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We present the first specification and verification of an implementation of a causally-consistent distributed

database that supports modular verification of full functional correctness properties of clients and servers. We

specify and reason about the causally-consistent distributed database in Aneris, a higher-order distributed
separation logic for an ML-like programming language with network primitives for programming distributed

systems. We demonstrate that our specifications are useful, by proving the correctness of small, but tricky,

synthetic examples involving causal dependency and by verifying a session manager library implemented on

top of the distributed database. We use Aneris’s facilities for modular specification and verification to obtain a

highly modular development, where each component is verified in isolation, relying only on the specifications

(not the implementations) of other components. We have used the Coq formalization of the Aneris logic to
formalize all the results presented in the paper in the Coq proof assistant.
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1 INTRODUCTION

The ubiquitous distributed systems of the present day internet often require highly available and
scalable distributed data storage solutions. The CAP theorem [Gilbert and Lynch 2002] states that a
distributed database cannot at the same time provide consistency, availability, and partition (failure)

tolerance. Hence, many such systems choose to sacrifice aspects of data consistency for the sake of
availability and fault tolerance [Bailis et al. 2013; Chang et al. 2008; Lloyd et al. 2011; Tyulenev et al.
2019]. In those systems different replicas of the database may, at the same point in time, observe
different, inconsistent data. Among different notions of weaker consistency guarantees, a popular
one is causal consistency. With causal consistency different replicas can observe different data, yet,
it is guaranteed that data are observed in a causally related order: if a node 𝑛 observes an operation
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write(𝑥, 37)

write(𝑦, 1)


wait(𝑦 = 1)

read(𝑥) // reads Some(37)

write(𝑥, 0)

write(𝑥, 37)


wait(𝑥 = 37)

write(𝑦, 1)


wait(𝑦 = 1)

read(𝑥) // reads Some(37)

Fig. 1. Two examples of causal dependency: direct (left) and indirect (right, [Lloyd et al. 2011]).

𝑥 originating at node𝑚, then node 𝑛 must have also observed the effects of any other operation
that took place on node𝑚 before 𝑥 . Causal consistency can, for instance, be used to ensure in a
distributed messaging application that a reply to a message is never seen before the message itself.
Two simple, illustrative examples of causal dependency are depicted in Figure 1; programs

executed on different nodes are separated using double vertical bars. Notice that in our setting all
keys are uninitialized at the beginning and the read operation returns an optional value indicating
whether or not the key is initialized. In both examples, the read(𝑥) command returns the value 37,
as indicated by the comment in the code, as the preceding wait command waits for the effects of
write(𝑦, 1) to be propagated. In the example on the left (illustrating direct causal dependence) the
write(𝑥, 37) command immediately precedes the write(𝑦, 1) command on the same node; hence
any node that observes 1 for key 𝑦 should also observe 37 for key 𝑥 . However, in the example on
the right, the write(𝑦, 1) command is executed on the middle node only after the value of 37 is
observed for key 𝑥 on that node; hence, in this example too, any node that observes 1 for key 𝑦
should also observe 37 for key 𝑥 .

Programming distributed systems is challenging and error-prone [Guo et al. 2013], especially in
the presence of weaker consistency models like causal consistency which allow concurrent (causally
independent) writes [Boehm and Adve 2012]. Consequently, there have been several efforts in
recent years to provide tools for analysis and verification of distributed database systems with
weak notions of consistency, e.g., [Gotsman et al. 2016; Kaki et al. 2018; Lesani et al. 2016; Xiong
et al. 2019]. Those works give a high-level model of a (programming) language with primitives
for reading from and writing to a distributed database and provide semantics for that language.
The semantics is then used to build sound program analysis tools or to verify correctness of
implementations of distributed databases and/or their clients. The semantics presented in the
aforementioned works usually keeps track of the history of operations and (directly or indirectly)
their dependence graph. A common aspect of these works is that the developed systems, be it a
program logic, a program analysis tool, or both, are designed with the express purpose of verifying
correctness of closed programs w.r.t. a specific notion of consistency. Thus they do not support
general modular verification where components of the program are verified separately, although
Lesani et al. do support the verification of databases and their clients independently. Moreover,
importantly, the aforementioned works do not scale to verification of full functional correctness of
programs and do not scale to a larger setting where the replicated database is just one component
of a distributed system.

In this paper, we present the first specification and verification of an implementation of a causally-
consistent distributed database that supports modular verification of full functional correctness
of clients and servers. In the rest of the Introduction we briefly discuss the implementation, our
verification methodology, and the examples of clients that we have verified against our specification.

Implementation, Programming Language, and Program Logic. We implement the pseudo code
presented in the seminal paper of Ahamad et al. [1995] for a replicated, distributed database in
AnerisLang. AnerisLang [Krogh-Jespersen et al. 2020] is a concurrent (multiple threads on each
node) ML-like programming language with network primitives (UDP-like sockets) designed for
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programming distributed systems.1 Our implementation makes use of a heap-allocated dictionary
for storing the key-value pairs and uses networking primitives to propagate updates among replicas.
Each replica has an in-queue and an out-queue. On each replica, there are three concurrently running
threads: the send thread, the receive thread, and the apply thread. The send thread sends updates
from the out-queue (enqueued by the write operation) to other replicas. The receiver thread receives
updates from other replicas over the network and enqueues them in the in-queue. The apply thread
applies updates from in-queue to the key-value store of the replica.

The operational semantics of AnerisLang is formally defined in the Coq proof assistant together
with the Aneris program logic [Krogh-Jespersen et al. 2020]. The Aneris program logic is a higher-
order distributed concurrent separation logic which facilitates modular specification and verification
of partial correctness properties of distributed programs. The Aneris logic itself is defined on top of
the Iris program logic framework [Jung et al. 2016, 2018, 2015]. We have used the Aneris logic, Iris,
and the Iris proof mode [Krebbers et al. 2018, 2017] to formalize all the results presented in this
paper in the Coq proof assistant.

Mathematical Model and Specification. Our Aneris specifications for the distributed database are
based on a mathematical model tracking the abstract state of the local key-value stores, i.e., the
history of updates. Our specification represents this model using Iris’s ghost theory to track auxiliary
state (state that is not physically present at runtime and only tracked logically for verification
purposes). We then use Iris invariants to enforce that the physical state of each replica is consistent
with the tracked history at all times. We further enforce that the histories tracked by the ghost
state are valid. We will define validity later; for now it suffices to say that, in our work, viewed at a
high level of abstraction, causal consistency is a property of valid histories.

The history of updates in our mathematical model consists of the following information:

(1) For each replica, we track a local history of all memory updates that the replica has observed
since its initialization. It includes both local write operations (which are observed immediately)
and updates due to synchronization with other replicas.

(2) We also track an abstract global memory that, for each key, keeps track of all write events to
that key (by any replica in the system).

We refer to the elements of local histories as apply events and to the elements of the abstract global
memory as write events. Both apply and write events carry all the necessary information about the
original update, including the logical time of the corresponding apply or write operation. We model
logical time using a certain partial order; see ğ3 for more details. The ordering is defined such that
it reflects causal order: if the time of event 𝑒 is strictly less than the time of 𝑒 ′, then 𝑒 ′ causally

depends on 𝑒 , and if the time of 𝑒 and 𝑒 ′ are incomparable, then 𝑒 and 𝑒 ′ are causally independent.
This allows us to formulate the causal consistency of the distributed database as follows:

If a node observes an apply event 𝑎, it must have already observed

all write events of the abstract global memory that happened before

(according to logical time) the write event corresponding to 𝑎.
(Causal Consistency)

Moreover, we can prove that this property is a consequence of the validity of histories.

1AnerisLang as presented in Krogh-Jespersen et al. [2020] features duplicate protection, i.e., every sent message is received

at most once. This feature has since been relaxed.
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The specifications we give to the read and write operations essentially reflect the behaviors of
these operations into the tracked histories. The intuitive reading of our specifications is as follows:2

• Either, read(𝑘) returns nothing, in which case we know that the local history

contains no observed events for key 𝑘 .

• Or, read(𝑘) returns some value 𝑣 , in which case we know that there is an

apply event 𝑎 in the local history with value 𝑣 ; 𝑎 has a corresponding write

event in the global memory; and 𝑎 is a maximal element (w.r.t. time and hence

causality) in the local history.

(Read Spec)

After the write operation write(𝑘, 𝑣) there is a new write event𝑤 added to the

global memory and a new apply event 𝑎 corresponding to it in the local history,

and 𝑎 is the maximum element (w.r.t. time and hence causality) of the local

history, i.e., the event 𝑎 causally depends on all other events in the local history.

(Write Spec)

Note that the specifications above do not say anything about the inter-replica communication.
Neither do they refer to some explicit causal relation. They merely assert properties of the history
tracked in the ghost state. Indeed, it is our invariants that associate the ghost state of a valid history
with the physical states of the replicas that allow us to reason about causal consistency. Crucially,
this indirection through histories enables us to use the above specifications modularly. This is
essentially because our specifications only refer to the relevant parts of the history, i.e., the global
memory for the key in question and the local history for the replica performing the operation.
We present our formal specifications for the read and write operations in ğ4. However, the

specification for write presented in ğ4, and used throughout most of the paper, is not general
enough to support modular Iris-style reasoning about clients because it does not support reasoning
about concurrent accesses to keys. The reason is that the write operation is not atomic, as required
for Iris-style (and, more generally, concurrent-abstract-predicate-style [Dinsdale-Young et al. 2010])
reasoning using invariants. The read operation is, of course, not atomic either, but the specification
for it only involves so-called persistent predicates and hence is general enough. The issue with
the write operation is an instance of the known challenge of how to give modular specifications
for concurrent modules, see, e.g., [Dinsdale-Young et al. 2018] and [Birkedal and Bizjak 2017,
Section 13]. Hence we use one of the solutions to this modularity challenge and present our official
specification for the write operation in so-called HOCAP-style [Svendsen et al. 2013], see ğ7. With
our HOCAP-style specification we do indeed support modular reasoning about clients using Iris
invariants. (It does take a little while to get used to HOCAP-style specifications; that is why we
present the official specification for the write operation relatively late in the paper.) Note however
that the specification for the write operation given in ğ4 is not wrong but only weaker than the
general HOCAP-style specs given in ğ7, and can in fact be derived from it. This rule, as we will see
in ğ4, can be used in situations where there are no concurrent accesses to the key being written to.

Clients Verified. We demonstrate the utility of our specifications by verifying a number of
interesting examples, including the two examples presented in Figure 1. As a more realistic case
study, we implement a session manager library that allows clients to communicate with a replica
over the network, on top of our distributed database; we use our specifications to prove that the
session manager satisfies four session guarantees for client-centric consistency [Terry et al. 1994].

2Notice that the read operation returns an optional value.
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Contributions. In summary, we make the following contributions:

• We present a simple and novel mathematical model of distributed causal memory amenable to
building appropriate abstractions for reasoning about implementing and using such memory.
• On top of this model, we define high-level modular specifications for reading from and
writing to a causally-consistent distributed database. Our specifications are node-local and
thread-local: in the client’s code where multiple threads (possibly on different nodes) interact
with the database, all components can be verified separately from each other.
• We show that those high-level specifications are actually met by the original description of a
causally-consistent distributed database from the 1995 seminal paper [Ahamad et al. 1995]
which we have implemented in a realistic ML-like language with explicit network primitives.
• We show that our specifications provide the expected causality guarantees on standard
examples from the literature. Moreover, we implement a session manager library that allows
clients and replicas to run on different nodes, and show that our specifications imply the
session guarantees for library clients.
• We have formalized all of our results on top of the Aneris Logic in the Coq proof assistant.

Outline. We start by presenting our implementation of a causally-consistent distributed database
in AnerisLang in ğ2. This allows us to match the intuition behind the key ideas of our approach
with concrete code. Then, in ğ3 we present those parts of our model of causality that are needed for
client-side reasoning. In ğ4 we show how to turn the model into abstract program logic predicates
and present the specifications of the distributed database operations. We also show how the
specifications can be used to reason about the client program examples presented above. In ğ5 we
present a more extensive case study of a client program, a sesssion-manager library, and show how
we can use our specifications to reason about session guarantees. In ğ6 we then prove that the
implementation of the distributed database meets our specification. In ğ7 we present the HOCAP-
style specification for the write operation. After discussing related work in ğ8 we conclude and
discuss future work in ğ9.

2 A CAUSALLY-CONSISTENT DISTRIBUTED DATABASE

In this section we present our AnerisLang implementation3 of the causally-consistent distributed
database described in the seminal paper of Ahamad et al. [1995]. See Figure 2 for the implementation.
Conceptually, the implementation can be split into two parts:

• Three operations, init, read, and write allow users respectively to initialize, read from, and
write to the distributed database on a particular replica 𝑖 .
• Three other operations, send_thread, receive_thread, and apply are spawned during the
initialization as non-terminating concurrently running threads that propagate updates be-
tween initialized replicas and which enforce that every replica applies locally all other replicas’
updates in some order that respects causal dependencies.

