of an interaction visible in later
examples. In addition, we could require terms such as 𝑃 and 𝑄 in 𝑦.case{𝑃 ;𝑄} be canonical for the
whole term to be canonical, but we choose not to so as to reduce the number of reaction rules.

We define the notion of structural equivalence 𝑃 ≡ 𝑄 to be the least congruence between processes
induced by the clauses in Fig. 2. Furthermore, we define the reaction relation 𝑃 −→ 𝑄 between
processes to be the least relation induced by the clauses in Fig. 3.
The structural equivalence and the reaction semantics largely mirror the notions of the same

name in the 𝜋-calculus [Milner 1992, 1999]. Those that differ are justified via linear logic. Res-Pre
and Pre-Pre can be seen as identifications arising from proof nets, in which the corresponding
proofs would be graphically identical. Note that the commuting prefixes are requried to not ‘cross’
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𝑃 | stop ≡ 𝑃 (Par-Unit)

𝑃 | 𝑄 ≡ 𝑄 | 𝑃 (Par-Comm)

𝑃 | (𝑄 | 𝑅) ≡ (𝑃 | 𝑄) | 𝑅 (Par-Assoc)

𝑥 ↔ 𝑦 ≡ 𝑦↔ 𝑥 (Link-Comm)

𝜈𝑥𝑦. (𝑃 | 𝑄) ≡ 𝑃 | 𝜈𝑥𝑦.𝑄 (𝑥,𝑦 ∉ Fn(𝑃)) (Res-Par)

𝜈𝑥𝑦. 𝜈𝑧𝑤. 𝑃 ≡ 𝜈𝑧𝑤. 𝜈𝑥𝑦. 𝑃 (Res-Res)

𝜋𝑥 . (𝑃 | 𝑄) ≡ 𝑃 | 𝜋𝑥 . 𝑄 (Bn(𝜋𝑥 ) ∩ Fn(𝑃) = ∅) (Pre-Par)

𝜈𝑥𝑦. 𝜋𝑧 . 𝑃 ≡ 𝜋𝑧 . 𝜈𝑥𝑦. 𝑃 (𝑧 ≠ 𝑥,𝑦 and 𝜋𝑧 and 𝜈𝑥𝑦. not cross Fn(𝑃)) (Res-Pre)

𝜋𝑥 . 𝜋𝑦 . 𝑃 ≡ 𝜋𝑦 . 𝜋𝑥 . 𝑃 (𝑥 ≠ 𝑦,𝑦 ∉ Bn(𝜋𝑥 ), 𝑥 ∉ Bn(𝜋𝑦), 𝜋𝑥 and 𝜋𝑦 not cross Fn(𝑃)) (Pre-Pre)

extended with

£𝑥 [𝑥0] . £𝑥 [𝑥1] . 𝑃 ≡ £𝑥 [𝑥1] . £𝑥 [𝑥0] . 𝑃 (Que-Que)

Fig. 2. The structural equivalence of CSLL processes.

ParL
𝑃 −→ 𝑃 ′

𝑃 | 𝑄 −→ 𝑃 ′ | 𝑄

Res
𝑃 −→ 𝑃 ′

𝜈𝑥𝑦. 𝑃 −→ 𝜈𝑥𝑦. 𝑃 ′

Pre
𝑃 −→ 𝑃 ′

𝜋𝑦 . 𝑃 −→ 𝜋𝑦 . 𝑃
′

Eq

𝑃 ≡ 𝑃 ′ 𝑃 −→ 𝑄 𝑄 ≡ 𝑄 ′

𝑃 ′ −→ 𝑄 ′

𝜈𝑥𝑦. (𝑧.case{𝑃0; 𝑃1} | 𝑄) −→ 𝑧.case{𝜈𝑥𝑦. (𝑃0 | 𝑄);𝜈𝑥𝑦. (𝑃1 | 𝑄)} (With-Comm)

𝜈𝑥𝑦. (!𝑧{𝑥 ®𝑤 ; 𝑃} | !𝑦{®𝑣 ; 𝑄}) −→ !𝑧{®𝑣 ®𝑤 ; 𝜈𝑥𝑦. (𝑃 | !𝑦{®𝑣 ; 𝑄})} (OfCourse-Comm)

𝜈𝑥𝑦. (𝑧↔ 𝑥 | 𝑄) −→ 𝑄 [𝑧/𝑦] (Link)

𝜈𝑥𝑦. (𝑥 [] . 𝑃 | 𝑦 (). 𝑄) −→ 𝑃 | 𝑄 (One-Bot)

𝜈𝑥𝑦. (𝑥 [𝑧] . 𝑃 | 𝑦 (𝑤). 𝑄) −→ 𝜈𝑥𝑦. 𝜈𝑧𝑤. (𝑃 | 𝑄) (Tensor-Par)

𝜈𝑥𝑦. (𝑥 [inl] . 𝑃 | 𝑦.case{𝑄0;𝑄1}) −→ 𝜈𝑥𝑦. (𝑃 | 𝑄0) (PlusL-With)

𝜈𝑥𝑦. (𝑥 [inr] . 𝑃 | 𝑦.case{𝑄0;𝑄1}) −→ 𝜈𝑥𝑦. (𝑃 | 𝑄1) (PlusR-With)

𝜈𝑥𝑦. (£𝑥 [] .𝐶 | ¡𝑦{𝑧, 𝑧′, 𝑦′. 𝑄}(𝑖, 𝑓 ) . 𝑃) −→ 𝐶 | 𝜈𝑖 𝑓 . 𝑃 (Claro-QueW)

𝜈𝑥𝑦. (£𝑥 [𝑥 ′] .𝐶 | ¡𝑦{𝑧, 𝑧′, 𝑦′. 𝑄}(𝑖, 𝑓 ) . 𝑃) −→ 𝜈𝑥𝑦. 𝜈𝑥 ′𝑦′. (𝐶 | ¡𝑦{𝑧, 𝑧′, 𝑦′. 𝑄}(𝑧′, 𝑓 ) . (𝜈𝑖𝑧. (𝑃 | 𝑄)))

(Claro-QueA)

𝜈𝑥𝑦. (?𝑥 [] . 𝑃 | !𝑦{®𝑧; 𝑄}) −→ ?®𝑧 [] . 𝑃 (ExpW)

𝜈𝑥𝑦. (?𝑥 [𝑥 ′] . 𝑃 | !𝑦{®𝑧; 𝑄}) −→ 𝜈𝑥 ′𝑦. (𝑃 | 𝑄) (ExpD)

𝜈𝑥𝑦. (?𝑥 [𝑥0, 𝑥1] . 𝑃 | !𝑦{®𝑧; 𝑄}) −→ ?®𝑧 [ ®𝑧0, ®𝑧1] . 𝜈𝑥0𝑦0 . 𝜈𝑥1𝑦1 . (𝑃 | 𝑅)

where 𝑅
def
= !𝑦1{ ®𝑧1; 𝑄 [ ®𝑧1𝑦1/®𝑧𝑦]} | !𝑦0{ ®𝑧0; 𝑄 [ ®𝑧0𝑦0/®𝑧𝑦]} (ExpC)

Fig. 3. The operational semantics of CSLL processes.

the name partition in order to preserve typing. As a counterexample, if 𝑃 ⊢ 𝑥 : 𝐴,𝑦 : 𝐵 | 𝑧 : 𝐶,𝑤 : 𝐷 ,
then 𝑥 (𝑤). 𝑦 [𝑧] . 𝑃 ⊢ 𝑥 : 𝐴 O 𝐷,𝑦 : 𝐵 ⊗ 𝐶 while 𝑦 [𝑧] . 𝑥 (𝑤). 𝑃 is ill-typed. To avoid this, we say that
𝑥 (𝑤). and 𝑦 [𝑧] . cross the name partition Fn(𝑃) = 𝑥,𝑦 | 𝑧,𝑤 , and hence that this commutation is
forbidden. Formally, ‘crossing’ is defined as follows.
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Definition 3.2. We first define two sets of names 𝑋𝜋𝑥 and 𝑌𝜋𝑦
indexed by prefixes. Note they are

defined for only some prefixes.

