
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Multimodal Dependent Type Theory
Daniel Gratzer

Aarhus University

gratzer@cs.au.dk

G. A. Kavvos

Aarhus University

alex.kavvos@cs.au.dk

Andreas Nuyts

imec-DistriNet, KU Leuven

andreas.nuyts@cs.kuleuven.be

Lars Birkedal

Aarhus University

birkedal@cs.au.dk

Abstract
We introduce MTT, a dependent type theory which sup-

ports multiple modalities.MTT is parametrized by a mode

theory which specifies a collection of modes, modalities,

and transformations between them. We show that different

choices of mode theory allow us to use the same type theory

to compute and reason in many modal situations, includ-

ing guarded recursion, axiomatic cohesion, and parametric

quantification. We reproduce examples from prior work in

guarded recursion and axiomatic cohesion — demonstrating

thatMTT constitutes a simple and usable syntax whose in-

stantiations intuitively correspond to previous handcrafted

modal type theories. In some cases, instantiating MTT to

a particular situation unearths a previously unknown type

theory that improves upon prior systems. Finally, we inves-

tigate the metatheory of MTT. We prove the consistency

of MTT and establish canonicity through an extension of

recent type-theoretic gluing techniques. These results hold

irrespective of the choice of mode theory, and thus apply to

a wide variety of modal situations.

ACM Reference Format:
Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal.

2020. Multimodal Dependent Type Theory. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
In order to increase the expressivity of Martin-Löf Type

Theory (MLTT) we often wish to extend it with new con-

nectives, and in particular with unary type operators that

we call modalities or modal operators. Some of these modal

operators arise as shorthands, while others are introduced as

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

a device for expressing structure that appears in particular

models. Whereas the former class of modalities are internally

definable [58], the latter often require extensive modifica-

tions to the basic structure of type-theoretic judgments. In

some cases we are even able to prove that these changes are

necessary, by showing that the modality in question can-

not be expressed internally: see e.g. the ‘no-go’ theorems

by Shulman [63, §4.1] and Licata et al. [38]. This paper is

concerned with the development a systematic approach to

the formulation of type theories with multiple modalities.

The addition of a modality to a dependent type theory is a

non-trivial exercise. Modal operators often interact with the

context of a type or term in a complicated way, and naïve

approaches lead to undesirable interplay with other type

formers and substitution. However, the consequent gain in

expressivity is substantial, and so it is well worth the effort.

For example, modalities have been used to express guarded

recursive definitions [9, 14, 15, 30], parametric quantifica-

tion [50, 51], proof irrelevance [3, 50, 53], and to define op-

erations on which only exist globally and may be false in an

arbitrary context [38]. There has also been concerted effort

towards the development of a dependent type theory corre-

sponding to Lawvere’s axiomatic cohesion [37], which has

many interesting applications [29, 36, 60, 61, 63].

Despite this recent flurry of developments, a unifying ac-

count of modal dependent type theory has yet to emerge.

Faced with a new modal situation, a type theorist must hand-

craft a brand new system, and then prove the usual battery

of metatheorems. This introduces formidable difficulties on

two levels. First, an increasing number of these applications

aremultimodal: they involve multiple interacting modalities,

which significantly complicates the design of the appropri-

ate judgmental structure. Second, the technical development

of each such system is entirely separate, so that one can-

not share the burden of proof even between closely related

systems. To take a recent example, there is no easy way to

transfer the work done in the 80-page-long normalization

proof forMLTTµ [27] to a normalization proof for the modal

dependent type theory of Birkedal et al. [13], even though

these systems are only marginally different. Put simply, if

one wished to prove that type-checking is decidable for the

latter, then one would have to start afresh.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Conference’17, July 2017, Washington, DC, USA Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

We intend to avoid such duplication in the future. Rather

than designing a new dependent type theory for some preor-

dained set of modalities, we will introduce a system that is

parametrized by a mode theory, i.e. an algebraic specification

of a modal situation. This system, which we callMTT, solves
both problems at once. First, by instantiating it with different

mode theories we will show that MTT can capture a wide

class of situations. Some of these, e.g. the one for guarded re-

cursion, lead to a previously unknown system that improves

upon earlier work. Second, the predictable behavior of our

rules allows us to prove metatheoretic results about large

classes of instantiations of MTT at once. For example, our

canonicity theorem applies irrespective of the chosen mode

theory. As a result, we only need to prove such results once.
Returning to the previous example, careful choices of mode

theory yield two systems that closely resemble the calculi of

Birkedal et al. [13] andMLTTµ [27] respectively, so that our

proof of canonicity applies to both.