Because init returns to the user a pair of partially applied read and write functions, the user
only needs to supply readwith a key on which the local store db should be read and to supply write
with a key and value for which the db should be updated. The sending, receiving, and apply threads,
which are running in a loop concurrently with the user’s calls to read and write, are hidden from
the user, who does not need to know about the underlying message-passing implementation. Thus

3AnerisLang is an ML-like language with a syntax close to OCaml. For readability purposes, the code we show here makes

use of some primitive OCaml constructions that are slightly different in AnerisLang (e.g., we write [], :: for lists, which are

implemented in AnerisLang using pairs).
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let init l i =

let db = ref (dict_empty ()) in

let t = ref (vc_make (length l) 0) in

let (iq, oq) = (ref [], ref []) in

let lock = newlock () in

let skt = socket () in

socketbind skt (list_nth l i);

fork (apply db t lock iq i);

fork (send_thread i skt lock l oq);

fork (receive_thread skt lock iq);

(read db lock, write db t oq lock i)

let read db lock k =

acquire lock;

let r = dict_lookup k !db in

release lock; r

let write db t oq lock i k v =

acquire lock;

t := vc_incr !t i;

db := dict_insert k v !db;

oq := (k, v, !t, i) :: !oq;

release lock

let receive_thread skt lock iq =

let rec aux () =

let msg = listen_wait skt in

acquire lock;

iq := (we_deser msg) :: !iq;

release lock; aux ()

in aux ()

let apply db t lock iq i =

let rec aux () =

acquire lock;

(match (find (check !t i) !iq) with

| Some (w, iq')→

iq := iq';

db := dict_insert (𝜋1 w) (𝜋2 w) !db;

t := vc_incr !t (𝜋4 w)

| None→());

release lock; aux ()

in aux ()

let check t i w =

let (wt, wo) = (𝜋3 w, 𝜋4 w) in

let rec aux l r j = match (l, r) with

| a :: l', b :: r'→

(if j = wo then a = b + 1 else a ≤ b)

&& aux l' r' (j + 1)

| [], []→true

| _ →false

in (i != wo) && (wo < length t) && (aux wt t 0)

let send_thread i skt lock l oq =

let rec aux () =

acquire lock;

match !oq with

| []→release lock; aux ()

| w :: oq'→

oq := oq'; release lock;

sendToAll skt (we_ser w) i l; aux ()

in aux ()

Fig. 2. Implementation of a causally-consistent distributed database replica.

once a replica is initialized, the user will access the local memory on the replica as if they were
manipulating locally one global distributed memory.

Each replica has a local heap on which it allocates and further makes use of the following data:

• a dictionary db for storing the key-value pairs to implement causal memory locally;
• a vector clock t to timestamp outgoing updates and check dependencies of incoming updates.
A vector clock 𝑡 consists of a vector of 𝑛 natural numbers, where the 𝑗 th number 𝑡 [ 𝑗] indicates
how many updates has been applied locally so far from the replica 𝑗 ;
• an in-queue iq and an out-queue oq for receiving/sending local updates among replicas;
• a UDP socket skt bound to the socket address of the replica;
• and a lock to control sharing of above-mentioned data among different concurrent threads.

Vector clocks are the key mechanism by which the implementation enforces that the order in
which updates are applied locally on each replica respects the causal order of the entire system.
This is enforced in the following way.

To make use of vector clocks, each write k v call is associated with a write event (𝑘, 𝑣, 𝑡, 𝑖) where
projection 𝑡 [𝑖] describes the number of calls to write executed on a replica 𝑖 (including the current
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call itself), and all other projections 𝑡 [ 𝑗] describe the number of updates received from replica 𝑗

and applied locally on replica 𝑖 at the time when the update write k v takes place.
When the dictionary db and the vector clock t are updated by the call write k v on a replica 𝑖 ,

before the call terminates, it adds the associated write event (𝑘, 𝑣, 𝑡, 𝑖) to the outgoing queue oq.
Once the send_thread acquires the lock to get access to the queue oq, it serializes the write event
into a message and broadcasts to all other replicas.
To receive those update messages, each replica runs a receive_thread which listens on the

socket skt, and when it gets a new message msg from the replica 𝑜 , it deserializes it back to a write
event 𝑤 = (𝑘, 𝑣, 𝑡, 𝑜), and adds it to the incoming queue iq. As a matter of notation, for a write
event𝑤 = (𝑘, 𝑣, 𝑡, 𝑜), we write𝑤.𝑘 for the key 𝑘 ,𝑤.𝑣 for the value 𝑣 , etc.
When the apply operation acquires the lock, it consults the incoming queue iq in search of a

write event that can be applied locally. To this end, it calls the find (check !t i) !iq subroutine
with the current value of the vector clock !t and the index of the replica 𝑖 . The idea is to search
through the queue iq until a write event𝑤 that passes the test is found (check !t i w holds) and
retrieved from iq, which is the case when the following conditions are satisfied:

(1) The origin𝑤.𝑜 of the event𝑤 must be different from 𝑖 , so that𝑤 corresponds indeed to an
external write operation, and be within bounds [0, 𝑛[ (recall that t is a vector of length 𝑛).

(2) For the projection 𝑗 = 𝑤.𝑜 (the event𝑤 ’s own origin), the number𝑤.𝑡 [ 𝑗] must be equal to
!t[ 𝑗] + 1, which captures the intuition that the event𝑤 must be the most recent write from

the replica 𝑗 that the replica 𝑖 did not yet observe.
(3) For all other projections 𝑝 different from 𝑗 , the condition𝑤.𝑡 [𝑝] ≤!t[𝑝] should hold, which

captures the intuition that if the write event𝑤 passes the dynamic check, it means that any
memory update on which𝑤 causally depends has already been locally applied by the replica 𝑖 .

We remark that the pseudo-code in the original paper by Ahamad et al. [1995] requires a reliable
network, e.g., that network communication happens using TCP. This is important for showing
liveness properties (e.g., every replica eventually applies all messages from other replicas). In this
paper, we focus on safety properties and the properties we show (e.g., on any replica, all updates
that have been applied are causally consistent) are met by our implementation regardless of whether
the network is reliable or not.

3 MATHEMATICAL MODEL

In this section we formalize the key ideas of our mathematical model of causality. Figure 3 shows
the model definitions and properties needed to reason about clients.

In the model, a write event is represented much as in the implementation, namely as a four-tuple
(𝑘, 𝑣, 𝑡, 𝑜) consisting of a key, a value, the time, and the index of the replica on which the write
event happened. In the concrete implementation time is represented using vector clocks, but to
reason about client code, all we need is an abstract notion of time, and therefore our model uses a
notion of logical time, represented by a partial order ≤ (we write < for the strict version of it). We
can decide whether two write events𝑤1 and𝑤2 are causally related by comparing their times: if
𝑤1 .𝑡 < 𝑤2 .𝑡 , then 𝑤1 must have happened before 𝑤2, and 𝑤2 is causally dependent on 𝑤1. When
𝑤1 .𝑡 and𝑤2 .𝑡 are incomparable, then the events𝑤1 and𝑤2 are causally unrelated.

To account for how write events are applied locally on each replica we use the notion of an apply

event. Thus an apply event only makes sense in the context of a particular replica. Formally, given
a replica 𝑖 , an apply event is represented by a five-tuple 𝑎 = (𝑘, 𝑣, 𝑡, 𝑜,𝑚), where𝑚 is the number of
write events applied on replica 𝑖 . We refer to𝑚 as the sequence identifier of 𝑎. When 𝑖 = 𝑜 , the apply
event corresponds to a write operation invoked on the replica itself, whereas if 𝑖 ≠ 𝑜 , then the apply
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events

(𝑘, 𝑣, 𝑡, 𝑜) ∈ WriteEvent ≜ Keys × Value×Time×N

(𝑘, 𝑣, 𝑡, 𝑜,𝑚) ∈ ApplyEvent ≜ Keys × Value×Time×N×N

Maximals(X) ≜ {𝑥 | 𝑥 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑋 .¬(𝑥 .𝑡 < 𝑦.𝑡)}

Maximum(X) ≜

{
Some(𝑥) if 𝑥 ∈ 𝑋 ∧ ∀𝑦 ∈ 𝑋 . 𝑥 ≠ 𝑦 =⇒ 𝑦.𝑡 < 𝑥 .𝑡

None otherwise

Observe : 𝒫fin (ApplyEvent)
fin
−−⇀ ApplyEvent

⌊·⌋ : ApplyEvent
fin
−−⇀ WriteEvent

Memory

𝑠𝑖 ∈ LocalHistory ≜ 𝒫fin (ApplyEvent)

𝑀 ∈ GlobalMemory ≜ Keys
fin
−−⇀ 𝒫fin (WriteEvent)

States

{|𝑀 ; 𝑠1, . . . , 𝑠𝑛 |} ∈ GlobalState ≜ GlobalMemory × LocalHistory × . . . × LocalHistory

ValidG : GlobalState→ Prop

Properties of Valid States

(Local Extensionality) ∀𝑎1, 𝑎2 ∈ 𝑠𝑖 . 𝑎1 .𝑡 = 𝑎2 .𝑡 =⇒ 𝑎1 = 𝑎2

(Global extensionality) ∀𝑘1, 𝑘2 ∈ dom(𝑀),𝑤1 ∈ 𝑀 (𝑘1),𝑤2 ∈ 𝑀 (𝑘2) .𝑤1 .𝑡 = 𝑤2 .𝑡 =⇒ 𝑤1 = 𝑤2

(Causal consistency) ∀𝑘 ∈ dom(𝑀),𝑤 ∈ 𝑀 (𝑘) . (∃𝑎 ∈ 𝑠𝑖 .𝑤 .𝑡 < 𝑎.𝑡) =⇒ ∃𝑎′ ∈ 𝑠𝑖 . ⌊𝑎
′⌋ = 𝑤

(Origin of write events) ∀𝑘 ∈ dom(𝑀),𝑤 ∈ 𝑀 (𝑘) . ∃𝑖 ∈ {0..𝑛 − 1} , 𝑎 ∈ 𝑠𝑖 . 𝑖 = 𝑤.𝑜 ∧ ⌊𝑎⌋ = 𝑤

(Origin of apply events) ∀𝑎 ∈ 𝑠𝑖 . ∃𝑘 ∈ dom(𝑀),𝑤 ∈ 𝑀 (𝑘) . ⌊𝑎⌋ = 𝑤

Fig. 3. Mathematical model of distributed causal memory with abstract notion of validity.

event corresponds to a write event received from replica 𝑖 . Given an apply event 𝑎 = (𝑘, 𝑣, 𝑡, 𝑜,𝑚),
we denote by ⌊𝑎⌋ the write event (𝑘, 𝑣, 𝑡, 𝑜), which we refer to as the erasure of 𝑎.

As explained in the Introduction, we keep track of all write and apply events. The local history
of replica 𝑖 , written 𝑠𝑖 , is the set of all apply events observed by the replica since its initialization.
The abstract global memory, written𝑀 , is a finite map from keys to finite sets of write events. We
model the local key-value store for a replica 𝑖 simply as a finite map from keys to values.
Given a set 𝑋 of write or apply events, Maximals(𝑋 ) (resp. Maximum(𝑋 )) denotes the set

of maximal events (resp. the maximum event) w.r.t. the time ordering. Note that, for any events
𝑒, 𝑒 ′ ∈ Maximals(𝑋 ), the time of 𝑒 and 𝑒 ′ are incomparable and hence 𝑒 and 𝑒 ′ are causally unrelated.
Given a non-empty set of apply events 𝐴, the event Observe(𝐴) is the maximum element of 𝐴 w.r.t.
the ordering of sequence identifiers. (If 𝐴 is empty, we let Observe(𝐴) be some default apply event).

The global state {|𝑀 ; 𝑠1, . . . , 𝑠𝑛 |} consists of the abstract global memory and the local histories
of all replicas. Just keeping track of apply and write events is obviously not enough; we also need to
make sure that the local histories are always in a consistent state w.r.t. the abstract global memory.
This will be expressed using a notion of validity. The client need not know the precise definition of
validity, but only that there is some predicate ValidG on global states, and that valid global states
satisfy the properties listed in the figure. The local and global extensionality properties express
that apply events and write events are uniquely identified by their times. The causal consistency
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𝑃,𝑄 ∈ iProp ::= True | False | 𝑃 ∧𝑄 | 𝑃 ⇒ 𝑄 | 𝑃 ∨𝑄 | ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 | · · · higher-order logic

| 𝑃 ∗𝑄 | 𝑃 −∗ 𝑄 | ℓ ↦→𝑛 𝑣 | {𝑃 } ⟨𝑛; 𝑒⟩ {𝑥 . 𝑄} | □ 𝑃 separation logic

| 𝑃
N
| |⇛E1 E2 Iris resources and invariants

| 𝑧 Z⇒ 𝛷 | Fixed(𝐴) | IsNode(𝑛) | FreePorts(ip,P) Aneris specific

Fig. 4. The fragment of Iris and Aneris relevant for this paper.

property formalizes the intuitive description of causality from the Introduction. The origin of write
property expresses that for every write event there is at least one corresponding apply event on the
replica where the write occurred. The origin of apply event property says that every apply event
must also be recorded in the abstract global memory.