𝑋𝑥 (𝑥 ′) .
def
= {𝑥, 𝑥 ′} 𝑋?𝑥 [𝑥0,𝑥1 ] .

def
= {𝑥0, 𝑥1}

𝑌𝑦 [𝑦′ ] .
def
= {𝑦,𝑦 ′} 𝑌£𝑦 [𝑦′ ] .

def
= {𝑦,𝑦 ′}

𝑌¡𝑦 {𝑧′,𝑤′,𝑦′.𝑄 }(𝑧,𝑤) .
def
= {𝑧,𝑤}

Now, 𝜋𝑥 and 𝜋𝑦 cross the name partition ⌊G⌋ just if any of the following cases apply.

• In the binary case, we require the following:𝑋𝜋𝑥 and𝑌𝜋𝑦
is defined for 𝜋𝑥 and 𝜋𝑦 respectively;

write 𝑋𝜋𝑥 = {𝑥0, 𝑥1} and 𝑌𝜋𝑦
= {𝑦0, 𝑦1}; there are Γ,Δ ∈ ⌊G⌋ such that 𝑥0, 𝑦0 ∈ Γ and

𝑥1, 𝑦1 ∈ Δ.
• In the nullary case, we require all the following to hold:
ś 𝜋𝑥 is 𝑥 (). or ?𝑥 [] .
ś 𝜋𝑦 is 𝑦 [] . or £𝑥 [] .
ś ⌊G⌋ is ∅

Moreover, 𝜋𝑥 and 𝜈𝑦0𝑦1. cross the name partition ⌊G⌋ if the following holds: 𝑋𝜋𝑥 is defined for 𝜋𝑥 ;
write 𝑋 = {𝑥0, 𝑥1} and there is Γ,Δ ∈ ⌊G⌋ such that 𝑥0, 𝑦0 ∈ Γ and 𝑥1, 𝑦1 ∈ Δ.

The structural equivalence Que-Que allows us to commute the position of two clients in the
pool, thereby imitating racingÐas discussed in ğ3.4. In order fully exploit the nondeterminism
induced by Que-Que the other structural equivalences are necessary. For example, the two clients
in £𝑥 [𝑥0] . 𝑦 (𝑦

′). £𝑥 [𝑥1] . 𝑃 cannot be permuted without using Pre-Pre first. Indeed, this is the major
motivation for Pre-Pre, as the latter is not needed for our metatheoretic results. Note that Que-Que

is the one and only source of nondeterminism in the system.
Some commuting conversions appear as structural equivalences, and some as reaction rules.

OfCourse-Comm and With-Comm are commuting conversions for OfCourse and With respectively.
Pre-Parwith Res-Pre combine into a kind of commuting conversion for prefixes. We take the former
as reaction rules, and the latter as structural equivalences. This choice makes structural equivalence
preserve canonicity. For example, in With-Comm the LHS is not canonical, but the RHS is.
The overwhelming majority of these commuting conversions is used in previous works on the

relationship between linear logic and 𝜋-calculus to obtain cut elimination [Wadler 2014, ğ3.6]
[Bellin and Scott 1994, ğ3]. Perhaps the only exception is Pre-Pre, which allows us to swap any two
noninterfering prefixes. It can be justified computationally as an observational equivalence arising
from the semantics of Atkey [2017, ğ5]. Finally, Kokke et al. [2019a] view it as a session-theoretic
version of delayed actions [Merro and Sangiorgi 2004].

Pre corresponds to eliminating non-top-level cuts in Linear Logic; it is not standard in either 𝜋-
calculus or CP. Nevertheless, we choose to include it in order to strengthen our notion of canonical
form, which in turn elucidates the examples in ğ4. In contrast, the reaction rules for the exponentials
are standard; see Kokke et al. [2019a].
Finally, we have a number of novel reaction rules for coexponentials. The rule Claro-QueW

corresponds to serving an empty client pool. In this case we simply connect the initialization and
finalization channels of 𝑃 . Likewise, the rule Claro-QueA is the reaction caused by a nonempty
pool of clients. The pool offers a fresh channel 𝑥 ′ on which the new client expects to be served.
The server then spawns a worker process 𝑄 , and the channel 𝑦 ′ on which it will serve the new
client which is connected to 𝑥 ′, as expected. The initialization channel 𝑖 of the server continuation
is connected to the 𝑧 channel, on which the worker process expects to receive the ‘current state’
of the server. Once 𝑄 serves the client, it will send the ‘next state’ of the server on 𝑧 ′. Thus, we
re-instantiate the server with 𝑧 ′ as the new initialization channel. Note that the ‘server state’ we
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discuss here does not conform to the usual intuition of an immutable value; it could be a session
type itself, as demonstrated by the example in ğ5.5.
We have the following metatheoretic results.

Lemma 3.3. If 𝑃 ≡ 𝑄 , then 𝑃 ⊢ G if and only if 𝑄 ⊢ G.

Theorem 3.4 (Preservation). If 𝑃 ⊢ G and 𝑃 −→ 𝑄 , then 𝑄 ⊢ G.

Theorem 3.5 (Progress). If 𝑅 ⊢ G then either 𝑅 is canonical, or there exists 𝑅′ such that 𝑅 −→ 𝑅′.

4 AN EXAMPLE: COMPARE-AND-SET

We now wish to demonstrate the client-server features of CSLL. To do so we produce an implemen-
tation of the quintessential example of a synchronization primitive, the Compare-and-Set operation

(CAS) [Herlihy and Shavit 2012, ğ5.8]. Higher-level examples are given in ğ5.
A register that supports compare-and-set comes with an operation Cas(𝑒, 𝑑) which takes two

values: the expected value 𝑒 , and the desirable value 𝑑 . The function compares the expected value
𝑒 with the register. If the two differ, the value of the register remains put, and Cas(𝑒, 𝑑) returns
false. But if they are found equal, the register is updated with the desirable value 𝑑 , and Cas(𝑒, 𝑑)
returns true. When multiple clients are trying to perform CAS operations on the same register they
must be performed atomically. The CAS operation is very powerful: an asynchronous machine that
supports it can implement all concurrent objects in a wait-free manner.
We follow previous work [Abramsky 1993a; Atkey et al. 2016; Girard 1987; Kokke et al. 2019a]

and define the type of Boolean sessions to be 2
def
= 1 ⊕ 1. We have the following derivable constants:

tt𝑧
def
= 𝑧 [inl] . 𝑧 [] . stop ⊢ 𝑧 : 2 ff𝑧

def
= 𝑧 [inr] . 𝑧 [] . stop ⊢ 𝑧 : 2

Moreover, we obtain the following derivable ‘elimination’ rule (we write derivable rules in blue):

𝑃 ⊢ Γ

𝑧 (). 𝑃 ⊢ 𝑧 : ⊥, Γ

𝑄 ⊢ Γ

𝑧 (). 𝑄 ⊢ 𝑧 : ⊥, Γ

if(𝑧; 𝑃 ; 𝑄)
def
= 𝑧.case{𝑧 (). 𝑃 ; 𝑧 () . 𝑄} ⊢ 𝑧 : 2⊥, Γ

Hence, we can eliminate a Boolean channel in any environment Γ. The induced reactions are

𝜈𝑥𝑦. (tt𝑥 | if(𝑦; 𝑃 ; 𝑄)) −→∗ stop | 𝑃 ≡ 𝑃 𝜈𝑥𝑦. (ff𝑥 | if(𝑦; 𝑃 ; 𝑄)) −→∗ stop | 𝑄 ≡ 𝑃

We can now implement a register with a CAS operation. To begin, each client communicates
with the register along a channel of type

𝐴
def
= 2 ⊗ 2 ⊗ 2

⊥ O 1

Thus, a client outputs three channels. On the first two it shall send the expected and desirable values.
On the third it will input a boolean, namely the success flag of the CAS operation. Following that,
it will accept an end-of-session signal. Curiously, this last step is necessary for our implementation
to type-check.

As a minimal example we will construct a pool of two racing clients, one performing Cas(ff,tt),
and the other one Cas(tt,ff). Initially 𝑥1 is ahead in the client pool.