In fact, we take things one step further: MTT is not just

multimodal, but also multimode. That is, each judgment of

MTT can be construed as existing in a particular mode. All
modes have some things in common—e.g. there will be depen-

dent sums in each—but some might possess distinguishing

features. From a semantic point of view, different modes cor-

respond to different context categories. In this light, modal-

ities intuitively correspond to functors between those cate-

gories: in fact, they will be structures slightly weaker than

dependent right adjoints (DRAs) [13].

Mode theories At a high level,MTT can be thought of as

a machine that converts a concrete description of modes

and modalities into a type theory. This description, which

is often called a mode theory, is given in the form of a small
strict 2-category [39, 40, 57]. A mode theory gives rise to the

following correspondence:

object ∼ mode

morphism ∼ modality

2-cell ∼ natural map between modalities

The equations between morphisms and between 2-cells in a

mode theory can be used to precisely specify the interactions

we want between different modalities. We will illustrate this

point with an example.

Instantiating MTT Suppose we have a mode theoryM

with a single object m, a single generating morphism µ :

m →m, and no non-trivial 2-cells. Equipping MTT withM

produces a type theory with a single modal type constructor,

⟨µ | −⟩. This is the simplest non-trivial setting, and we can

prove very little about it without additional 2-cells.

If we add a 2-cell ϵ : µ ⇒ 1 toM, we can define a function

extractA : ⟨µ | A⟩ → A

inside the type theory. If we also add a 2-cell δ : µ ⇒ µ ◦ µ
then we can also define

duplicateA : ⟨µ | A⟩ → ⟨µ | ⟨µ | A⟩⟩

Furthermore, we can control the precise interaction between

duplicateA and extractA by adding more equations that re-

late ϵ and δ . For example, we may ask thatM be the walking
comonad [59] which leads to a type theory with a depen-

dent S4-like modality [24, 53, 54, 63]. We can be even more

specific, e.g. by asking that (µ, ϵ, δ) be idempotent.
Thus, a morphism µ : n → m introduces a modality

⟨µ | −⟩, and a 2-cell α : µ ⇒ ν ofM allows the definition of

a function of type ⟨µ | A⟩ → ⟨ν | A⟩ @ m.

Relation to other modal type theories Most work on mo-

dal type theories still defies classification. However, we can

informatively position MTT with respect to two qualitative

criteria, viz. usability and generality.

Much of the prior work on modal type theory has fo-

cused on bolting a specific modality onto a type theory. The

benefit of this approach is that the syntax can be designed

to be as convenient as possible for the application at hand.

For example, spatial/cohesive type theory [63] features two

modalities, ♭ and ♯, and is presented in a dual-context style.

This judgmental structure, however, is applicable only be-

cause of the particular properties of ♭ and ♯. Nevertheless,
the numerous pen-and-paper proofs in op. cit. demonstrate

that the resulting system is easy to use.

At the other end of the spectrum, the framework of Licata-

Shulman-Riley (LSR) [40] comprises an extremely general

toolkit for simply-typed, substructural modal type theory.

Its dependent generalization, which is currently under de-

velopment, is able to handle a very large class of modalities.

However, this generality comes at a price: its syntax is com-

plex and unwieldy, even in the simply-typed case.

MTT attempts to strike a delicate balance between those

two extremes. By avoiding substructural settings and some

kinds of modalities we obtain a noticeably simpler apparatus.

These restrictions imply that, unlike LSR, we do not need

to annotate our term formers with delayed substitutions,

and that our system straightforwardly extends to dependent

types. We also show that MTT can be used for many impor-

tant examples, and that it is simple enough to be used in

pen-and-paper calculations.

Contributions In summary, we make the following con-

tributions:

• We introduce MTT, a general type theory for multiple

modes and multiple interacting modalities.

• We define its semantics, which constitute a category

of models.

• We prove that MTT satisfies canonicity, an important

metatheoretic property, through a modern gluing ar-

gument [5, 23, 33, 62].

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Multimodal Dependent Type Theory Conference’17, July 2017, Washington, DC, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

• We instantiate MTT with various mode theories, and

show its value in reasoning about guarded recursion [15],

degrees of relatedness [50], and other modal situations.

For want of space we omit many details and proofs, which

can be found in the accompanying technical report.

2 The Syntax of MTT
We now present the syntax of MTT. For the rest of this paper
we fix a mode theoryM, and usem,n,o to stand for modes,

µ,ν, τ for modalities, and α, β,γ for 2-cells.

In broad terms,MTT consists of a collection of type the-

ories, one for each modem ∈ M. These type theories will

eventually appear in one another, but only as spectres under

a modality. We thus begin by describing the individual type

theories at each mode, and only then discuss how modalities

can be used to relate them.

2.1 The Type Theory at Each Mode
Each mode in MTT is inhabited by a standard Martin-Löf

Type Theory (MLTT), and accordingly includes the usual

judgments. For example, we have the judgment Γ ctx @m
which states that Γ is a well-formed context in that particular
modem. There are likewise judgments for types, terms, and

substitutions at each mode.