4 SPECIFICATION

As discussed in the Introduction, we use the Aneris program logic built on top of the Iris program
logic framework for our verification. In this section we present the Aneris specifications of our
distributed database operations: read, write, and init. A summary of the specification presented in
this section is included in [Gondelman et al. 2020, Appendix A]

In ğ4.1 we call to mind those aspects of Aneris and Iris that are necessary for following the rest
of the paper and introduce the abstract Iris predicates that are provided to clients and used in the
specification of the database operations. In ğ4.2 we present some laws that hold for the abstract
predicates and which the client may use for client-side reasoning; the laws are the program logic
version of the mathematical model from the previous section. Then we present the specifications
for read and write operations in ğ4.3; these specifications are node local and do not involve any
distributed-systems-specific aspects. In ğ4.4 we explain how the distributed database is initialized
and present the specification for the initialization operation; this specification naturally involves
distributed-systems-specific aspects. Finally, in ğ4.5 we give a proof sketch of the client programs
from the Introduction.

4.1 Iris, Aneris, Resources, and Tracking the State of the Distributed Database

Figure 4 contains the fragment of the Iris and Aneris logics that is relevant for this paper. Here 𝑃
and 𝑄 range over Iris propositions. We write iProp for the universe of Iris propositions. Iris is a
higher-order logic that features separation logic primitives: separating conjunction, ∗, and magic
wand, −∗, also known as the separating implication. The points-to proposition, ℓ ↦→𝑛 𝑣 , expresses
exclusive ownership of memory location ℓ with value 𝑣 in the heap of the node 𝑛. The separating
nature of the separating conjunction, and the exclusive nature of the points-to propositions can be
seen in the rule ℓ ↦→𝑛 𝑣 ∗ ℓ ′ ↦→𝑛 𝑣 ′ ⊢ ℓ ≠ ℓ ′, where ⊢ is the entailment relation on Iris propositions.
This rule states that separating conjuncts assert ownership over disjoint parts of the heap. The
Hoare triple {𝑃 } ⟨𝑛; 𝑒⟩ {𝑥 . 𝑄} is used for partial correctness verification of distributed programs.
Intuitively, if the Hoare triple {𝑃 } ⟨𝑛; 𝑒⟩ {𝑥 . 𝑄} holds, then whenever the precondition 𝑃 holds, 𝑒
is safe to execute on node 𝑛 and whenever 𝑒 reduces to a value 𝑣 on node 𝑛 then that value should
satisfy the postcondition 𝑄 [𝑣/𝑥]; note that 𝑥 is a binder for the resulting value. The proposition

𝑃
N
is an Iris invariant: it asserts that the proposition 𝑃 should hold at all times. The invariant

name N is used for bookkeeping, to prevent the same invariant from being reopened in a nested

fashion which is unsound. The update modality, |⇛E1 E2 𝑃 , asserts that Iris resources can be updated
in such a way that 𝑃 would hold. The masks E1 and E2 (sets of invariant names) indicate which
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Table 1. Propositions to track the state of the key-value store.

Proposition Intuitive meaning

Seen(𝑖, 𝑠) The set 𝑠 is a causally closed subset of the local history of replica 𝑖

Snap(𝑘, ℎ) The set ℎ is a subset of the global memory for key 𝑘

𝑘 ⇀𝑢 ℎ The global memory for key 𝑘 is exactly ℎ

We say 𝑠 is a causally closed subset of 𝑠 ′ if: 𝑠 ⊆ 𝑠 ′ ∧ ∀𝑎1, 𝑎2 ∈ 𝑠
′. 𝑎1 .𝑡 < 𝑎2 .𝑡 ∧ 𝑎2 ∈ 𝑠 ⇒ 𝑎1 ∈ 𝑠 .

invariants can be accessed during this update (those in E1) and which invariants should remain
accessible after the update E2. Whenever both masks of an update modality are the same mask E,

which is most often the case, we write |⇛E instead of |⇛E E . We write 𝑃 ≡∗E1 E2 𝑄 and 𝑃 ≡∗E 𝑄 as

a shorthand for 𝑃 −∗ |⇛E1 E2𝑄 and 𝑃 −∗ |⇛E𝑄 , respectively. We write ⊤ for the mask that allows
access to all invariants. We will explain the Aneris specific propositions later on.

Ephemeral Versus Persistent Propositions. Iris, and by extension Aneris, is a logic of resources.
That is to say that propositions can assert (exclusive) ownership of resources. In this regards,
propositions can be divided into two categories: ephemeral propositions and persistent propositions.
Ephemeral propositions represent transient facts, i.e., facts that later stop from being true. The
quintessential ephemeral proposition is the points-to proposition; the value of the memory location
ℓ can change by performing a write on ℓÐthis can be seen in the specs for writing to a memory
location:

{ℓ ↦→𝑛 𝑣} ⟨𝑛; ℓ ← 𝑤⟩ {𝑥 . 𝑥 = () ∗ ℓ ↦→𝑛 𝑤 }

One important aspect of ephemeral propositions is that they give us precise information about the
state of the program: having ℓ ↦→𝑛 𝑣 implies that the value stored in memory location ℓ on node
𝑛 is 𝑣 . The upshot of this is that while we own a points-to proposition for a location ℓ , no other
concurrently running thread can update the value of ℓ . Hence, to allow concurrent accesses to a
location, its points-to proposition should be shared, e.g., using Iris invariants. Persistent propositions,
as opposed to ephemeral propositions, express knowledge; these propositions never cease to be
true. The persistently modality □ is used to assert persistence of propositions: □ 𝑃 holds, if 𝑃 holds,
and 𝑃 is persistent. Hence, the logical entailments □ 𝑃 ⊢ 𝑃 and □ 𝑃 ⊢ □□ 𝑃 hold in Iris. Formally, we
say a proposition is persistent if 𝑃 ⊣⊢ □ 𝑃 , where ⊣⊢ is the logical equivalence of Iris propositions.
Persistent propositions, unlike ephemeral ones, can be freely duplicated, i.e., □ 𝑃 ⊣⊢ □ 𝑃 ∗ □ 𝑃 . The
quintessential persistent propositions in Iris are Iris invariants. In addition, Hoare triples are also
defined to always be persistent. This intuitively means that all the requirements for the correctness
of the program with respect to the postcondition are properly captured by the precondition.

Iris Predicates to Represent the State of the Key-Value Store. Recall the intuitive specifications that
we gave for the read and write operations on our distributed database in the Introduction. These
specs only assert that certain write/apply events are added to the global memory/local history.
Hence, it suffices to have a persistent proposition in the logic that asserts the partial information
that certain events are indeed part of the local history or global memory. For this purpose, we
introduce the persistent abstract predicates Seen and Snap which intuitively assert knowledge of a
subset of the local history, and global memory, respectively. These abstract predicates and their
intuitive meaning are presented in Table 1. Notice that the Seen predicates assert knowledge of
a subset of the local history that is causally closed as defined in the figure. We will discuss the
significance of causal closure later. In addition to the partial knowledge about the global memory
represented using the Snap predicate, it is also useful to track the precise contents of the global
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Properties of global memory, i.e., Snap and⇀𝑢 predicates:

Snap(𝑘, ℎ) ∗ Snap(𝑘, ℎ′) ⊢ Snap(𝑘, ℎ ∪ ℎ′) (Snap union)

𝑘 ⇀𝑢 ℎ ⊢ 𝑘 ⇀𝑢 ℎ ∗ Snap(𝑘, ℎ) (Take Snap)

GlobalInv
NGI
∗ 𝑘 ⇀𝑢 ℎ ∗ Snap(𝑘, ℎ′) ⊢ |⇛E 𝑘 ⇀𝑢 ℎ ∗ ℎ′ ⊆ ℎ (Snap inclusion)

GlobalInv
NGI
∗ Snap(𝑘, ℎ) ∗ Snap(𝑘, ℎ′) ⊢ |⇛E∀𝑤 ∈ ℎ,𝑤

′ ∈ ℎ′.

𝑤 .𝑡 = 𝑤 ′.𝑡 ⇒ 𝑤 = 𝑤 ′

(Snap extensionality)

Properties of local histories, i.e., the Seen predicate:

GlobalInv
NGI
∗ Seen(𝑖, 𝑠) ∗ Seen(𝑖, 𝑠 ′) ⊢ |⇛E Seen(𝑖, 𝑠 ∪ 𝑠 ′) (Seen union)

GlobalInv
NGI
∗ Seen(𝑖, 𝑠) ∗ Seen(𝑖 ′, 𝑠 ′) ⊢ |⇛E∀𝑎 ∈ 𝑠, 𝑎

′ ∈ 𝑠 ′. 𝑎.𝑡 = 𝑎′.𝑡 ⇒

𝑎.𝑘 = 𝑎′.𝑘 ∧ 𝑎.𝑣 = 𝑎′.𝑣

(Seen global extensionality)

GlobalInv
NGI
∗ Seen(𝑖, 𝑠) ∗ Seen(𝑖, 𝑠 ′) ⊢ |⇛E∀𝑎 ∈ 𝑠, 𝑎

′ ∈ 𝑠 ′. 𝑎.𝑡 = 𝑎′.𝑡 ⇒

𝑎 = 𝑎′

(Seen local extensionality)

GlobalInv
NGI
∗ Seen(𝑖, 𝑠) ∗ 𝑎 ∈ 𝑠 ⊢ |⇛E ∃ℎ. Snap(𝑎.𝑘, ℎ) ∗ ⌊𝑎⌋ ∈ ℎ (Seen provenance)

Causality in terms of resources and predicates:

GlobalInv
NGI
∗ Seen(𝑖, 𝑠) ∗ Snap(𝑘, ℎ) ⊢ |⇛E∀𝑎 ∈ 𝑠,𝑤 ∈ ℎ. 𝑤 .𝑡 < 𝑎.𝑡 ⇒

∃𝑎′ ∈ 𝑠 |𝑘 . ⌊𝑎
′⌋ = 𝑤

(Causality)

The set 𝑠 |𝑘 is the set of apply events in 𝑠 with key 𝑘 : 𝑠 |𝑘 ≜ {𝑎 ∈ 𝑠 | 𝑎.𝑘 = 𝑘}.

Fig. 5. Laws governing database resources. The mask E is any arbitrary mask that includes NGI.

memory for each keyÐsee the example presented in ğ4.5. We do this using the ephemeral abstract
proposition 𝑘 ⇀𝑢 ℎ which, intuitively, asserts that the set of all write events for the key 𝑘 is ℎ.
We can track the precise contents of the global memory because all write events in the global
memory can only originate from a write operation on the distributed database. On the other hand,
we cannot have precise knowledge about local histories because at any point in time, due to the
concurrent execution of replica’s apply function, a replica may observe new events.
In addition to the abstract predicates just discussed, the client will also get access to a global

invariant GlobalInv
NGI

which, intuitively, asserts that there is a valid global state, and that the
predicates Seen, Snap, and⇀𝑢 track this global state.4 Clients need not know the definition of this
invariant and can just treat it as an abstract predicate.
(For Iris experts we remark that the abstract predicates in Figure 1 are all timeless, which

simplifies client-side reasoning [Jung et al. 2018]).

4.2 Laws Governing Database Resources

The laws governing the predicates Seen, Snap, and⇀𝑢 , are presented in Figure 5. The laws presented
in this figure, with the exception of one law that we will discuss in ğ7, are all the laws that are
necessary for client-side reasoning about our distributed database. Notice that most of these laws
only hold under the assumption that the global invariant holds. This can also be seen in the fact

4N𝐺𝐼 is a fixed name of the global invariant.
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that they are expressed in terms of an update modality with a mask that enables access to the
global invariant. All of these laws make intuitive sense based on the intuitive understanding of the
predicates Seen, Snap, and ⇀𝑢 . For instance, the law (Snap union) asserts that if we know that the
sets ℎ and ℎ′ are both subsets of the global memory for a key 𝑘 , then so must the set ℎ ∪ ℎ′. The
extensionality laws essentially state that events are uniquely identifiable with their time: if two
events have the same time, then they are the same event. The only caveat is that in case of the law
(Seen global extensionality): if two apply events on two different replicas have the same time, then
they must agree on their key and value, but not on their sequence identifiers which represent the
order in which events are applied locally on the replica. Note that the law (Seen union), as opposed
to the law (Snap union), requires access to the invariant. This is because, we need to establish
causal closure (see Figure 1) for 𝑠 ∪ 𝑠 ′ in the conclusion of the law with respect to the local history
tracked in the global invariant. The most important law in Figure 5 is the law (Causality). This law
allows us to reason about causality: if a replica 𝑖 has observed an event 𝑎 that has a time greater
than a write event𝑤 ,𝑤 causally depends on 𝑎, then replica 𝑖 must have also observed𝑤 (it must
have a corresponding apply event 𝑎′). Notice that the causal closure property of local histories 𝑠 for
which we have Seen(𝑖, 𝑠) in Figure 1 is crucial for the (Causality) law to hold.