𝐶0
def
= 𝑥0 [𝑥𝑒 ] . 𝑥0 [𝑥𝑑 ] . (ff𝑥𝑒 | tt𝑥𝑑 | 𝑥0 ↔ 𝑟0) ⊢ 𝑥0 : 2 ⊗ 2 ⊗ 2

⊥ O 1, 𝑟0 : 2 ⊗ ⊥

𝐶1
def
= 𝑥1 [𝑥𝑒 ] . 𝑥1 [𝑥𝑑 ] . (tt𝑥𝑒 | ff𝑥𝑑 | 𝑥1 ↔ 𝑟1) ⊢ 𝑥1 : 2 ⊗ 2 ⊗ 2

⊥ O 1, 𝑟1 : 2 ⊗ ⊥

clients
def
= £𝑥 [𝑥1] . £𝑥 [𝑥0] . £𝑥 [] . (𝐶0 | 𝐶1) ⊢ 𝑥 : £

(

2 ⊗ 2 ⊗ 2
⊥ O 1

)

, 𝑟0 : 2 ⊗ ⊥, 𝑟1 : 2 ⊗ ⊥
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Note that each client forwards the result it receives to an individual channel 𝑟𝑖 . By the QueA rule
these two channels are preserved in the final interface of the pool.
Next we define the CAS register process, for which we use the ¡ connective. This requires two

components: the initialization and finalization process 𝑃 , and the worker process 𝑄 that serves one

client. To begin, we pick the internal server state to be 𝐵
def
= 2. We initialize the register to false, and

forward the final state of the register to 𝑢.

𝑃
def
= (ff𝑖 | 𝑓 ↔ 𝑢) ⊢ 𝑖 : 2 | 𝑓 : 2⊥, 𝑢 : 2

Finally, we define 𝑄 . We begin by receiving the input and output channels from a client, and do a
case analysis on the current state of the register:

𝑄
def
= 𝑦 ′(𝑦𝑒 ). 𝑦

′(𝑦𝑑 ). if(𝑧; 𝑅1; 𝑅0) ⊢ 𝑧 : 2
⊥, 𝑦 ′ : 2⊥ O 2

⊥ O 2 ⊗ ⊥, 𝑧 ′ : 2

We have carefully named the channels so that 𝑦𝑒 : 2
⊥ and 𝑦𝑑 : 2⊥ carry the expected and desirable

values. 𝑧 ′ and𝑤 ′ carry the internal register, before and after the operation. The continuations 𝑅0
and 𝑅1 do a case analysis on the expected and desired value:

𝑅1
def
= if(𝑦𝑒 ; if(𝑦𝑑 ; 𝑆111; 𝑆110); if(𝑦𝑑 ; 𝑆101; 𝑆100)) ⊢ 𝑦𝑒 : 2

⊥, 𝑦𝑑 : 2⊥, 𝑦 ′ : 2 ⊗ ⊥, 𝑧 ′ : 2

𝑅0
def
= if(𝑦𝑒 ; if(𝑦𝑑 ; 𝑆011; 𝑆010); if(𝑦𝑑 ; 𝑆001; 𝑆000)) ⊢ 𝑦𝑒 : 2

⊥, 𝑦𝑑 : 2⊥, 𝑦 ′ : 2 ⊗ ⊥, 𝑧 ′ : 2

Two further case analyses lead to an exhaustive eight cases, each of which is handled by a separate
process 𝑆𝑖 𝑗𝑘 . We only give 𝑆110 here, the rest being analogous:

𝑆110
def
= 𝑦 ′[𝑦𝑟 ] . (tt𝑦𝑟 | 𝑦

′() . ff𝑧′) ⊢ 𝑦
′ : 2 ⊗ ⊥, 𝑧 ′ : 2

In this case, the expected value (true) matches the register state (true), so the process outputs true
to the result channel 𝑦𝑟 (the CAS operation succeeds), and the register is set to the desired value
(false). We must not forget to receive an end-of-session signal on 𝑦, as required by the session type.

We let server
def
= ¡𝑦{𝑧, 𝑧 ′, 𝑦 ′. 𝑄}(𝑖, 𝑓 ). 𝑃 ⊢ 𝑦 : ¡(2⊥ O 2

⊥ O 2 ⊗ ⊥), 𝑢 : 2, and cut:

𝜈𝑥𝑦. (clients | server)

= 𝜈𝑥𝑦. (£𝑥 [𝑥1] . £𝑥 [𝑥0] . £𝑥 [] . (𝐶0 | 𝐶1) | server)

≡ 𝜈𝑥𝑦. (£𝑥 [𝑥0] . £𝑥 [𝑥1] . £𝑥 [] . (𝐶0 | 𝐶1) | server) (𝑥0 preempts 𝑥1 using Que-Que)

−→ 𝜈𝑥𝑦. 𝜈𝑥0𝑦
′. (𝐶0 | £𝑥 [𝑥1] . £𝑥 [] .𝐶1 | ¡𝑦{𝑧, 𝑧

′, 𝑦 ′. 𝑄}(𝑧 ′, 𝑓 ). (𝜈𝑖𝑧. (𝑃 | 𝑄))) (𝐶0 is accepted)

−→∗ 𝑟0 [𝑦𝑟 ] . (tt𝑦𝑟 | 𝑟0 (). 𝜈𝑥𝑦. (£𝑥 [𝑥1] . £𝑥 [] .𝐶1 | ¡𝑦{𝑧, 𝑧
′, 𝑦 ′. 𝑄}(𝑧 ′′, 𝑓 ). 𝑃 ′)) (𝐶0 performs CAS)

−→ 𝑟0 [𝑦𝑟 ] . (tt𝑦𝑟 | 𝑟0 (). 𝜈𝑥𝑦. 𝜈𝑥1𝑦
′. (𝐶1 | £𝑥 [] . stop | ¡𝑦{𝑧, 𝑧 ′, 𝑦 ′. 𝑄}(𝑧 ′, 𝑓 ). (𝜈𝑧 ′′𝑧. (𝑃 ′ | 𝑄))))

(𝐶1 is accepted)

−→∗ 𝑟0 [𝑦𝑟 ] . (tt𝑦𝑟 | 𝑟0 (). 𝑟1 [𝑦𝑟 ] . (tt𝑦𝑟 | 𝑟1 (). 𝜈𝑥𝑦. (£𝑥 [] . stop | ¡𝑦{𝑧, 𝑧 ′, 𝑦 ′. 𝑄}(𝑧 ′′′, 𝑓 ). 𝑃 ′′)))
(𝐶1 performs CAS)

−→ 𝑟0 [𝑦𝑟 ] . (tt𝑦𝑟 | 𝑟0 (). 𝑟1 [𝑦𝑟 ] . (tt𝑦𝑟 | 𝑟1 (). (stop | 𝜈𝑧 ′′′𝑓 . 𝑃 ′′))) (server starts to finalize)

−→∗ 𝑟0 [𝑦𝑟 ] . (tt𝑦𝑟 | 𝑟0 (). 𝑟1 [𝑦𝑟 ] . (tt𝑦𝑟 | 𝑟1 (). ff𝑢)) ⊢ 𝑟0 : 2 ⊗ ⊥, 𝑟1 : 2 ⊗ ⊥, 𝑢 : 2 (server finalizes)

where 𝑃 ′
= tt𝑧′′ | 𝑓 ↔ 𝑢 and 𝑃 ′′

= ff𝑧′′′ | 𝑓 ↔ 𝑢. This corresponds to the scenario where𝐶0 wins the
first race, and hence the CAS operation of both clients suceeds. There is another reaction sequence:
if 𝐶1 wins the first race, we end up with 𝑟1 [𝑦𝑟 ] . (ff𝑦𝑟 | 𝑟1 (). 𝑟0 [𝑦𝑟 ] . (tt𝑦𝑟 | 𝑟0 (). tt𝑢)).
The coexponentials play a central rôle here: ¡ is used to represent the fact that this register

provides a server session at a unique end point, and £ is used to collect requests for a CAS operation
to this single end point. We see that every feature of client-server interaction, as described in points
(i)ś(iv) of ğ1.1, is modelled.
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Fig. 4. Topology of Compare-and-Set protocol, after

two server acceptances. Boxes represent processes.

Cuts are represented by edges connecting two channels.

The dual of each session type is omitted for simplicity.

The fact we are able to implement a syn-
chronization primitive like CAS shows that
the client-server rules also provide an addi-
tional safeguard, namely that server acceptance
is atomic. While the actual CAS is not an atomic
operationÐas many things are happening in
parallelÐthe causal flow of information ensures
that the state implicitly remains atomic.
To illustrate the type of atomicity we have,

consider an alternative reaction sequence
where the two clients are immediately accepted
before any other reaction. Fig. 4 shows the pro-
cess topology of the scenario where 𝐶0 is ac-
cepted immediately before 𝐶1. Each client is
connected to the one of the two worker pro-
cesses𝑄 with client protocol𝐴, and the worker
processes are connected to each other and 𝑃 with internal server protocol 𝐵. Which specific worker
process a client connects to is determined by the client’s position in the queue, before the coexpo-
nential reaction Claro-QueA takes place. The clients’ positions in the layout also determine the
final result of the reaction up to structural equivalence, even before the computation of the output
takes place.