4.3 Specs for the Read and Write Operations

Figure 6 shows the specification for reading from and writing to the distributed database locally on
a replica 𝑖 .

Read Specification. The post condition of the read operation states formally, in the language or
Aneris logic, the intuitive explanation that we described in the Introduction. It asserts that the client
gets back a set of apply events 𝑠 ′, Seen(𝑖, 𝑠 ′), observed by replica 𝑖 performing the read operation
such that 𝑠 ′ ⊇ 𝑠 . The reason for the 𝑠 ′ ⊇ 𝑠 relation is that during the time since performing the last
operation by replica 𝑖 , i.e., when we had observed the set 𝑠 , some write events from other replicas
may have been applied locally.
When read(𝑘) is executed on a replica 𝑖 , it either returns None or Some(𝑣) for a value 𝑣 . If it

returns None, then the local memory does not contain any values for key 𝑘 . Hence the local history
𝑠 ′ restricted to key 𝑘 , 𝑠 ′ |𝑘 should be empty cf. the definition of 𝑠 ′ |𝑘 in Figure 5.

Otherwise, if it returns Some(𝑣), then the local memory contains the value 𝑣 for key 𝑘 . This can
happen only if the local memory of the replica at the key 𝑘 has been updated, and the latest update
for that key has written the value 𝑣 . Consequently, the local history 𝑠 ′ must have recorded this
update as the latest apply event 𝑎 for the key 𝑘 , i.e., Observe(𝑠 ′ |𝑘 ) = 𝑎. Hence 𝑎 ∈ Maximals(𝑠 ′ |𝑘 ).
The reader may wonder why 𝑎 is not the maximum element, but only in the set of maximal
elements. To see why, suppose that just before the read operation was executed, two external
causally-unrelated writes have been applied locally on replica 𝑖 , so that the local history recorded
them as two distinct apply events whose times are incomparable. Naturally, one of two writes
must have been applied before the other and the latest observed apply event must correspond
to the subsequent second write event. However, as the apply operation is hidden from the client,
there is no way for the client to observe which of the two writes is the latest. Consequently, all the
client can know is that the latest observed event 𝑎 is one of the most recent local updates for key 𝑘 ,
i.e., among the maximal elements. Naturally, the write event ⌊𝑎⌋ should be in the abstract global
memory. This is expressed logically by the proposition Snap(𝑘, {⌊𝑎⌋}).

Write Specification. The postcondition of the write specification ensures that after the execution
of write(𝑘, 𝑣), the client gets back the resources 𝑘 ⇀𝑢 ℎ ⊎ {⌊𝑎⌋} and Seen(𝑖, 𝑠 ′ ⊎ {𝑎}), where 𝑎 and
⌊𝑎⌋ are respectively the apply and write events that model the effect of the write operation. The
mathematical operation ⊎ is the disjoint union operation on sets; 𝐴 ⊎ 𝐵 is undefined if 𝐴 ∩ 𝐵 ≠ ∅.
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ReadSpec
{Seen(𝑖, 𝑠)}

⟨𝑖𝑝𝑖 ; read(𝑘)⟩

{
𝑣 . ∃𝑠 ′ ⊇ 𝑠 . Seen(𝑖, 𝑠 ′) ∗(
(𝑣 = None ∧ 𝑠 ′ |𝑘 = ∅) ∨

(∃𝑎 ∈ 𝑠 ′ |𝑘 . 𝑣 = Some(𝑎.𝑣) ∗ Snap(𝑘, {⌊𝑎⌋}) ∗ 𝑎 ∈ Maximals(𝑠 ′ |𝑘 ) ∗ Observe(𝑠 ′ |𝑘 ) = 𝑎)
)}

WriteSpec
{Seen(𝑖, 𝑠) ∗ 𝑘 ⇀𝑢 ℎ}

⟨𝑖𝑝𝑖 ; write(𝑘, 𝑣)⟩

{
(). ∃𝑠 ′ ⊇ 𝑠 . ∃𝑎. 𝑘 = 𝑎.𝑘 ∗ 𝑣 = 𝑎.𝑣 ∗ Seen(𝑖, 𝑠 ′ ⊎ {𝑎}) ∗ 𝑘 ⇀𝑢 ℎ ⊎ {⌊𝑎⌋} ∗

𝑎 = Maximum(𝑠 ′ ⊎ 𝑎) ∗ ⌊𝑎⌋ ∈ Maximals(ℎ ⊎ {⌊𝑎⌋}) }
Fig. 6. Read and write specifications.

InitSpec

{
initToken(𝑖) ∗ Fixed(𝐴) ∗ IsNode(ip𝑖 ) ∗ Addrlist[𝑖] = (ip𝑖 , 𝑝) ∗

(ip𝑖 , 𝑝) ∈ 𝐴 ∗ isList (Addrlist, 𝑣) ∗ FreePorts(ip𝑖 , {𝑝}) ∗ ∗
𝑧∈Addrlist

𝑧 Z⇒ 𝛷DB}
⟨ip𝑖 ; init(𝑖, 𝑣)⟩

{(rd,wr) . Seen(𝑖,∅) ∗ readSpec(rd, 𝑖) ∗ writeSpec(wr, 𝑖)}

Fig. 7. Specification for init.

As for read, the new set of apply events 𝑠 ′ can be a superset of 𝑠 . Contrary to read, the postcondi-
tion for write states that 𝑎 = Maximum(𝑠 ′ ⊎ 𝑎), i.e., that 𝑎 is actually the most recent apply event.
This matches the intuition that the update write(𝑘, 𝑣) causally depends on any other apply event
previously observed at this replica.
While 𝑎 is the maximum apply event locally, its erasure ⌊𝑎⌋ is only guaranteed to be among

the maximal write events, i.e., ⌊𝑎⌋ ∈ Maximals(ℎ ⊎ {⌊𝑎⌋}). Intuitively, this is because there can
be other write events in ℎ, performed by other replicas, that we have not yet locally observed. As
those events are not observed on our replica, the newly added write event ⌊𝑎⌋ does not causally
depend on them and hence does not have a strictly greater timeÐin practice those write events
have times that are incomparable to that of ⌊𝑎⌋ as neither depend on the other.

4.4 Initializing the Distributed Database

Our distributed database must be initialized before it is used. Initialization takes place in two phases:

(1) Initialization of resources and establishing the global invariant. This phase is a logical phase,
i.e., it does not correspond to any program code.

(2) Initialization of the replica. This phase corresponds to the execution of the init functionÐsee
Figure 2.

Importantly, in the spirit of modular verification, our methodology for verifying client programs is
to assume that the library is initialized when we verify parts of the client program that interact
with the read and write functions. We only later compose these proofs with the proof corresponding
to the initialization of the systemÐwe have indeed followed this methodology in verifying all the
examples discussed in this paper. Below we discuss initialization, starting with phase 2.
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The Specification of the init Function (Phase 2). Figure 7 shows the specification for the init

function. The postcondition states that the new replica has not observed any events, i.e., Seen(𝑖,∅).
Furthermore, the init function returns a pair of functions that satisfy, respectively, the read andwrite
specifications discussed earlier. This is formally written as readSpec(𝑟𝑑, 𝑖), and writeSpec(𝑤𝑟, 𝑖),
respectively. The precondition of the init function is slightly more elaborate. Addrlist is the list of
socket addresses (pairs of an ip address and a port) of all replicas of the database, including the
replica being initialized. Hence, the 𝑖th element of the list should be the socket address (ip𝑖 , 𝑝)
which this replica uses for communication with other replicas; this is indicated in the precondition
by the assertion Addrlist[𝑖] = (ip𝑖 , 𝑝). The predicate isList (Addrlist, 𝑣) asserts that the AnerisLang
value 𝑣 is a list of values corresponding to the mathematical list Addrlist. The init function requires
an initialization token, initToken(𝑖); initialization tokens are produced by the first initialization
phase. Distributed systems modeled in Aneris always have a distinguished set 𝐴 of fixed socket
addresses, written using the persistent proposition Fixed(𝐴). The socket address (ip𝑖 , 𝑝) used by
replica 𝑖 should be a fixed address. Moreover, on the ip address ip𝑖 , the port 𝑝 must be free (i.e., must
not have any socket bound to it), as indicated by the ephemeral proposition FreePorts(ip𝑖 , {𝑝}). In
Aneris, fixed socket addresses, as opposed to dynamic socket addresses, are those that have globally
fixed so-called socket protocols (explained in the following). The persistent Aneris proposition
IsNode(ip𝑖 ) asserts that the node ip𝑖 is a valid node, i.e., all networking resources have been
initialized. Finally, the precondition of the init function requires the knowledge that all socket
addresses participating in the distributed database follow the same socket protocol𝛷DB. This is
written as the persistent Aneris proposition 𝑧 Z⇒ 𝛷DB. In Aneris, a socket protocol is simply a
predicate over messages which restricts what messages can be sent over and/or may be received
through a socket. The protocol𝛷DB asserts that any message sent over the socket is the serialization
of a write event𝑤 = (𝑘, 𝑣, 𝑡, 𝑜) that has been recorded in the abstract global memory, i.e., for which
Snap(𝑘, {𝑤}) holds.

Phase 1. The purely logical nature of the first phase can be seen in the fact that it is expressed in
terms of an update modality:

InitSetup

True ⊢ |⇛E GlobalInv
NGI
∗
©« ∗0≤𝑖<length (Addrlist)

initToken(𝑖)
ª®¬
∗
©«∗𝑘∈Keys𝑘 ⇀𝑢 ∅

ª®¬
∗ initSpec(init)

The InitSetup rule simply asserts that resources can be allocated so as to initialize the abstract global
memory with an empty set for all keys (i.e., elements of Keys), to establish the global invariant, and
to provide initialization tokens for all declared replicas (i.e., elements of Addrlist). Furthermore,
after the InitSetup update is performed, we have that the init function meets the specification
given in Figure 7, formally written as initSpec(init).

4.5 Client Reasoning about Causality

To illustrate how clients can reason about interactions with the distributed database, we give a
proof sketch for the example of direct causal dependency from Figure 1. The core part of the proof
is sketched in Figure 8 and assumes local replicas have already been properly initialized, that the
specifications from Figure 6 hold for the read and write functions, and that writing is an atomic
operation. Afterwards, we will show how to initialize local replicas and compose the distributed
system. Notice that in this example, while𝑦 is being accessed concurrently, 𝑥 is not; reading 𝑥 on the
right happens after the write to 𝑦 on the left, and hence also after the write to 𝑥 . Therefore, we use
the ruleWriteSpec to reason about write(𝑥, 37) while we use the HOCAP-style specification (which
we present in ğ7) for reasoning about write(𝑦, 1); see the accompanying Coq formalization for the
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full formal proof. [Gondelman et al. 2020, Appendix B] provides a proof sketch of the example of
indirect causal dependency from Figure 1.
We remark that the proof of the example is quite similar in structure to the proof of a similar

message-passing example, but for a weak memory model with release-aquire and non-atomic
accesses [Kaiser et al. 2017]; see ğ8 for a comparison to this related work.
For our presentation here, as a convention, we will only mention persistent assertions (such as

invariants and equalities) once and use them freely later.

Both nodes operate on the key 𝑦 concurrently so ownership of 𝑦 is put into an invariant Inv𝑦 .
The invariant essentially says that 𝑦 is in one of two states: either 1 has been written to 𝑦 or not. It
will be the responsibility of node 𝑖 to write 1 and advance the state. When node 𝑗 reads 1, it will
expect to be able to gain ownership of key 𝑥 . Thus when writing 1 to the key 𝑦, node 𝑖 will have to

establish another invariant Inv𝑥 (𝑤
′) about 𝑥 , for some write event𝑤 ′ that has happened before

the write of 1 to 𝑦.

The invariant Inv𝑥 (𝑤
′) asserts either ownership of 𝑥 , and that the maximum event is𝑤 ′ with

value 37, or a token ⋄ . The token is a uniquely ownable piece of ghost state (i.e., ⋄ ∗ ⋄ ⊢ False).
Intuitively, when the first node establishes the invariant, the ownership of 𝑥 is transferred into
the invariant. The unique token is given to the second node and when it learns of the existence of

Inv𝑥 (𝑤
′) it can safely swap out the token for the ownership of 𝑥 .

Node 𝑖 initially has knowledge of its local history 𝑠 and ownership of key 𝑥 with history ℎ𝑥
such that ℎ𝑥 ⊆ ⌊𝑠⌋ where ⌊𝑠⌋ ≜ {⌊𝑎⌋ | 𝑎 ∈ 𝑠}. Intuitively, this means that all writes to 𝑥 have been
observed at node 𝑖 and that any future writes to 𝑥 will be causally dependent on these. Using the
specification for the write function (cf. Figure 6), we obtain updated resources for the local history
and the key 𝑥 , i.e., Seen(𝑖, 𝑠 ′ ⊎ {𝑎𝑥 }) and 𝑥 ⇀𝑢 (ℎ𝑥 ⊎ {⌊𝑎𝑥 ⌋}), such that Maximum(𝑠 ′ ⊎ {𝑎𝑥 }) =

Some(𝑎𝑥 ). From Snap extensionality, Seen global extensionality, and the definition of Maximum

we conclude Maximum(ℎ𝑥 ⊎ {⌊𝑎𝑥 ⌋}) = Some(⌊𝑎𝑥 ⌋), which suffices for establishing the invariant

for 𝑥 , Inv𝑥 (⌊𝑎𝑥 ⌋) . We then open the invariant for 𝑦 in order to write 1 to 𝑦 (this is where we cheat
in this sketch and use the assumption that write is atomic); using the invariant we just established
for 𝑥 it is straightforward to reestablish the invariant for 𝑦 after writing 1 to 𝑦 as ⌊𝑎𝑥 ⌋ .𝑡 < ⌊𝑎𝑦⌋ .𝑡

follows from 𝑎𝑥 ∈ 𝑠
′′ and 𝑎𝑦 being the maximum of 𝑠 ′′ ⊎

{
𝑎𝑦

}
, cf. global extensionality of Seen.

Node 𝑗 initially has knowledge of its local history 𝑠 and ownership of the token ⋄ . After repeatedly
reading 𝑦 until we read 1 (call to the wait function5), the specification for the read function gives us
Snap(𝑦,

{
⌊𝑎𝑦⌋

}
) such that 𝑎𝑦 .𝑣 = 1. By Snap inclusion and by opening the invariant for 𝑦 we get

Inv𝑥 (𝑤𝑥 ) such that𝑤𝑥 .𝑡 < ⌊𝑎𝑦⌋ .𝑡 . We can now open the invariant for 𝑥 and swap out the token for
the ownership of key 𝑥 and knowledge about its maximum write event. Intuitively, due to causality,
as 𝑤𝑥 .𝑡 < ⌊𝑎𝑦⌋ .𝑡 and 𝑎𝑦 has been observed, we are guaranteed to read something when reading
from 𝑥 ; as Maximum(ℎ) = Some(𝑤𝑥 ) and 𝑤𝑥 .𝑣 = 37 the value we read has to be 37. Formally,
this argument follows from extensionality of Seen and Snap, Snap inclusion, and the definition of
Maximum andMaximalsÐwe refer to the Coq formalization for all the details.

The proof sketched in Figure 8 verifies the two nodes individually, assuming local replicas have
been properly initialized. To set up a distributed system, we spawn two nodes that each initialize a
local replica using the init function:

let (read,write) = init(𝑖, 𝑖𝑝𝑠) in

write(𝑥, 37); write(𝑦, 1)

 let (read,write) = init( 𝑗, 𝑖𝑝𝑠) in

wait(𝑦 = 1); read(𝑥)

5The wait(𝑘 = 𝑛) operation is just a simple loop that repeatedly reads 𝑘 until the read value is 𝑛. In particular, there are no

locks/other synchronization code in the wait implementation.
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Invariants

Inv𝑥 (𝑤) ≜ (∃ℎ. 𝑥 ⇀𝑢 ℎ ∗Maximum(ℎ) = Some(𝑤) ∗𝑤.𝑣 = 37) ∨ ⋄

Inv𝑦 ≜ ∃ℎ.𝑦 ⇀𝑢 ℎ ∗ ∀𝑤 ∈ ℎ.𝑤 .𝑣 = 1⇒ ∃𝑤 ′.𝑤 ′.𝑡 < 𝑤.𝑡 ∗ Inv𝑥 (𝑤
′)

Node i, proof outline

{Seen(𝑖, 𝑠) ∗ 𝑥 ⇀𝑢 ℎ𝑥 ∗ ℎ𝑥 ⊆ ⌊𝑠⌋ ∗ Inv𝑦 }
write(𝑥, 37)

{∃𝑎𝑥 , 𝑠
′ ⊇ 𝑠 . Seen(𝑖, 𝑠 ′ ⊎ {𝑎𝑥 }) ∗ 𝑥 ⇀𝑢 (ℎ𝑥 ⊎ {⌊𝑎𝑥 ⌋})∗

Maximum(𝑠 ′ ⊎ {𝑎𝑥 }) = Some(𝑎𝑥 ) ∗ 𝑎𝑥 .𝑣 = 37 }
{Seen(𝑖, 𝑠 ′ ⊎ {𝑎𝑥 }) ∗ Inv𝑥 (⌊𝑎𝑥 ⌋) }

o
p
en

In
v
𝑦

{Seen(𝑖, 𝑠 ′ ⊎ {𝑎𝑥 }) ∗ 𝑦 ⇀𝑢 ℎ𝑦 ∗ . . .}

write(𝑦, 1)

{∃𝑎𝑦, 𝑠
′′ ⊇ 𝑠 ′ ⊎ {𝑎𝑥 } . Seen(𝑖, 𝑠 ′′ ⊎

{
𝑎𝑦

}
) ∗ 𝑦 ⇀𝑢 (ℎ𝑦 ⊎

{
⌊𝑎𝑦⌋

}
)∗

𝑎𝑦 .𝑣 = 1 ∗Maximum(𝑠 ′′ ⊎
{
𝑎𝑦

}
) = Some(𝑎𝑦) }

{Seen(𝑖, 𝑠 ′′ ⊎
{
𝑎𝑦

}
) ∗ Inv𝑦 }

Node j, proof outline

{Seen( 𝑗, 𝑠) ∗ Inv𝑦 ∗ ⋄ }
wait(𝑦 = 1)

{∃𝑠 ′ ⊇ 𝑠, 𝑎𝑦 ∈ 𝑠
′,𝑤𝑥 . Seen( 𝑗, 𝑠 ′) ∗ Inv𝑥 (𝑤𝑥 ) ∗ ⋄ ∗𝑤𝑥 .𝑡 < ⌊𝑎𝑦⌋ .𝑡 }

{Seen( 𝑗, 𝑠 ′) ∗ 𝑥 ⇀𝑢 ℎ𝑥 ∗Maximum(ℎ𝑥 ) = Some(𝑤𝑥 ) ∗𝑤𝑥 .𝑣 = 37}

read(𝑥)

{𝑣 . ∃𝑠 ′′ ⊇ 𝑠 ′. Seen( 𝑗, 𝑠 ′′) ∗ 𝑥 ⇀𝑢 ℎ𝑥 ∗ 𝑣 = Some(37)}

Fig. 8. Proof sketch, example with direct causal dependency.

where 𝑖𝑝𝑠 is the list of ip addresses of the participating replicas. The proof of the combined system
follows from the specification for the init function (cf. Figure 7) and the proof sketch just given.
In particular, the specification of init ensures that both the history for 𝑥 and the history for 𝑦 are
empty and hence the precondition for node 𝑖 holds.6

Now we have a complete proof of the client program, under the assumption that the specifica-
tions for the distributed database operations hold. By combining this proof with the proof of the
implementation (in ğ6) we get a closed correctness proof of the whole distributed system in Aneris.
This means that we can apply the adequacy theorem of Aneris [Krogh-Jespersen et al. 2020, Section
4.2] to conclude that the whole system is safe, i.e., that nodes and threads cannot get stuck (crash)
in the operational semantics. (Safety is enough to capture the intuitive desired property for this
example: if we included an assert statement after the read of 𝑥 that would crash if the return value
is not 37, then the adequacy theorem would guarantee that this would never happen. We have
included such an assert statement in the Coq formalization.)

6In AnerisLang there is a distinguished system node, which starts all the nodes in the distributed system. Technically, phase

1 of the initialization happens in the proof of the system node, which is then composed with the proof sketch given above

for the two nodes.
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Fig. 9. Clients using the distributed database via the
session manager library.
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Fig. 10. Vertical compositionality of specifications.

5 CASE STUDY: TOWARDS SESSION GUARANTEES FOR CLIENT-CENTRIC

CONSISTENCY

In the examples in the Introduction and ğ4.5, each client program is co-located on the same node as
the database replica that it reads from and writes to. By contrast, in a client-server architecture, a
client might interact withmultiple replicas (servers), and clients and replicas are located on different

nodes.
The client-server setting is interesting for at least two reasons. First, it is the prevalent mode

of use of databases within cloud computing (e.g., MongoDB [Chodorow and Dirolf 2010] and
DynamoDB [Sivasubramanian 2012]), where client applications transparently interact with a geo-
replicated database running in the cloud. Second, there are consistency models that are tailored to
the client-server setting [Tanenbaum and van Steen 2007]. In particular, session7 guarantees (read
your writes, monotonic reads, monotonic writes, and writes follow reads) [Terry et al. 1994] describe
properties that programmers can use to reason about client-server interactions. For example, the
monotonic writes (MW) guarantee ensures that writes happening within a session are propagated
to all replicas in program order.
In this section, we show that our distributed database can be used in a client-server setting.

Specifically, we build a session manager library that exposes the database’s read andwrite operations
to external clients. The library consists of two components: a client stub that proxies requests to the
server, and a request handler that handles the requests server-side. Figure 9 illustrates how clients
(C1A, C1B, and C2) running on different nodes communicate with multiple database replicas (DB1
and DB2) via the session manager stub (SM) and request handler (RH).

We give specifications for the session manager library that rely exclusively on persistent resources
(as opposed to the database specifications in Figure 6, which use the exclusive ownership of the
global memory predicate 𝑘 ⇀𝑢 ℎ). This is important because multiple clients could be interacting
with the same replica concurrently (and from different nodes) in an uncoordinated way.

In spite of being weaker than the underlying replicated database specifications, our session
manager specifications are strong enough to prove versions of the four previously-mentioned
session guarantees. This result is in line with prior work showing that, at the model level, causal
consistency implies all four guarantees [Brzezinski et al. 2004]. In our case, we are able to establish
this connection while reasoning about concrete programs.
We illustrate the guarantees with four examples that use the session manager library. In this

way, the case study additionally illustrates the modularity of our approach, in particular the vertical

7A session is a consecutive sequence of reads and writes issued by a particular client.
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{⊤} ⟨𝑖𝑝𝑐𝑙𝑖𝑒𝑛𝑡 ; sconnect(𝑖𝑝𝑖 )⟩ {∃𝑠 .Seen(𝑖, 𝑠) ∗ ∗𝑘∈Keys ∃ℎ𝑘 .Snap(𝑘, ℎ𝑘 )}
{Seen(𝑖, 𝑠) ∗ Snap(𝑘, ℎ)} ⟨𝑖𝑝𝑐𝑙𝑖𝑒𝑛𝑡 ; sread(𝑖𝑝𝑖 , 𝑘)⟩ {∃𝑠 ′ ⊇ 𝑠, ℎ′ ⊇ ℎ.Seen(𝑖, 𝑠 ′) ∗ Snap(𝑘, ℎ′) ∗ . . .}

{Seen(𝑖, 𝑠) ∗ Snap(𝑘, ℎ)} ⟨𝑖𝑝𝑐𝑙𝑖𝑒𝑛𝑡 ; swrite(𝑖𝑝𝑖 , 𝑘, 𝑣)⟩ {∃𝑠
′ ⊃ 𝑠, ℎ′ ⊃ ℎ.Seen(𝑖, 𝑠 ′) ∗ Snap(𝑘, ℎ′) ∗ . . .}

Fig. 11. Simplified specifications of session manager operations. Full specifications are found in [Gondelman
et al. 2020, Appendix C].

Table 2. The four session guarantees.

Guarantee Program Description

read your writes swrite(ip,k,v); sread(ip,k) Reads observe writes not older than preced-

ing writes.

monotonic reads sread(ip,k); sread(ip,k) Reads observe writes not older than writes

observed by preceding reads.

monotonic writes swrite(ip,k1,v1); swrite(ip,k2,v2) Writes propagate to all replicas in program

order.

writes follow reads sread(ip,k1); swrite(ip,k2,v) Writes and writes observed through reads

propagate to all replicas in program order.

composability of our specifications, cf. Figure 10: we are able to verify each layer using only the
specifications of the layer below.

Session Manager Library. As previously mentioned, the session manager exposes the database’s
operations to the network. The client stub provides its user with three operations: sconnect, sread,
and swrite. The client calls sconnect 𝑖𝑝𝑖 to start interacting with the replica located at 𝑖𝑝𝑖 . Reading
returns an option with the retrieved value, or None if the key is not populated. All three operations
are synchronous at the client-side and every call is blocking while waiting for a server to reply.