5 A SESSION-TYPED LANGUAGE FOR CLIENT-SERVER PROGRAMMING

As the example of the previous section shows, CSLL is a particularly low-level language. This
is a feature of essentially all variants of linear logic as used for session typing, including Kokke
et al.’s HCP [2019a, Example 2.1], and Wadler’s CP [Atkey 2017, ğ2.1] [Atkey et al. 2016, ğ3.1].
Consequently, the need for higher-level notation to help us write richer examples arises. These in
turn will help us illustrate the degree of channel sharing allowed by CSLL. We follow the lead of
Wadler [2014, ğ4] and introduce a higher-level, session-typed functional language, which we call
CSGV.
CSGV is a linear 𝜆-calculus augmented with session types and communication primitives. It is

based on the influential work of Gay and Vasconcelos [2010]. Over the past decade many variations
of this language have been proposed; see e.g. Lindley and Morris [2015, 2016, 2017] and Fowler
et al. [2019]. CSGV extends Wadler’s version with primitives for client-server interaction. Like the
approach in loc. cit. we do not directly endow CSGV with a semantics. Instead, we formulate a type-
preserving translation into CSLL, which indirectly provides an execution mechanism. Naturally,
the client-server primitives translate to the coexponential rules of CSLL.

5.1 Source Language and the Translation

Types. The types of CSGV consist of standard functional types and session types.While the former
are used to classify values, the latter are used to describe the behaviour of channels. Compared to
Wadler [2014] we have added sum types, and session types for client-server shared channels.

𝑇, . . . F 𝑇 ⊸ 𝑇 | 𝑇 → 𝑇 | 𝑇 +𝑇 | 𝑇 ⊗ 𝑇 | Unit | 𝑇𝑆

𝑇𝑆 , . . . F !𝑇 .𝑇𝑆 (output value of type 𝑇 , then behave as 𝑇𝑆 )

| ?𝑇 .𝑇𝑆 (input value of type 𝑇 , then behave as 𝑇𝑆 )

| 𝑇𝑆 ⊕ 𝑇𝑆 (select from options)
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| 𝑇𝑆 N𝑇𝑆 (offer choice)

| end? | end! (end-of-session)

| £𝑇𝑆 (request 𝑇𝑆 session)

| ¡𝑇𝑆 (serve 𝑇𝑆 session)

Both the functional types and the session types of CSGV are translated to the linear types of CSLL.
The functional part closely follows Wadler in using the ‘call-by-value’ embedding of intuitionistic
logic into linear logic [Benton and Wadler 1996; Maraist et al. 1999, 1995]. The session types are
translated as follows:

J!𝑇 .𝑇𝑆K
def
= J𝑇 K⊥ O J𝑇𝑆K J𝑇𝑆 N𝑈𝐿K

def
= J𝑇𝑆K ⊕ J𝑈𝐿K Jend!K

def
= ⊥

J?𝑇 .𝑇𝑆K
def
= J𝑇 K ⊗ J𝑇𝑆K J𝑇𝑆 ⊕ 𝑈𝐿K

def
= J𝑇𝑆K N J𝑈𝐿K Jend?K

def
= 1

J£𝑇𝑆K
def
= ¡J𝑇𝑆K J¡𝑇𝑆K

def
= £J𝑇𝑆K

As noted by Wadler [2014, ğ4.1], the connectives translate to the dual of what one might expect.
The reason is that channels are used in the opposite way. Consider the session type !𝑇 .𝑆 : sending a
value in CSGV is translated as inputting a channel on which you can send it in CSLL. Similarly, ¡𝑆
does not represent a channel that the server provides, but rather a channel that the server consumes.
It is therefore a channel that the client pool provides, and hence it is translated to a client in CSLL.

Duality. We define duality on session types in the standard way; it is obviously an involution.

!𝑇 .𝑇𝑆
def
= ?𝑇 .𝑇𝑆 !𝑇 .𝑇𝑆

def
= ?𝑇 .𝑇𝑆 𝑇𝑆 ⊕ 𝑈𝐿

def
= 𝑇𝑆 N𝑈𝐿

𝑇𝑆 N𝑈𝐿
def
= 𝑇𝑆 ⊕ 𝑈𝐿 £𝑇𝑆

def
= ¡𝑇𝑆 ¡𝑇𝑆

def
= £𝑇𝑆

The translation is a homomorphism of involutions:

Lemma 5.1. J𝑇𝑆K = J𝑇𝑆K
⊥.

Thus, connecting channels in CSGV will be translated to cuts in linear logic.

Definition 5.2. The set of unlimited types is defined inductively as follows.

• unit and 𝑇 → 𝑈 are unlimited.
• 𝑇 +𝑈 and 𝑇 ⊗ 𝑈 are unlimited whenever 𝑇 and𝑈 are.

All other types are linear.

Values of unlimited types can be discarded and duplicated, because they are translated to
CSLL types that admit weakening and contraction. Categorical considerations [Melliès 2009, ğ6.5]
lead us to consider 𝑇 ⊗ 𝑈 unlimited whenever 𝑇 and𝑈 are, which is finer-grained than loc. cit.

Terms. CSGV is a linear 𝜆-calculus, extended with constructs for sending and receiving messages.

𝐿,𝑀, 𝑁 F 𝑥 | ★ | 𝜆𝑥. 𝑁 | 𝑀𝑁 | (𝑀, 𝑁 ) | let (𝑥,𝑦) = 𝑀 in 𝑁

| inl 𝑀 | inr 𝑀 | match 𝐿 with 𝑥 .{𝑀, 𝑁 } (functional fragment)

| send 𝑀 𝑁 | recv 𝑀 (send and receive)

| select𝐿 𝑀 | select𝑅 𝑀 | case 𝐿 of 𝑥 .{𝑀, 𝑁 } (select options)

| terminate 𝑀 (terminate𝑀)

| connect(𝑥 . 𝑀 ;𝑦. 𝑁 ) (connect 𝑥 of𝑀 to 𝑦 of 𝑁 )

| eof𝑥 (end client pool)

| fork𝑥 𝑥
′. 𝑀 (extract client interface)
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u
wv

Recv
Γ ⊢ 𝑀 : ?𝑇 .𝑇𝑆

Γ ⊢ recv 𝑀 : 𝑇 ⊗ 𝑇𝑆

}
�~
𝑧

def
= J𝑀K𝑧 ⊢ JΓK⊥, 𝑧 : J𝑇 K ⊗ J𝑇𝑆K

u
wv

Send
Γ ⊢ 𝑀 : 𝑇 Δ ⊢ 𝑁 : !𝑇 .𝑇𝑆

Γ,Δ ⊢ send 𝑀 𝑁 : 𝑇𝑆

}
�~
𝑧

def
=

J𝑀K𝑦 ⊢ JΓK⊥, 𝑦 : J𝑇 K 𝑥 ′ ↔ 𝑧 ⊢ 𝑥 ′ : J𝑇𝑆K⊥, 𝑧 : J𝑇𝑆K
𝑥 ′[𝑦] . (J𝑀K𝑦 | 𝑥 ′ ↔ 𝑧) ⊢ JΓK⊥, 𝑥 ′ : J𝑇 K ⊗ J𝑇𝑆K⊥, 𝑧 : J𝑇𝑆K

⊗
J𝑁 K𝑥 ⊢ JΔK⊥, 𝑥 : J𝑇 K⊥ O J𝑇𝑆K

𝜈𝑥𝑥 ′. (𝑥 ′[𝑦] . (J𝑀K𝑦 | 𝑥 ′ ↔ 𝑧) | J𝑁 K𝑥 ) ⊢ JΓK⊥, JΔK⊥, 𝑧 : J𝑇𝑆K
u
wwv

Conn
Γ, 𝑥 : 𝑇𝑆 ⊢ 𝑀 : end! Δ, 𝑦 : 𝑇𝑆 ⊢ 𝑁 : 𝑇

Γ,Δ ⊢ connect(𝑥 . 𝑀 ;𝑦. 𝑁 ) : 𝑇

}
��~
𝑧

def
=

J𝑀K𝑦 ⊢ JΓK⊥, 𝑥 : J𝑇𝑆K⊥, 𝑦 : ⊥ 𝑧 [] . stop ⊢ 𝑧 : 1

𝜈𝑦𝑧. (J𝑀K𝑦 | 𝑧 [] . stop) ⊢ JΓK⊥, 𝑥 : J𝑇𝑆K⊥
Cut

J𝑁 K𝑧 ⊢ JΔK⊥, 𝑦 : J𝑇𝑆K, 𝑧 : J𝑇 K
𝜈𝑥𝑦. (𝜈𝑦𝑧. (J𝑀K𝑦 | 𝑧 [] . stop) | J𝑁 K𝑧) ⊢ JΓK⊥, JΔK⊥, 𝑧 : J𝑇 K