Specifications. Figure 11 presents a high-level view of the session manager specifications, focusing
on how the resources are updated; the full specifications are found in [Gondelman et al. 2020,
Appendix C]. The client, located on the network node at address 𝑖𝑝𝑐𝑙𝑖𝑒𝑛𝑡 , reasons about session
manager operations using the snapshot predicates Seen(𝑖, 𝑠) and Snap(𝑘, ℎ) for local and global
histories, respectively. For example, to reason about the write swrite(𝑖𝑝𝑖 , 𝑘, 𝑣), the user provides
Seen(𝑖, 𝑠) and Snap(𝑘, ℎ). Once the write operation completes (is processed by the server and a
reply is received), the user gets back updated snapshots Seen(𝑖, 𝑠 ′) and Snap(𝑘, ℎ′), such that 𝑠 ⊆ 𝑠 ′,
ℎ ⊆ ℎ′, and the written value 𝑣 is stored in an apply (resp. write) event that is part of 𝑠 ′ (resp. ℎ′).
This captures the idea that if we know that a replica observed at least a set 𝑠 of writes, then after we
write 𝑣 the replica will have observed at least the set 𝑠 ′ = 𝑠 ⊎ {𝑎}, where 𝑎.𝑣 = 𝑣 . We can then reuse
the updated snapshots in the precondition of subsequent operations (we get the initial snapshots
from the postcondition of sconnect).

Session Guarantees. Table 2 shows the four session guarantees and corresponding client programs
we verify. Each guarantee describes what a client can infer from observing the effect of a pair
of (read or write) operations within the same session. For space reasons we only describe our
monotonic writes (MW) example in detail. See [Gondelman et al. 2020, Appendix C] or the Coq
formalization for the others.

Figure 12 shows a simplified specification for the MW example (we omit some network-related
predicates from the precondition), which involves two consecutive writes to a replica located
at address 𝑖𝑝𝑖 . The precondition for the Hoare triple is just knowledge that address 𝑖𝑝𝑖 behaves
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SM-monotonic-writes
{𝑖𝑝𝑖 Z⇒ 𝛷𝑖 }

⟨𝑖𝑝𝑐𝑙𝑖𝑒𝑛𝑡 ; sconnect(𝑖𝑝𝑖 ); swrite(𝑖𝑝𝑖 , 𝑘1, 𝑣1); swrite(𝑖𝑝𝑖 , 𝑘2, 𝑣2)⟩

{
() . ∃𝑠1, 𝑎1, 𝑎2 . 𝑎1 .𝑘 = 𝑘1 ∗ 𝑎1 .𝑣 = 𝑣1 ∗ 𝑎2 .𝑘 = 𝑘2 ∗ 𝑎2 .𝑣 = 𝑣2

∗ Seen(𝑖, 𝑠1) ∗ 𝑎1, 𝑎2 ∈ 𝑠1 ∗ 𝑎1 .𝑡 < 𝑎2 .𝑡

∗ (∀𝑎, 𝑠 ′, 𝑗 .Seen( 𝑗, 𝑠 ′) ∗ 𝑎 ∈ 𝑠 ′ ∗ 𝑎2 .𝑡 ≤ 𝑎.𝑡

≡∗⊤ ∃𝑎′1, 𝑎
′
2
. ⌊𝑎′

1
⌋ = ⌊𝑎1⌋ ∗ ⌊𝑎

′
2
⌋ = ⌊𝑎2⌋ ∗ 𝑎

′
1
, 𝑎′

2
∈ 𝑠 ′ ∗ 𝑎′

1
.𝑡 < 𝑎′

2
.𝑡)
}

Fig. 12. Specification for monotonic writes example.

according to socket protocol𝛷𝑖 . The definition of this socket protocol is a key part of verifying the
session manager library, since it allows us to tie physical client requests to their logical counterparts,
but is relegated to the Coq formalization for space reasons. Let us now unpack the postcondition.
We obtain a snapshot Seen(𝑖, 𝑠) that represents the replica state after the two writes. Both writes
are recorded in the local history 𝑠 through apply events 𝑎1 and 𝑎2 that respect program order
(𝑎1 .𝑡 < 𝑎2 .𝑡 ). We ensure that the writes are propagated in the same order to all replicas through the
following implication. Suppose we observe the snapshot Seen( 𝑗, 𝑠 ′) of a replica 𝑗 . Now suppose that
enough time has passed so that there exists an event 𝑎 ∈ 𝑠 ′ such that 𝑎2 .𝑡 ≤ 𝑎.𝑡 ; that is, the event
observed at 𝑎2 is as recent as the second write at 𝑎1. Using the causality property from Figure 3 we
show that the two writes at node 𝑖 have been propagated to node 𝑗 as the apply events 𝑎′

1
and 𝑎′

2

that respect program order (𝑎′
1
.𝑡 < 𝑎′

2
.𝑡 ). This way we express the MW guarantee.

We remark that our session manager library delegates the replica selection to clients. This is
a simplification w.r.t practical implementations, where replica selection is done transparently by
the session manager. In this simplified setting, our notion of causality is strong enough to provide
session guarantees for the clients. Extending the case study to the general setting with transparent
replica selection will require exposing a notion of time (e.g., vector clocks) to the session manager
and clients.

6 VERIFICATION OF THE IMPLEMENTATION

So far we have described how to use our specifications for client reasoning. In this section we show
that our implementation from ğ2 does satisfy our specifications. Conceptually, the proof of the
implementation can be split into the following three stages:

(1) We define a concrete notion of validity tying together all layers of the model (abstraction of
the replicas’ physical states, local histories, and the abstract global memory), and show that
validity is preserved by the write and apply operations.

(2) We define themeaning of the abstract predicates (Seen(𝑖, 𝑠), Snap(𝑘, ℎ),𝑘 ⇀𝑢 ℎ, GlobalInv
NGI

)
using Iris ghost state.

(3) We define the lock invariant that governs replica-local shared data (the key-value dictionary,
vector clock, in- and out-queues) and prove the correctness of the implementation of each
operation.

In this section we discuss the key aspects of these three stages.

6.1 Local and Global Validity

Obviously, the local history 𝑠𝑖 must be consistent with the physical state of the replica 𝑖 for which
it tracks the updates. We model the physical state for replica 𝑖 as a local state (𝛿𝑖 , 𝑡𝑖 , 𝑠𝑖 ) defined as

(𝛿𝑖 , 𝑡𝑖 , 𝑠𝑖 ) ∈ LocalState ≜ (Keys
fin
−⇀ Option(Value)) × VectorClock×LocalHistory.
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111 223 324

010 021 134

001 012 113 114 225

010 011 021 022 122 123 124 134 234 334 335 · · ·

local history 𝑠1

section 𝑠1,0
section 𝑠1,1
section 𝑠1,2

vector clock 𝑡1

Fig. 13. A valid history 𝑠1 partitioned into sections 𝑠1,0, 𝑠1,1, 𝑠1,2, and a vector clock 𝑡1 evolving through time.
Each cell contains the time of apply events. For example, the apply events at section 𝑠1,1 (in blue color) are
those events that come from the writes of replica 1. For each 𝑠1, 𝑗 , the 𝑗 th component of the vector clock is
depicted in bold. The numbers in bold reflect condition (2) in Definition 6.1.

Here 𝛿𝑖 is a model of the local key-value store db used by the implementation at replica 𝑖 , and 𝑡𝑖 is
the vector clock stored in the reference vc in the implementation.
We express consistency of the physical state as a validity property of the corresponding local

state. To this end, we first observe that a local history at replica 𝑖 can be partitioned into sections

according to the origin of the apply events. Concretely, given a local history 𝑠𝑖 , we define its 𝑗
th

section, denoted by 𝑠𝑖, 𝑗 , to be the subset of 𝑠𝑖 events whose origin is 𝑗 , i.e., 𝑠𝑖, 𝑗 ≜ {𝑎 ∈ 𝑠𝑖 | 𝑎.𝑜 = 𝑗}.
Intuitively, for 𝑗 ∈ {0..𝑛 − 1}\{𝑖}, each section 𝑠𝑖, 𝑗 describes the external updates from replica 𝑗

applied locally on 𝑖 , while the łdiagonalž section 𝑠𝑖,𝑖 describes the write operations executed on the
replica 𝑖 itself.8

Definition 6.1 (Valid Local Histories). Local history 𝑠𝑖 is valid if the following conditions hold:9

(1) ∀𝑎1, 𝑎2 ∈ 𝑠𝑖 .𝑎1 .𝑡 = 𝑎2 .𝑡 =⇒ 𝑎1 = 𝑎2
(2) ∀𝑘.1 ≤ 𝑘 ≤ |𝑠𝑖, 𝑗 | =⇒ ∃𝑎 ∈ 𝑠𝑖, 𝑗 .𝑎.𝑡 [ 𝑗] = 𝑘

(3) ∀𝑎 ∈ 𝑠𝑖,𝑖 .∀𝑗
′ ∈ {0..𝑛 − 1}\{𝑖} .𝑎.𝑡 [ 𝑗 ′] = Sup

{
𝑏.𝑡 [ 𝑗 ′] | 𝑏 ∈ 𝑠𝑖, 𝑗 ′ ∧ 𝑏.𝑚 < 𝑎.𝑚

}
(4) ∀𝑎 ∈ 𝑠𝑖, 𝑗 .∀𝑗

′ ∈ {0..𝑛 − 1}\{ 𝑗} . 𝑗 ≠ 𝑖 =⇒ 𝑎.𝑡 [ 𝑗 ′] ≤ Sup
{
𝑏.𝑡 [ 𝑗 ′] | 𝑏 ∈ 𝑠𝑖, 𝑗 ′ ∧ 𝑏.𝑚 < 𝑎.𝑚

}
The conditions above capture the fact that all apply events in the local history must have valid
times. For instance, condition (2) reflects the fact that the set of apply events of a given section
𝑠𝑖, 𝑗 is downwards closed and complete w.r.t. the projection 𝑗 of the vector clocks they carry. The
most subtle are conditions (3) and (4), which ensure that for any event 𝑎 that we have in our local
history, we have observed all the events it depends on before observing 𝑎. To see this, note that
𝑎.𝑡 [ 𝑗 ′] corresponds to the number of write events originating from replica 𝑗 ′ that 𝑎 depends on,
and Sup

{
𝑏.𝑡 [ 𝑗 ′] | 𝑏 ∈ 𝑠𝑖, 𝑗 ′ ∧ 𝑏.𝑚 < 𝑎.𝑚

}
corresponds to the number of events we have observed

from replica 𝑗 ′ before 𝑎. Figure 13 illustrates the notion of validity with a concrete example.
Valid histories satisfy the following theorem which expresses the causality relation of the origin

and the time projection of apply events:

Theorem 6.2. If local history 𝑠𝑖 is valid, then the following properties hold:

• 𝑠𝑖, 𝑗 = ∅ ⇐⇒ ∀𝑎 ∈ 𝑠𝑖 .𝑎.𝑡 [ 𝑗] = 0 (Empty section characterization)

• ∀𝑎 ∈ 𝑠𝑖 .∀𝑗
′ ∈ {0..𝑛 − 1} .∀𝑝 ∈ N+.𝑝 ≤ 𝑎.𝑡 [ 𝑗 ′] =⇒ ∃𝑎′ ∈ 𝑠𝑖, 𝑗 ′ .𝑎

′.𝑡 [ 𝑗 ′] = 𝑝 (Local causality)

• ∀𝑎1, 𝑎2 ∈ 𝑠𝑖, 𝑗 .𝑎1 .𝑡 [ 𝑗] = 𝑎2 .𝑡 [ 𝑗] =⇒ 𝑎1 = 𝑎2 (Component extensionality)

• ∀𝑘.1 ≤ 𝑘 ≤ |𝑠𝑖, 𝑗 | ⇐⇒ ∃𝑎 ∈ 𝑠𝑖, 𝑗 .𝑎.𝑡 [ 𝑗] = 𝑘 (Strong completeness)

Having defined the validity of local histories, we can now state the validity for local state (𝛿𝑖 , 𝑡𝑖 , 𝑠𝑖 )
as a predicate ValidL (𝛿𝑖 , 𝑡𝑖 , 𝑠𝑖 ) defined below.

8In the following, we assume that all local histories and sections are well-formed: when we write 𝑠𝑖,𝑗 , we assume 𝑖, 𝑗 ∈

{0..𝑛 − 1}, and for any 𝑎 ∈ 𝑠𝑖 , the vector clock 𝑎.𝑡 is of length 𝑛, the key 𝑎.𝑘 belongs to the fixed set of keys, and the

sequence identifier 𝑎.𝑚 is less than or equal to the size of 𝑠𝑖 .
9Here Sup is the supremum function. Note that Sup (∅) = 0.
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Definition 6.3 (Valid local states). ValidL (𝛿𝑖 , 𝑡𝑖 , 𝑠𝑖 ) holds if the following conditions hold:

(1) ∀𝑘 ∈ dom(𝛿𝑖 ),∀𝑣 . 𝛿𝑖 (𝑘) = Some(𝑣) =⇒ ∃𝑎 ∈ 𝑠𝑖 .𝑎 = Observe(𝑠𝑖 |𝑘 ) ∧ 𝑎 ∈ Maximals(𝑠𝑖 |𝑘 )

(2) ∀𝑘. 𝛿𝑖 (𝑘) = None =⇒ 𝑠𝑖 |𝑘 = ∅

(3) ∀𝑗 ∈ {0 . . . 𝑛 − 1} .𝑡𝑖 [ 𝑗] = Sup
{
𝑎.𝑡 [ 𝑗] | 𝑎 ∈ 𝑠𝑖, 𝑗

}
(4) 𝑠𝑖 is a valid local history

Here conditions (1) and (2) express the consistency of the local history 𝑠𝑖 with the local store 𝛿𝑖 ,
capturing the correctness argument of the read specification. Condition (3) states that in the local
time of replica 𝑖 , each projection 𝑡𝑖 [ 𝑗] is equal to the projection 𝑎.𝑡 [ 𝑗], where 𝑎 is the most recent
event from section 𝑠𝑖, 𝑗 , if such 𝑎 exists, otherwise 𝑎.𝑡 [ 𝑗] = 0. In particular, we have ∀𝑎 ∈ 𝑠𝑖 . 𝑎.𝑡 ≤ 𝑡𝑖 .