Cut

Fig. 5. CSGV Typing Rules and Translation to CSLL: linear session part

| serve 𝑦{𝐿, 𝑧. 𝑀, 𝑓 . 𝑁 } (server construction)

Typing rules. The environments of CSGV are given by Γ, · · · F • | Γ, 𝑥 : 𝑇 . The translation of
types is extended to environments pointwise.
Selected typing rules of CSGV are given in Figs. 5 and 6. Most rules follow Wadler [2014, ğ4.1]

to the letter, and are therefore omitted. In the interest of economy we also give the translation
to CSLL at the same time. The translation is defined by induction on the typing derivations of
CSGV. As the purpose of a CSGV program is the computation of a value of a distinguished type,
the translation must privilege a single name over which this value will be returned. Thus, given a
choice of name 𝑧 and a typing derivation Γ ⊢ 𝑀 : 𝑇 , we write JΓ ⊢ 𝑀 : 𝑇 K𝑧 for its translation into

CSLL. Somewhat abusively we will sometimes also write J𝑀K𝑧 ⊢ JΓK⊥, 𝑧 : J𝑇 K for the translated
term. This slight abuse of notation also reveals the intended typing.
The novelty here is in the CSGV rules for client-server interaction, and their translation into

CSLL. A name of shared client type £𝑇𝑆 can be seen as a form of ‘capability’ for talking to the
server. ReqW discards this capability, signalling the end of the client pool. ReqA uses it to spawn a
fresh channel 𝑥 ′ on which a client 𝑀 will talk to a server, and returns the capability back to the
caller. The client 𝑀 itself has type end!: it does not return valuable information, but uses values
and channels found in Γ.
Dually, ¡𝑇𝑆 is the type of a server channel. Serv constructs a server from three components. 𝐿

computes the initial state of the server. Given the current state in 𝑧, and a client channel 𝑦, 𝑀
serves the client listening on 𝑦, and then returns the next state of the server. 𝑁 finalizes the server.
Note that the so-called server ‘state’ here could well be a channel itself, enabling bidirectional
interleaving communicationÐa design we will explore in ğ5.5.

The Serv typing rule is quite restrictive, in that it does not allow anything from the environments
Δ and Σ to be used in the term 𝑀 which computes the next state of the server. Fortunately, the
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u
wwv

ReqW

𝑥 : £𝑇𝑆 ⊢ eof𝑥 : end!

}
��~
𝑧

def
=

stop ⊢ ∅

£𝑥 [] . stop ⊢ 𝑥 : £J𝑇𝑆K⊥

𝑧 (). £𝑥 [] . stop ⊢ 𝑥 : £J𝑇𝑆K⊥, 𝑧 : ⊥
u
wwv

ReqA

Γ, 𝑥 ′ : 𝑇𝑆 ⊢ 𝑀 : end!

Γ, 𝑥 : £𝑇𝑆 ⊢ fork𝑥 𝑥
′. 𝑀 : £𝑇𝑆

}
��~
𝑧

def
=

J𝑀K𝑢 ⊢ JΓK⊥, 𝑥 ′ : J𝑇𝑆K⊥, 𝑢 : ⊥ 𝑣 [] . stop ⊢ 𝑣 : 1

𝜈𝑢𝑣 . (J𝑀K𝑧 | 𝑣 [] . stop) ⊢ JΓK⊥, 𝑥 ′ : J𝑇𝑆K⊥
𝑥 ↔ 𝑧 ⊢ 𝑥 : £J𝑇𝑆K⊥, 𝑧 : ¡J𝑇𝑆K

£𝑥 [𝑥 ′] . (𝜈𝑢𝑣 . (𝑧 [] . stop | J𝑀K𝑢 ) | 𝑥 ↔ 𝑧) ⊢ JΓK⊥, 𝑥 : £J𝑇𝑆K⊥, 𝑧 : ¡J𝑇𝑆K
HMix2+QueA

u
wv

Serv
Δ ⊢ 𝐿 : 𝑇 𝑧 : 𝑇,𝑦 : 𝑇𝑆 ⊢ 𝑀 : 𝑇 Σ, 𝑓 : 𝑇 ⊢ 𝑁 : 𝑈

Δ, Σ, 𝑦 : ¡𝑇𝑆 ⊢ serve 𝑦{𝐿, 𝑧. 𝑀, 𝑓 . 𝑁 } : 𝑈

}
�~
𝑢

def
=

J𝐿K𝑖 ⊢ JΔK⊥, 𝑖 : J𝑇 K J𝑁 K𝑢 ⊢ JΣK⊥, 𝑓 : J𝑇 K⊥, 𝑢 : J𝑈 K
J𝐿K𝑖 | J𝑁 K𝑢 ⊢ JΔK⊥, 𝑖 : J𝑇 K | JΣK⊥, 𝑓 : J𝑇 K⊥, 𝑢 : J𝑈 K J𝑀K𝑧′ ⊢ 𝑧 : J𝑇 K⊥, 𝑦 : J𝑇𝑆K⊥, 𝑧′ : J𝑇 K

¡𝑦{𝑧, 𝑧′, 𝑦. J𝑀K𝑧′}(𝑖, 𝑓 ) . (J𝐿K𝑖 | J𝑁 K𝑢 ) ⊢ JΔK⊥, 𝑦 : ¡J𝑇𝑆K⊥, JΣK⊥, 𝑢 : J𝑈 K
Claro

Fig. 6. CSGV Typing Rules and Translation to CSLL: shared session part

following derivable rule allows us to weave some non-linear values of types ®𝑉 in the server.

Δ ⊢ 𝐿 : 𝑇 ®𝑣 : ®𝑉 , 𝑧 : 𝑇,𝑦 : 𝑇𝑆 ⊢ 𝑀 : 𝑇 Σ, 𝑓 : 𝑇 ⊢ 𝑁 : 𝑈 ®𝑉 unlimited

®𝑣 : ®𝑉 ,Δ, Σ, 𝑦 : ¡𝑇𝑆 ⊢ serve 𝑦{(®𝑣, 𝐿), 𝑧 ′. let (®𝑣, 𝑧) = 𝑧 ′ in (®𝑣,𝑀), 𝑓 ′. let (®𝑣, 𝑓 ) = 𝑓 ′ in 𝑁 }
︸                                                                                      ︷︷                                                                                      ︸

serve’ 𝑦{𝐿, 𝑧. 𝑀, 𝑓 . 𝑁 }

: 𝑈

We will make crucial use of this derivable rule in a couple of our examples. We also also adopt the

common shorthands let 𝑥 = 𝑀 in 𝑁
def
= (𝜆𝑥 . 𝑁 )𝑀 and let _ = 𝑀 in 𝑁

def
= (𝜆𝑧. 𝑁 )𝑀 for fresh 𝑧 : ★.

5.2 Functional Data Structure Server

Our primitives can be used to protect a shared functional data structure. Without loss of generality,
we consider a server whose state is a purely functional queue 𝑇 with operations

enq : 𝑇 ⊗ 𝐴 → 𝑇 deq : 𝑇 → 𝑇 ⊗ (Unit +𝐴) empty : 𝑇

In particular, deq could return Unit if the queue is empty. The server will talk to a client via a

channel of type𝑇𝑆
def
= (?𝐴.end?)N (!(Unit+𝐴).end?). One client receives an𝐴 along 𝑟0, and enqueues

it. The other one dequeues an element, and sends it along 𝑟1.
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𝐿
def
= empty

𝑀𝑒𝑛𝑞
def
= let (𝑣,𝑦 ′′) = recv 𝑦 ′ in

let _ = terminate 𝑦 ′′ in enq(𝑧, 𝑣)

𝑀𝑑𝑒𝑞
def
= let (𝑣, 𝑧 ′) = deq 𝑧 in

let _ = terminate (send 𝑣 𝑦 ′) in 𝑧 ′

𝑀
def
= case 𝑦 of 𝑦 ′.{𝑀𝑒𝑛𝑞, 𝑀𝑑𝑒𝑞}

𝐶0
def
= let (𝑣, 𝑟 ′0) = recv 𝑟0 in

let _ = terminate 𝑟 ′0 in

let 𝑥 ′0 = send 𝑣 (select𝐿 𝑥0) in 𝑥
′
0

𝐶1
def
= let (𝑣, 𝑥 ′1) = recv (select𝑅 𝑥0) in

let _ = terminate (send 𝑣 𝑟1) in 𝑥 ′1

clients
def
= let 𝑥 = fork𝑥 𝑥0 .𝐶0 in

let 𝑥 = fork𝑥 𝑥1 .𝐶1 in eof𝑥

We then define server
def
= serve 𝑦{𝐿, 𝑧. 𝑀, 𝑓 . 𝑓 }, and see that

𝑟0 : ?𝐴.end?, 𝑟1 : !(Unit +𝐴).end? ⊢ connect(𝑥 . clients;𝑦. server) : 𝑇

5.3 Nondeterminism

Unsurprisingly, the races in our system suffice to implement nondeterministic choice. We define

B
def
= Unit + Unit. We implement tt and ff by the obvious injections, and the conditional by

Γ ⊢ 𝐵 : B Δ ⊢ 𝑀 : 𝑉 Δ ⊢ 𝑁 : 𝑉

Γ,Δ ⊢ if 𝐵 then 𝑀 else 𝑁
def
= match 𝐵 with 𝑥 .{𝑀, 𝑁 } : 𝑉

+𝐸

(for 𝑥 fresh). The clients 𝐶0,𝐶1 respectively send ff and tt over a channel. We also define a server
with a pair of Booleans as internal state. The first component records whether the server has ever
received a value. When a value is received it is stored in the second component, and any further
values received are discarded.

𝐶0
def
= send ff 𝑥0

𝐶1
def
= send tt 𝑥1

clients
def
= let 𝑥 = fork𝑥 𝑥0.𝐶0 in

let 𝑥 = fork𝑥 𝑥1.𝐶1 in

eof𝑥

𝑀
def
= let (𝑧0, 𝑧1) = 𝑧 in

let (𝑣,𝑦 ′) = recv 𝑦 in

let _ = terminate 𝑦 ′ in

if 𝑧0 then 𝑧 else (tt, 𝑣)

𝑁
def
= let (𝑓0, 𝑓1) = 𝑓 in 𝑓1

We define a server
def
= serve 𝑦{(ff,ff), 𝑧. 𝑀, 𝑓 . 𝑁 } beginning from (ff,ff). We then have that

⊢ flip
def
= connect(𝑥 . clients;𝑦. server) : B

This program is translated to JflipK𝑦 ⊢ 𝑦 : 2, with reactions JflipK𝑦 −→∗ ff𝑦 and JflipK𝑦 −→∗ tt𝑦 .
We can use this to implement a nondeterministic choice operator:

𝑃 ⊢ Γ 𝑄 ⊢ Γ

choose(𝑃,𝑄)
def
= 𝜈𝑥𝑦. (JflipK𝑦 | if(𝑥 ; 𝑃 ; 𝑄)) ⊢ Γ

such that choose(𝑃,𝑄) −→∗ 𝑃 and choose(𝑃,𝑄) −→∗ 𝑄 .

5.4 Fork–Join Parallelism

Fork-join parallelism [Conway 1963] is a common model of parallelism in which child processes
are forked to perform computation simultanously. Once they have finished, they are joined by the
parent process, which collects their work and produces the final result. We assume a ‘heavyweight’
function ℎ : 𝐴 → 𝐵 that will run on forked processes, and a relatively less expensive function
𝑔 : 𝐵 → 𝐵 → 𝐵 that will combine their answers. We also assume an initial value 𝑔0 : 𝐵, and a
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list of ‘tasks’ 𝑥𝑠 : [𝐴] to process. Of course, [𝐴] is the type of lists of 𝐴, and is supported by the
operations:

nil : [𝐴] cons : 𝐴 → [𝐴] → [𝐴] fold𝐶 : 𝐶 → (𝐶 → 𝐴 → 𝐶) → [𝐴] → 𝐶

Let

clients
def
= let 𝑦 = fold£𝑇𝑆 𝑐 (𝜆𝑥 . 𝜆𝑣 . fork𝑥 𝑥

′. (let 𝑣 ′ = ℎ 𝑣 in send 𝑣 ′ 𝑥 ′)) 𝑥𝑠 in eof𝑦

𝑀
def
= let (𝑣,𝑦 ′) = recv 𝑦 in let _ = terminate 𝑦 ′ in 𝑔 𝑧 𝑣

The client protocol is 𝑇𝑆
def
= !𝐵.end!. To form the client pool, we begin with a shared client channel

𝑐 : £𝑇𝑆 . We fold over the list 𝑥𝑠 : [𝐴], adding a forked process for each ‘task’ 𝑣 : 𝐴 to the client pool.
Each one of these forked processes will compute ℎ 𝑣 : 𝐵, and send it over its fresh channel 𝑥 ′ : 𝑇𝑆 .
We have 𝑐 : £𝑇𝑆 ⊢ clients : end!.

We let server
def
= serve’ 𝑦{𝑔0, 𝑧. 𝑀, 𝑓 . 𝑓 }. The server begins with internal state 𝑔0 : 𝐵. It nondeter-

ministically receives the result of a computation of ℎ from each client, and ‘merges’ it into its state

using 𝑔. In the end, it returns the result. We have 𝑧 : 𝐵,𝑦 : 𝑇𝑆 ⊢ 𝑀 : 𝐵, and thus 𝑦 : ¡𝑇𝑆 ⊢ server : 𝐵.
We use serve’ to pass unlimited parameters to the server internals.

Putting this system together, we get

⊢ fork-join(ℎ,𝑔0, 𝑔, 𝑥𝑠)
def
= connect(𝑥 . clients;𝑦. server) : 𝐵

The fork-join paradigm is often used in industrial parallelization frameworks [Blumofe et al.
1995; Dagum and Menon 1998; Leijen et al. 2009; Reinders 2007]. The background languages and
type systems usually do not use any logical devices for concurrency. In particular, concurrent
behaviour is not controlled by the type system, as it is here. Note that fork-join requires each
spawned process to be independent of each other and only communicate with the parent process,
which is precisely caputured by the linearity restriction of our system.

Another parallel computation model is that of async-finish. It is more expressive than fork-join,
as it allows spawned processes to spawn further processes. The whole tree is then joined at the
root process, with no regard to the spawning thread of each child. Our system(s) does not support
that: in the ReqA rule, the spawned process𝑀 is only given a channel 𝑥 ′ : 𝑇𝑆 , which cannot be used
to spawn further processes in the same pool. However, it is well-known is that nested parallelism
is still possible, but each child has to spawn its own instance of a fork-join computation, which
does not interfere with the root process.

An even more expressive model is that of futures [Halstead 1984]. A future is a first-class value
that represents a computation running in parallel to the current process. At any point it can be
forced to obtain its result; if it has not finished an error may be returned, or the process forcing
it may block. While fork-join or async-finish spawned processes are independent of each other,
futures may be passed around freely (in any reasonably expressive language) and introduce rich
interactions. This seems to be in violation of the linearity restriction of our system(s), and thus
cannot be expressed. Nevertheless, the Conn rule can be seen as a very restricted form of future,
where the spawned process can only communicate with the parent process. More discussions about
the difference between these models is given by Acar [2016].

5.5 Keynes’ Beauty Contest

Until this point we have seen only relatively simple examples of client-server interaction. In all
cases, the ‘internal server protocol’ we have used has consisted of an unlimited type, the values of
which we can replicate or discard. This leads to the false impression that clients access the server
one-by-one in a sequential manner, so that clients that connect later are unable to influence the
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information observed by the earlier ones. In this section we present an example that shows this to
be untrue. In particular, if the ‘internal server protocol’ consists of a session type itself, then we
witness bidirectional, interleaving behaviour. This distinguishes our systems from those based on
manifest sharing [Balzer and Pfenning 2017].