Using the notion of validity for local histories, we can now finally define validity for global states.

Definition 6.4 (Valid global states). ValidG ({|𝑀 ; 𝑠1, . . . , 𝑠𝑛 |}) holds if

(1) (∀𝑘 ∈ dom(𝑀),𝑤 ∈ 𝑀 (𝑘) . ∃𝑎 ∈ 𝑠𝑤.𝑜,𝑤.𝑜 .𝑤 = ⌊𝑎⌋) ∧ (∀𝑎 ∈
𝑛⋃
𝑖=1

𝑠𝑖 . ∃𝑤 ∈ 𝑀 (𝑎.𝑘).𝑤 = ⌊𝑎⌋)

(2) All local histories 𝑠1, . . . , 𝑠𝑛 are valid.

Condition (1) defines a provenance relation between apply and write events in both directions. All
the properties listed for valid global states in Figure 3 follow from this definition.

Crucially, the correctness argument for the write and apply operations relies on the following
validity preservation theorem (which we here state only informally; see the Coq development for
the formal statement):

Theorem 6.5 (Validity preservation). Consider a valid global state {|𝑀 ; 𝑠1, . . . , 𝑠𝑛 |} and a

replica 𝑖 whose local state (𝛿𝑖 , 𝑡𝑖 , 𝑠𝑖 ) is valid. The effects of both write and apply operations intuitively

described below preserve both local and global validity.

• The effect of write event: adding a new apply event 𝑎 with time incr𝑖 (𝑡𝑖 ) to 𝑠𝑖 and a new write

event ⌊𝑎⌋ to𝑀 (𝑎.𝑘), where incr 𝑗 (𝑡𝑖 ) is 𝑡𝑖 with 𝑗 th incremented.

• The effect of apply event: adding a new apply event 𝑎 to 𝑠𝑖 such that 𝑎 has passed the dynamic

check and ⌊𝑎⌋ is already in𝑀 (𝑎.𝑘).

6.2 Ghost State

The theory of resource algebras in Iris [Jung et al. 2016] can be used to define so-called ghost

theories, i.e., to define resources and Iris propositions that assert ownership over resources. The
exact combination of resource algebras and how they are used to define Iris propositions determines
the properties of the ghost theories, e.g., which propositions are persistent/ephemeral, the way
resources can be updated, e.g., allowing monotonic growth, allowing (de)allocation, etc.We refer
the reader to Jung et al. [2018] and discussions therein for details of how resource algebras work.

One of the most important and versatile resource algebras is the so-called authoritative resource
algebra, Auth(A), where A is itself a resource algebra. The elements of the authoritative resource
algebra are resources that are divided into two parts: the full part, of the form •A𝑚, and the fragment
part, of the form ◦A𝑚, for a resource𝑚 ∈ A. The idea is that •A𝑚 is the central authoritative view
of the ghost state, while ◦A𝑚

′ represents fragments of •A𝑚; we write this as𝑚′ ⪯A 𝑚, where ⪯A
is the resource inclusion relation for resources in A. Hence, owning resource •A𝑚 is ephemeral,
while ◦A𝑚 can possibly be split up into multiple parts, depending on how elements of A can be
split. Moreover, the ownership of ◦A𝑚 may be ephemeral or persistent depending on whether
ownership of elements of A is ephemeral or persistent.
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Table 3. Predicates tracking abstract state of the distributed database defined in terms of resources.

Predicate Intuitive definition

Snap(𝑘, ℎ) ownership of ◦S {(𝑘, ℎ)}

𝑘 ⇀𝑢 ℎ ownership of ◦M {(𝑘, ℎ)} and ◦S {(𝑘, ℎ)}

GM(𝑀) ownership of •M𝑀 and •S𝑀

Predicate Intuitive definition

Seen(𝑖, 𝑠) ownership of ◦C𝑖 𝑠 and ◦L𝑖 𝑠

LHG (𝑖, 𝑠) ownership of ◦C𝑖 𝑠 and •L𝑖 𝑠

LHL (𝑖, 𝑠) ownership of •C𝑖 𝑠 and ◦L𝑖 𝑠

GM(𝑀) ∗ Snap(𝑘,ℎ) ⊢ ∃ℎ′.𝑀 (𝑘) = ℎ′ ∧ ℎ ⊆ ℎ′ (Snapshot inclusion)

LHG (𝑖, 𝑠
′) ∗ Seen(𝑖, 𝑠) ⊢ 𝑠 is a causally-closed subset of 𝑠′ (Seen inclusion)

LHL (𝑖, 𝑠) ∗ LHG (𝑖, 𝑠
′) ⊢ 𝑠 = 𝑠′ (Local hist. agreement)

GM(𝑀) ∗ 𝑘 ⇀𝑢 ℎ ∗ ℎ ⊆ ℎ′ ⊢ |⇛EGM(𝑀 [𝑘 := ℎ′]) ∗ 𝑘 ⇀𝑢 ℎ′ (Global mem. update)

LHL (𝑖, 𝑠) ∗ LHG (𝑖, 𝑠) ∗ 𝑎 ∈ Maximals(𝑠 ∪ {𝑎}) ⊢ |⇛E LHL (𝑖, 𝑠 ∪ {𝑎}) ∗ LHG (𝑖, 𝑠 ∪ {𝑎}) (Local hist. update)

Fig. 14. Selected laws of the concrete ghost state.

Abstract Global Memory. We use two instance of the authoritative resource algebra, namely
Auth(S) and Auth(M), for modeling the abstract global memory.10 The resource algebra S is the
resource algebra of finite maps from keys to finite sets of write events. It is defined so that the
inclusion relation𝑀 ′ ⪯S 𝑀 holds if, and only if, ∀𝑥 . 𝑥 ∈ dom(𝑀 ′) =⇒ 𝑀 ′(𝑥) ⊆ 𝑀 (𝑥). That is, in
Auth(S) fragments track lower bounds of the sets of write events tracked in the authoritative part.
Hence, ownership of fragments in Auth(S) is persistent. The resource algebraM is the resource
algebra of finite maps from keys to exclusive finite sets of write events. It is defined so that the
inclusion relation 𝑀 ′ ⪯M 𝑀 holds if, and only if, ∀𝑥 . 𝑥 ∈ dom(𝑀 ′) =⇒ 𝑀 ′(𝑥) = 𝑀 (𝑥). That is,
in Auth(M) fragments track precisely the sets of write events tracked in the authoritative part.
Ownership of fragments in Auth(M) is thus ephemeral. The authoritative parts of Auth(S) and
Auth(M) are used to define GM(𝑀) which is used in the global invariant to track the abstract
global memory. The fragments are used to define Snap(𝑘, ℎ) and 𝑘 ⇀𝑢 ℎ. Table 3 gives the intuitive
definition of these predicates. Note that fragments of both Auth(S) and Auth(M) are used in the
definition of 𝑘 ⇀𝑢 ℎ. This is why we can prove the rule (Take Snap) in Figure 5. An excerpt of the
laws governing the use of predicates tracking ghost resources are presented in Figure 14.

Local History. We track local histories using two different kinds of resource algebras, Auth(C)
and Auth(L), one instance of each per replica. When necessary, we write C𝑖 and L𝑖 instead of
just C and L to distinguish instances used for replica 𝑖 . Both C and L are similar in that they track
sets of apply events. Moreover, the ownership of the fragments in both Auth(C) and Auth(L) are
persistent. The main difference between C and L is in their inclusion relation:

𝑠 ′ ⪯L 𝑠 if and only if 𝑠 ′ ⊆ 𝑠 𝑠 ′ ⪯C 𝑠 if and only if 𝑠 ′ is a causally-closed subset of 𝑠

We need to track local history of a replica both in the global invariant and in the local lock
invariant of the replica (see below). For this reason we define propositions LHG (𝑖, 𝑠), and LHL (𝑖, 𝑠),
respectively. Table 3 gives the intuitive definition of these predicates as well as that of the Seen(𝑖, 𝑠).
Note that LHG (𝑖, 𝑠), and LHL (𝑖, 𝑠) each have the full part of one of the two resource algebras and
the fragment of the other. This fact, together with the inclusion relations above, is why we can
prove the rule (Local hist. agreement) in Figure 14.

10We are eliding here the fact that yet another instance of the resource algebra Auth(M) is used for modeling the abstract

global memory. Both the authoritative as well as the fragment of this resource algebra are used as part of the definition

of GM(𝑀) . This extra instance is used exclusively for defining the predicate 𝑘 ⇀𝑠 ℎ in ğ7. (Note that in Iris instances of

resource algebras are named so as to allow us to have multiple instance of the same resource algebra.)
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Global Invariant. The global invariant defined below simply states that there should exist an
abstract global memory𝑀 and local histories 𝑠1, . . . , 𝑠𝑛 that we track using Iris resources such that
the global state {|𝑀 ; 𝑠1, . . . , 𝑠𝑛 |} is valid.

GlobalInv ≜ ∃𝑀, 𝑠1, . . . , 𝑠𝑛 . ValidG ({|𝑀 ; 𝑠1, . . . , 𝑠𝑛 |}) ∗ GM(𝑀) ∗

𝑛

∗
𝑖=1

LHG (𝑖, 𝑠𝑖 )

6.3 Proof of the Implementation

To verify the operations of the implementation, a crucial aspect is the choice of lock invariant. We
use an Aneris lock module, which itself is implemented as a spin lock, and whose specification is
very similar to the standard Iris lock, see, e.g., [Birkedal and Bizjak 2017, Section 7.6]. The lock
module uses an abstract predicate isLock(ip, ℓ, 𝑃) to assert that the memory location ℓ is a lock on
node ip protecting resources described by 𝑃 .
The lock invariant for our distributed database is:

isLock(ip𝑖 , lock,Ψ(𝑖, db, vc, iq, oq))

where

Ψ(𝑖, db, vc, iq, oq) ≜

∃𝑣𝑑 , 𝑣𝑡 , 𝑣𝑖𝑞, 𝑣𝑜𝑞 . ∃𝛿𝑖 , 𝑡𝑖 , 𝑠𝑖 . ∃𝑞𝑖𝑛, 𝑞𝑜𝑢𝑡 . ∃ip𝑖 , 𝑝.

Addrlist[𝑖] = (ip𝑖 , 𝑝) ∗ db ↦→ip𝑖
𝑣𝑑 ∗ vc ↦→ip𝑖

𝑣𝑡 ∗ iq ↦→ip𝑖
𝑣𝑖𝑞 ∗ oq ↦→ip𝑖

𝑣𝑜𝑞 ∗

isDictionary (𝑣𝑑 , 𝛿𝑖 ) ∗ isVectorClock (𝑣𝑡 , 𝑡𝑖 ) ∗ InQueue (𝑣𝑖𝑞, 𝑞𝑖𝑛) ∗OutQueue (𝑣𝑜𝑞, 𝑞𝑜𝑢𝑡 ) ∗

LHL (𝑖, 𝑠) ∗ValidL (𝛿𝑖 , 𝑡𝑖 , 𝑠𝑖 )

The predicate Ψ asserts that the dictionary db, the vector clock vc, and the queues iq, and oq are
all allocated in the local heap of the replica 𝑖 with values 𝑣𝑑 , 𝑣𝑡 , 𝑣𝑖𝑞 , and 𝑣𝑜𝑞 , respectively. It also
enforces that the representation predicates isDictionary , isVectorClock , InQueue , OutQueue

tie together those program values with their logical counterparts 𝛿𝑖 , 𝑡𝑖 , 𝑞𝑖𝑛 , and 𝑞𝑜𝑢𝑡 , respectively.
Moreover, the predicate Ψ asserts that the local history 𝑠 tracked for replica 𝑖 (cf. LHL (𝑖, 𝑠)) together
with the dictionary 𝛿𝑖 and vector clock 𝑡𝑖 forms a valid local state, i.e., ValidL (𝛿𝑖 , 𝑡𝑖 , 𝑠𝑖 ) holds. The
InQueue (𝑣𝑖𝑞, 𝑞𝑖𝑛) and OutQueue (𝑣𝑜𝑞, 𝑞𝑜𝑢𝑡 ) predicates enforce that the contents of both queues
are write events 𝑎 for which we have Snap(𝑎.𝑘, {𝑎}).
With the lock invariant defined as above, we verify all operations of the database. The init

function can use its precondition to establish the lock invariantÐin fact, initToken(𝑖) is defined
as LHL (𝑖,∅). For the write operation we essentially need to prove that, given the precondition, it
preserves the lock invariant and the global invariant, and that we can establish the post condition
afterwards. The bulk of the proof, apart from reasoning about Iris resources, involves showing
preservation of validity which follows directly from Theorem 6.5. For the read operation we only
need to access the lock invariant and the global invariant in order to establish the postconditionÐthe
lock invariant and the global invariant are trivially preserved as we do not change the state of the
database. Recall that the postcondition of the read function almost follows from the definition of
local state validity (Definition 6.3).