We present a server implementing the umpire in a Keynesian beauty contest [Keynes 1936, ğ12].
Keynes’ beauty contest works as follows. A newspaper runs a beauty contest in which readers have
to pick the prettiest faces from a set of photographs. The competitors are not those pictured, but
the readers themselves: if they pick the faces which are judged to be the prettiest by the majority,
they will win a prize. Thus, the readers are incentivized to estimate the aesthetics of the majority.
We will implement a restricted version of this scenario, where a pool of clients votes for a

Boolean value. The server then counts the votes, and awards a payoff of 0 or 1 (represented by ff

and tt respectively) to each client, indicating whether they voted for the winner. This is obviously
impossible if the server handles requests sequentially. In fact, the server will be implemented by
spawning a network of interconnected processes, each of which will handle one vote.

We first define the following derived rule. Informally, this rule expresses that a process that uses

a channel of type 𝑇𝑆 is also exposing a channel of dual type 𝑇𝑆 .

Γ, 𝑥 : 𝑇𝑆 ⊢ 𝑀 : end! 𝑦 : 𝑇𝑆 ⊢ 𝑦 : 𝑇𝑆

Γ ⊢ inv𝑥 (𝑀)
def
= connect(𝑥 . 𝑀 ;𝑦.𝑦) : 𝑇𝑆

The client session type is 𝐶𝑆
def
= !B.?B.end!, and the internal server protocol is 𝑇𝑆

def
= ?(N ⊗

N).!B.end?, where N is the type of natural numbers. We assume a bunch of standard functions:

zero : N succ : N→ N ≤ : N→ N→ B eq : B→ B→ B

where eq checks Boolean values for equality. We let

𝐿
def
= let 𝑤 ′

= send (zero, zero) 𝑤 in (send initial state)

let (_,𝑤 ′′) = recv 𝑤 ′ in 𝑤 ′′ (receive final value)

𝑁
def
= let (𝑠, 𝑓 ′) = recv 𝑓 in (receive final count)

let (𝑛0, 𝑛1) = 𝑠 in (unpack state)

let 𝑓 ′′ = send (𝑛0 ≤ 𝑛1) 𝑓
′ in (compute winner and notify the last worker process)

terminate 𝑓 ′′ (close channel)

𝑀
def
= let (𝑠, 𝑧 ′) = recv 𝑧 in (get state)

let (𝑛𝑡 , 𝑛𝑓 ) = 𝑠 in (unpack state)

let (𝑏,𝑦 ′) = recv 𝑦 in (receive a vote)

let 𝑠 ′ = if 𝑏 then (succ 𝑛𝑡 , 𝑛𝑓 ) else (𝑛𝑡 , succ 𝑛𝑓 ) in (increment the right counter)

let 𝑤 ′
= send 𝑠 ′ 𝑤 in (pass new state to next worker process)

let (𝑏 ′,𝑤 ′′) = recv 𝑤 ′ in (receive winner from next worker process)

let _ = terminate (send (eq 𝑏 𝑏 ′) 𝑦 ′) in (tell competitor if they won, close channel)

let _ = terminate (send 𝑏 ′ 𝑧 ′) in (forward winner on, close channel)

𝑤 ′′
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We define server
def
= serve 𝑦{inv𝑤 (𝐿), 𝑧. inv𝑤 (𝑀), 𝑓 . 𝑁 }. The components are typed as

𝑤 : 𝑇𝑆 ⊢ 𝐿 : end!

𝑤 : 𝑇𝑆 , 𝑧 : 𝑇𝑆 , 𝑦 : 𝐶𝑆 ⊢ 𝑀 : end!

𝑓 : 𝑇𝑆 ⊢ 𝑁 : unit

𝑦 : ¡𝑇𝑆 ⊢ server : unit

The details of this protocol are subtle. The construct inv𝑥 (−) allows us to use programs which
only have side-effects as internal server state, by inverting the polarity of one of the channels. The
server is initialized by 𝐿, which sets the state to be (0, 0). It then listens on the same channel to
receive the winner, which it promptly discards. The server finalization 𝑁 receives the final tally of
the votes, computes the winner, sends back the result, and closes the channel.
The component 𝑀 is used to communicate with each competitor. It receives the state of the

server, the competitor’s vote, and increments the appropriate tally. It then passes on this new state
to the next worker process 𝑀 , which will communicate with the next competitor. This sets up
an entire network of worker processes 𝑀 , one to serve each competitor. When the competitors
have all cast their votes, 𝑁 computes the winner, and sends it back to the last worker process. This
process then tells the competitor whether they won, closes the channel to the competitor, and
passes on the result to the worker process serving the previous competitor, and so on. At the very
end, the winner is passed to the initialization process 𝐿.

We can then define a number of competitors 𝑥𝑖 : !B.?B.end! ⊢ 𝐶𝑖 : end! who will cast their votes
by sending a Boolean value and receive a payoff along 𝑥𝑖 . These can be combined into a client pool,
much in the same way as in previous examples.

server

𝐿

𝑁

𝑀

𝑀

𝐶0

𝐶1

𝑖

N ⊗ N
𝑧

B 𝑧 ′

N ⊗ N
𝑧

𝑧 ′

B

𝑧

𝑧 ′
N ⊗ N

𝑓 𝑧 ′

B

𝑓

𝑦
B

𝑥0𝑦

B

𝑥0

𝑦
B

𝑥1𝑦

B

𝑥1

Fig. 7. Layout of the Keynesian beauty contest, after co-

exponential reactions but before other reactions. Boxes

represents processes whose names are at the center of

the boxes. Arrows represents directedmesages between

processes with types of the data annotated. Labels on

edges of boxes are the names of the channels to the

processes.

If we have two such competitors 𝐶0 and 𝐶1

merged in a pool, and we connect them to
server, we will obtain a process topology of
the form illustrated in the schematic diagram
of Fig. 7. Compared with Fig. 4 this diagram is
intuitive but loose on accuracy. Details such as
end? and end! are left out. We have also spelled
out the protocols internals. For example, the
server internal protocol𝑇𝑆 is indicated by a for-
ward arrow N ⊗ N and a backward arrow B.

6 RELATED WORK

Hypersequents and Session Types. Hyperse-
quents were introduced to process calculi and
Classical Linear Logic by Montesi and Peres-
sotti [2018]. Another version of that system
was studied in detail by Kokke et al. [2019a]. A
reaction semantics similar to the one used here
was given in [Kokke et al. 2018].

Differential Linear Logic. The rules for £ given in ğ2.2 are almost the same as the coweakening,
codereliction and cocontraction rules for ! in Differential Linear Logic (DiLL) [Ehrhard 2018]. DiLL is
equipped with nondeterministic reduction and formal sums, and is believed to have something
to do with concurrency. Ehrhard and Laurent [2010] have produced an embedding of the finitary
𝜋-calculus into DiLL, though that encoding has been criticized [Mazza 2018]. A type of client-server
interactionsÐnamely the encoding of ML-style reference cells into session typesÐhas been encoded
by Castellan et al. [2020] in a system based on the rules of DiLL. This work relies on both the
costructural rules and Mix, so it is not clear which device primarily augments expressive power.
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Our work shows that something akin to the costructural rules of DiLL arises from the wish to form
client pools. The exact relationship between coexponentials and DiLL remains to be determined.

Clients, Servers, and Races in Linear Logic. Typing client-server interaction has been a thorn in the
side of session types and Linear Logic. All previous attempts rely on some version of the Mix rule.
Both Wadler [2014, ğ3.4] and Caires and Pérez [2017, Ex. 2.4] use Mix to combine clients into client
pools. Kokke et al. implicitly use Mix to type an otherwise untypable client pool in HCP [Kokke
et al. 2019a, Ex. 3.7].7 Remarkably, none of these calculi demonstrate stateful server behaviour, as
we predicted using a semantic argument in ğ1.1.

Atkey et al. [2016] explore the additional power bestowed upon CP by conflating dual connectives.
The conflation of ? and ! leads to the notion of access point, a dynamic match-making communication
service on a single end point. In fact, the rules look eerily close to the list-like formulation of our
servers and generators. Access points prove too powerful: they introduce stateful nondeterminism,
racy communication, and general recursion. This impairs the safety of CP by introducing deadlock
and livelock. Our work shows that we can still safely obtain the former two features without
introducing the third.

Adding nondeterminism to CLL in a controlled fashion is complex. Atkey et al. [2016] express a
form of nondeterministic local choice in CP by conflating N and ⊕. The resultant form of nonde-
terministic choice cannot induce the racy behaviour normally exhibited in the 𝜋-calculus [Kokke
et al. 2019b, ğ2]. Caires and Pérez [2017] present a dual-context system based on CLL+Mix in which
the same kind of nondeterministic local choice is expressed through a new set of modalities, ⊕
and N.8 These bear a similarity to the coexponential modalities presented here, but they are used
for nondeterminism instead. Their N modality has a monadic flavour, and hence can be used to
encapsulate nondeterminism ‘in the monad’ in the usual manner in which we isolate effects.

Kokke et al. [2019b] drew inspiration from Bounded Linear Logic [Girard et al. 1992] to formulate
a system for nondeterministic client-server interaction. They use types of the form ?𝑛𝐴 (standing
for 𝑛 copies of𝐴 delimited by O) and !𝑛𝐴 (standing for 𝑛 copies of𝐴 delimited by ⊗). !𝑛𝐴 represents
a pool of 𝑛 disjoint clients with protocol 𝐴, and ?𝑛𝐴 a server that can serve exactly 𝑛 clients with
protocol𝐴. While this is consistent with disjoint-vs.-connected concurrency, their system is limited
to serving a specific number of clients in each session. Thus, it fails to satisfy criterion (i) in ğ1.1,
and does not form a satisfactory model.

Carbone et al. [2017] approach multiparty session types through coherence proofs. In op. cit. the
authors develop Multiparty Classical Processes, a version of CP with role annotations and the MCut

rule. The latter is a version of the MultiCut rule annotated with a coherence judgment derived from
Honda et al. [2016], which generalises duality and ensures that roles match appropriately. MCP
does not allow dynamic sessions with arbitrary numbers of participants, and hence cannot model
client-server interactions. MCP was later refined into the system of Globally-governed Classical
Processes (GCP) by Carbone et al. [2016]. Unlike these calculi, our work does not require any
consideration of coherence or local vs. global types.

The work of Rocha and Caires [2021], which also appears at ICFP 2021, introduces shared state to
CLL. This is accomplished by a rule akin to the co-contraction of DiLL [Ehrhard 2018], along with
rules that manipulate shared memory cells (allocation, deallocation, read, write). Races are resolved
on a case-by-case basis, using locks to protect critical sections, and collecting all the possible
outcomes into a formal sum, again in the style of DiLL. This system also includes the Mix rule, but
it is not clear if that is an essential feature of the approach. Moreover, the system enjoys subject
reduction, progress, weak normalization, andÐas nondeterminism is captured by formal sumsÐit

7This has been confirmed to us by the authors.
8This is an intentional clash with external and internal choice in Linear Logic.
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is also confluent. Compared to that work the approach through the coexponential modalities is
more parsimonious and follows Linear Logic more closely. The difference in expressivity is unclear.

Fixed Points in Linear Logic. Inductive and coinductive typesÐpresented proof-theoretically as
least and greatest fixed pointsÐwere introduced in the context of higher-order Classical Linear
Logic by Baelde [2012]. Baelde formulates a weakly normalization cut elimination procedure, which
albeit does not satisfy the subformula property. Ehrhard and Jafarrahmani [2021] study categorical
models for a slight extension of the propositional fragment of Baelde’s system, which allow them
to infer certain facts about the behaviour of (co)inductive linear data types.
The structure of Baelde’s system has been used to extend CP with inductive and coinductive

types by Lindley and Morris [2016]. This is our starting point in ğ2.2, but with significant alterations
along the way. First, our system is based on HCP. Second, the server rule has been reformulated to
support hyperenvironments, and server finalization (ğ3.3). Third, our client pools allow permutation
in order to enable nondeterminism (ğ3.4). Finally, our reaction semantics are tailored to the specific
setting, and are consequently simpler. In a separate strand of work, Toninho et al. [2014] introduce
coinduction in a system of session types based on Intuitionistic Linear Logic (ILL); see Lindley and
Morris [2016, ğğ1, 7] for a comparison. Derakhshan and Pfenning [2020] give a linear metalogic
with least and greatest fixed point and prove strong progress for binary session-typed processes in
the metalogic.

Manifest sharing. Closely related to our work is the notion of manifest sharing [Balzer and
Pfenning 2017]. This work starts from a very different premise: a channel is either linear (as the
usual channels in session types), or shared between processes. This leads to an ILL-based system,
SILL𝑆 , with two modes and two modalities shifting between them [Reed 2009]. The switch to a
shared channel is punctuated by the modalities. Thus, sharing manifests in the types. In some ways,
SILL𝑆 is a much stronger system, as it features equi-synchronizing recursive session types. The
price to pay is the introduction of deadlock. Balzer et al. [2019] develop an additional layer of the
type system that protects from it.

Our work attempts to solve the expressivity problem of LL-based session types beginning from
Curry-Howard: we seek the minimal extension to Linear Logic that will enable us to write server
and client processes. Unlike manifest sharing, we remain committed to CLL and its duality. The
result is that our system has simpler rules, avoiding the notions of linear and shared channels (as
(co)exponentials internalise them), as well as the lock-like primitives used to introduce modalities
by Balzer and Pfenning [2017]. Moreover, we have remained committed to the goal of retaining
the good properties ensured by cut elimination in CLL (e.g. deadlock freedom). A drawback of this
approach is that our system inherits the linearity constraint from linear logic, and is thus unable to
express circular structures (such as Dijkstra’s dining philosophers).

Both systems provide atomicity, but in radically different ways. In SILL𝑆 users access the service
in a mutually exclusive manner. This is not compatible with the usual view of typical client-server
interaction, where mutliple clients need to access the server simultanously in order to exchange
information. A common workaround is to decompose an interleaved session into a ‘stateless’
protocol consisting of several mini-sessions (such as the voting examples in Das et al. [2021] and
Sano et al. [2021]). Every client is then required to send a ‘cookie’ to identify themselves across
mini-sessions. In our system accesses to the shared service are concurrent, but causally atomic (ğ4).
As a result, interleaved sessions can be expressed natively (ğ5.5).

Type systems for the 𝜋-calculus. There are many ways to equip the 𝜋-calculus with a type system.
A large class of such systems is based on Kobayashi’s notion of channel usage [Kobayashi 2002,
2003, 2006]. That work proceeds in the opposite direction: it begins with the 𝜋-calculus, and tries
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to tame its expressive power through types that control the use of channels, thereby guaranteeing
deadlock-freedom, lock-freedom, and so on. These systems are able to express some of the expected
properties of client-server interaction, see e.g. Kobayashi [2003, Example 8]. Comparing these
families of type systems for concurrent behaviour is a difficult task which has been undertaken by
Dardha and Pérez [2015]. The main difference seems to be that our work tries to stick as closely
as possible to the foundations of session types in linear logic. In addition, the usage-based type
systems take a ‘channel-first’ approach, where all channels may be shared between processes; this
is in sharp contrast to session types [Kobayashi 2003, ğ10]. Dardha and Gay [2018] have attempted
to merge these two approaches through the formulation of Priority-based CP, a new calculus based
on CLL which allows a controlled form of cyclic dependencies.

Session Types. There is a nontrivial connection between our work and Multiparty Session Types

[Coppo et al. 2016; Honda et al. 2008, 2016], which comprise a 𝜋-calculus and a behavioural
type system specifying interaction between multiple agents. The kinds of protocols expressed by
multiparty session types are ‘fully’ choreographed, and involve a fixed number of participants. As
such, they cannot model interactions with an arbitrary number of clients; nor can they introduce a
controlled amount of nondeterminism. Some of these expressive limitations have been remedied in
systems of Dynamic Multirole Session Types [Deniélou and Yoshida 2011], which come at the price
of introducing roles that parties can dynamically join or leave, and a notion of quantification over
participants with a role. Our system captures certain use-cases of roles using only tools from linear
logic, with little additional complexity.

7 CONCLUSIONS AND FURTHER WORK

We presented the system of Client-Server Linear Logic, which features a novel form of modality,
the coexponentials. We then showed how CSLL can be used to model client-server interactions
without falling down the slippery slope of introducing Mix. We comment on some directions for
future work.

Termination. It would be interesting to establish a termination result for CSLL. This would prove
that the resulting calculus does not generate livelock. We expect this proof to be somewhat involved,
which is why most work on Linear Logic and session types either fails to produce a proof, or defers
to Girard’s proof for CLL [Aschieri and Genco 2019; Wadler 2014].

Syntax. The weak ¡ rule listed in ğ2.2 is expressed by folding ⊗ over the set of formulas. This
obstructs a particular commuting conversion in cut elimination. Similarly, presentation of the
strong exponential and its computational interpretation is omitted due to its unsatisfactory rules.
We believe these issues are due to the limitation of sequent calculus, and alternative techniques are
necessary to solve them.
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