For the apply operation we essentially need to prove that it preserves the lock invariant and the
global invariant. This follows from Theorem 6.5.
For the send thread we only need to show that the write events we send over the network

adhere to the socket protocol 𝛷DB. This immediately follows from OutQueue (𝑣𝑜𝑞, 𝑞𝑜𝑢𝑡 ) in the
lock invariant. For the receive thread we need to show that the write events we receive over the
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network can be enqueued in 𝑞𝑖𝑛 , i.e., these are write events𝑤 for which we have Snap(𝑤.𝑘, {𝑤}).
This immediately follows from the socket protocol𝛷DB.

7 HOCAP-STYLE SPECIFICATION FOR THEWRITE OPERATION

In this section we present our HOCAP-style specification for the write operation, cf. the earlier
discussion in the Introduction and in ğ4. Recall that the need for this more general specification
comes from the fact that the natural specification ofwrite involves ephemeral resources (the 𝑘 ⇀𝑢 ℎ

resource used in the WriteSpec), which the clients should be able to govern by an Iris invariant in
case the clients concurrently access keys. For a client to use invariants, the write operation must be
atomic since otherwise the client cannot open and close invariants around the write operation. But
since the write operation is not atomic, we need to use another approachÐand thus we use the
HOCAP-style specification approach (see [Birkedal and Bizjak 2017] for an introduction to this
style of specification).
In the HOCAP-style approach, there are in fact two views of the abstract state of the global

memory of the key-value store: the client view 𝑘 ⇀𝑢 ℎ, which we have seen before, and the module
view 𝑘 ⇀𝑠 ℎ; both of the abstract predicates are provided to the client as part of the modular
specification interface of the replicated database. These two views always agree on the abstract
state of the global memory, i.e., 𝑘 ⇀𝑠 ℎ ∗ 𝑘 ⇀𝑢 ℎ′ ⊢ ℎ = ℎ′. One of the key ideas is that neither the
client nor the module can update its own view of the abstract global memory on their own. Instead,
the module delegates updating the abstract global memory to the client (so that the client can
control what happens in case the client needs to coordinate concurrent accesses using invariants).
Thus the HOCAP-style write specification is parametrized by view shifts (update modalities) which
the client has to prove and which allow the client to update the module’s view of the abstract global
memory 𝑘 ⇀𝑠 ℎ by combining it with its own view 𝑘 ⇀𝑢 ℎ of the abstract global memory. The
latter is done using the following law

∀𝑤, E . 𝑘 ⇀𝑠 ℎ ∗ 𝑘 ⇀𝑢 ℎ ⊢ |⇛E𝑘 ⇀𝑠 ℎ ⊎ {𝑤} ∗ 𝑘 ⇀𝑢 ℎ ⊎ {𝑤} (System User Update)

which we provide to the client as part of the modular interface describing the laws governing
database resources. This law is in fact the single law that is missing in Figure 5 from ğ4.2.11

With this in mind, our the HOCAP-style specification for write is formally stated as follows:

∀E, 𝑘, 𝑣, 𝑠, 𝑃,𝑄.NGI ⊆ E ⇒

□
(
∀𝑠 ′, 𝑎. (𝑠 ⊆ 𝑠 ′ ∗ 𝑎 ∉ 𝑠 ′ ∗ 𝑎.𝑘 = 𝑘 ∗ 𝑎.𝑣 = 𝑣 ∗ 𝑃)

≡∗⊤ E ∀ℎ.

(
⌊𝑎⌋ ∈ Maximals(ℎ ⊎ {⌊𝑎⌋}) ∗ 𝑘 ⇀𝑠 ℎ ∗

Seen(𝑖, 𝑠 ′ ⊎ {𝑎}) ∗ Maximum(𝑠 ′ ⊎ {𝑎}) = 𝑎

)

≡∗E\NGI
𝑘 ⇀𝑠 ℎ ⊎ {⌊𝑎⌋} ∗ |⇛

E ⊤𝑄 𝑎 ℎ 𝑠 ′
)
−∗

{𝑃 ∗ Seen(𝑖, 𝑠)} ⟨ip𝑖 ;write(𝑘, 𝑣)⟩ {𝑣 .𝑣 = () ∗ ∃ℎ, 𝑠 ′, 𝑎. 𝑠 ⊆ 𝑠 ′ ∗ 𝑄 𝑎 ℎ 𝑠 ′}

where 𝑃 has type iProp and 𝑄 has type ApplyEvent→ 𝒫fin (WriteEvent) → LocalHistory→ iProp.
Consider the view shifts before the Hoare triple for write. The client has to show, for the client’s

choice of predicates 𝑃 and 𝑄 , that, given 𝑃 and an apply event 𝑎 corresponding to the write, if
the client opens up invariants from the mask 𝑋 = ⊤ \ E and then additionally gets access to the
module’s view of the abstract state 𝑘 ⇀𝑠 ℎ, then the client must be able to (1) update the abstract
state to 𝑘 ⇀𝑠 ℎ ⊎ {⌊𝑎⌋}, and, in doing so, they may open (and close) all invariants in E, except

11We define the meaning of these abstract predicates using appropriate Iris resource algebras and prove this law when

verifying the implementation of the database.
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for the global invariant NGI (which makes sense since that invariant is used internally by the
implementation), and (2) close the invariants in 𝑋 and then establish 𝑄 .
We remark that this use of view shifts is slightly more advanced than standard HOCAP-style

specifications because here the client is allowed to open some invariants (those in𝑋 ) before updating
the abstract state and then close the invariants in 𝑋 again to establish the postcondition 𝑄 .

This HOCAP-style specification of the write operations is our official specification and the one
we have proved and use in our Coq formalization to verify client programs in a modular way.

As we mentioned earlier, the specification for the write operation in Figure 6 (WriteSpec) is
derivable from the HOCAP-style specification above. To prove this, take E to be ⊤, let 𝑃 ≜ 𝑘 ⇀𝑢 ℎ

(provided in the precondition of WriteSpec) and let

𝑄 𝑎 ℎ′ 𝑠 ′ ≜ ℎ = ℎ′ ∗ 𝑎.𝑘 = 𝑘 ∗ 𝑎.𝑣 = 𝑣 ∗ ⌊𝑎⌋ ∈ Maximals(ℎ′ ⊎ {⌊𝑎⌋}) ∗

𝑘 ⇀𝑢 ℎ′ ⊎ {⌊𝑎⌋} ∗ Seen(𝑖, 𝑠 ′ ⊎ {𝑎}) ∗ 𝑎 = Maximum(𝑠 ′ ⊎ {𝑎}).

We can prove the equality ℎ = ℎ′ in 𝑄 because we have 𝑘 ⇀𝑢 ℎ (as 𝑃 ) and we know that the client
and the module always agree on the view of the abstract global memory. Additionally, we use the
rule System User Update with𝑤 = ⌊𝑎⌋ and E = ⊤ \ NGI to prove the update modality ≡∗E\NGI

in
HOCAP-style spec above and obtain 𝑘 ⇀𝑠 ℎ

′ ⊎ {⌊𝑎⌋} and 𝑘 ⇀𝑢 ℎ′ ⊎ {⌊𝑎⌋} (needed to prove 𝑄).

8 RELATED WORK

Lesani et al. [2016] present an abstract causal operational semantics for replicated key-value store
implementations and their client programs. Through a refinement argument, two implementations
in Coq’s functional language, Gallina, are shown to realize this semantics. As a result of their
approach, client programs can automatically be verified by model checking. In comparison, our
work allows both the distributed database and clients to be implemented in a realistic ML-like
language and verified using a separation logic in a completely modular way. This mean we can
build libraries and provide abstractions on top of clients, as exemplified by our session manager
library, and compose the database with other components to build and verify larger distributed
systems. It is unclear how the approach of Lesani et al. would scale to a larger setting where a
key-value store is just one component of a distributed system.

Several approaches exist for reasoning about weaker consistency models of distributed databases
and their clients, including declarative approaches, e.g., Adya et al. [2000]; Ahamad et al. [1995];
Burckhardt et al. [2012]; Cerone et al. [2015, 2017]; Cooper et al. [2008]; Gotsman et al. [2016] as
well as operational approaches, e.g., Crooks et al. [2017]; Kaki et al. [2018]; Schewe and Zhang
[2018]; Xiong et al. [2019]. Common for all these works is that they reason about high-level models
of distributed replicated databases and protocols with tools tailored for reasoning about databases,
specific combinations of consistency models, and specific consistency guarantees. In constrast, our
approach is aimed at the verification of concrete implementations and allows databases and clients
to be composed with other components to build and verify larger distributed systems while also
allowing us to reason about the weak consistency offered by the implementation.

Formal specification and verification of distributed systems and algorithms has been carried out
by means of model checking [Holzmann 1997; Killian et al. 2007; Lamport 1992; Pnueli 1977] and,
more recently, using a variety of program logics: Disel [Sergey et al. 2018] is a Hoare Type Theory
for distributed program verification in Coq with ideas from separation logic. IronFleet [Hawblitzel
et al. 2015] allows for building provably correct distributed systems by combining TLA-style state-
machine refinement with Hoare-logic verification in a layered approach, all embedded in Dafny
[Leino 2010]. Verdi [Wilcox et al. 2015] is a framework for writing and verifying implementations
of distributed algorithms in Coq. Here we build on the Aneris logic, which supports horizontal
and vertical composability of distributed systems implemented using sockets, node-local state and
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concurrency, and higher-order functions. Moreover, we rely on the Coq formalization of Aneris to
mechanize all of our program correctness proofs.

In recent years, there has been a lot of work on formally specifying memory models of modern
processors, e.g., Alglave et al. [2010]; Armstrong et al. [2019]; Crary and Sullivan [2015]; Lahav
and Boker [2020]; Mador-Haim et al. [2012]; Sevcík et al. [2011], and there has also been work on
program logics for formal reasoning on top of such memory models, e.g., Abe and Maeda [2016];
Bornat et al. [2015]; Doko and Vafeiadis [2016]; Turon et al. [2014]; Vafeiadis and Narayan [2013].
In particular, Kaiser et al. [2017] provide a framework for proving programs in a fragment of
C11 containing release-acquire (RA) and non-atomic (NA) accesses. Their specifications for read
and write rely on a global view of the weak memory and a local view of each thread. While our
specifications of read and write are at a very different level (for an implementation of a distributed
database rather than for an operational semantics model of a processor), our specifications follow a
similar pattern, as we track both the abstract global memory and the local history of each replica in
our specifications. However, in loc. cit. each update is explicitly tracked only globally, and the local
thread view only associates each location with the time of its latest update. We further note that
in loc. cit. the consistency model corresponds to RA consistency of the weak memory, while our
model describes causal consistency for a distributed system implementation. Bouajjani et al. [2017]
show that causal consistency is equivalent to a WRA (weak release acquire) model which is strictly
weaker than RA consistency. According to Lahav [2019], understanding how concurrent separation
logics for the RA model can be weakened to the causal consistency is an interesting research
question, and we hope that our specifications may serve as inspiration for future investigations in
that direction.

9 CONCLUSION AND FUTURE WORK

We have presented a modular formal specification of a causally-consistent distributed database in
Aneris, a higher-order distributed separation logic, and proved that a concrete implementation of the
distributed algorithm due to Ahamad et al. [1995] meets our specification. We have demonstrated
that our specifications are useful, by proving the correctness of small, but tricky, synthetic examples
involving causal dependency and by verifying a sesssion-manager library implemented on top
of the distributed database. For the session-manager we have, moreover, verified formal program
logic versions of the session guarantees known from the distributed systems literature.
We have relied on Aneris’s facilities for modular specification and verification, in particular

node-local reasoning qua socket protocols, to achieve a highly modular development, where each
component is verified in isolation, relying only on the specifications (not the implementations) of
other components. In particular, the distributed database is specified in the same style as other
libaries and data structures are specified in distributed / concurrent separation logics, and thus it can
be freely combined with other client programs and libraries (as evidenced by the session-manager
library case study).

Future work includes implementing and verifying a strengthened session-manager library with
transparent replica selection. It would also be interesting to verify other implementations of
causally-consistent databases.
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