In lieu of an exhaustive list of rules, we show only the im-

portant ones in Fig. 1. Briefly, each mode contains ordinary

intensional type theory with dependent sums, dependent

products, intensional identity types, booleans, and one uni-

verse. Both sums and products satisfy an η rule.

Universes à laCoquand There are several ways to present

universes in type theory [31, §2.1.6] [41, 52]. We use the

approach of Coquand [22], which is close to Tarski-style uni-

verses. However, instead of inductively defining codes that
represent particular types, Coquand-style universes come

with an explicit isomorphism between types and terms of the

universe U.
If this isomorphism were to cover all types then Girard’s

paradox [21] would apply, so we must restrict it to small
types. This, in turn, forces us to stratify our types into small
and large. The judgment Γ ⊢ A type

0
@m states that A is a

small type, and Γ ⊢ A type
1

@m that it is large. The universe

itself must be a large type, but otherwise both levels are

closed under all other connectives. Finally, we introduce an

operator that lifts a small type to a large one:

ℓ ≤ ℓ′ Γ ⊢ A typeℓ @m

Γ ⊢ ⇑A typeℓ′ @m

The lifting operation commutes definitionally with all the

connectives, e.g. ⇑(A→ B) = ⇑A→ ⇑B. We will use large

types for the most part: only they will be allowed in contexts,

and the judgment Γ ⊢ M : A@m will presuppose that A is

large. As we will not have terms at small types, we will not

need the term lifting operations used by Coquand [22] and

Sterling [64].

Following this stratification, we may introduce operations

that exhibit the isomorphism:

Γ ⊢ M : U@m

Γ ⊢ El(M) type
0

@m

Γ ⊢ A type
0

@m

Γ ⊢ Code(A) : U@m

alongwith the equationsCode(El(M)) = M and El(Code(A)) =
A. The advantage of universes à la Coquand is now evident:

rather than having to introduce Tarski-style codes, we now

find that they are definable. For example, assuming M : U
and x : El(M) ⊢ N : U, we let

(x : M) →̂ N ≜ Code((x : El(M)) → El(N)) : U

We can then calculate that

El((x : M) →̂ N) = El(Code((x : El(M)) → El(N)))

= (x : El(M)) → El(N)

We will often suppress El(−) and ⇑−, and simply useM : U
as a type.

2.2 Introducing a Modality
Having sketched the basic type theory inhabiting each mode,

we now show how these type theories interact.

SupposeM contains a modality µ : n →m. We would like

to think of µ as a ‘map’ from mode n to modem. Then, for

each ⊢ A type @n we would like a type ⊢ ⟨µ | A⟩ type @m.

On the level of terms we would similarly like for each ⊢ M :

A@n an induced term ⊢ modµ (M) : ⟨µ | A⟩@m.

These constructs would be entirely satisfactory, were it

not for the presence of open terms. To illustrate the problem,

suppose we have a type Γ ⊢ A type @n. We would hope

that the corresponding modal type would live in the same

context, i.e. that Γ ⊢ ⟨µ | A⟩ type @m. However, this is not

possible, as Γ is only a context at mode n, and cannot be

carried over verbatim to modem. Hence, the only pragmatic

option is to introduce an operation that allows a context to

cross over to another mode.

Forming a modal type There are several different pro-

posed solutions to this problem in the literature [e.g. 19, 54].

In the case of MTT we will use a Fitch-style discipline [9, 13,
27]: we will require that µ induce an operation on contexts

in the reverse direction, which we will denote by a lock:
cx/lock

Γ ctx @m

Γ,µµ ctx @n

Intuitively, µµ behaves like a left adjoint to ⟨µ | −⟩. However,
⟨µ | −⟩ acts on types while −,µµ acts on contexts, so this

cannot be an adjunction. Birkedal et al. [13] call this situation

a dependent right adjoint (DRA). A DRA essentially consists

of a type former R and a context operation L such that

{N | L(Γ) ⊢ N : A} � {M | Γ ⊢ M : R(A)} (†)

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Γ ⊢ A typeℓ @m

Γ ⊢ U type
1

@m

Γ ctx @m

Γ ⊢ B typeℓ @m

ℓ ≤ ℓ′ Γ ctx @m Γ ⊢ A typeℓ @m

Γ ⊢ ⇑A typeℓ′ @m

Γ ctx @m Γ ⊢ A typeℓ @m Γ ⊢ M,N : ⇑A@m

Γ ⊢ IdA(M,N) typeℓ @m

Γ ctx @m Γ ⊢ A typeℓ @m Γ, x : ⇑A ⊢ B typeℓ @m

Γ ⊢ (x : A) → B typeℓ @m Γ ⊢ (x : A) × B typeℓ @m

Figure 1. Selected mode-local rules.

See Birkedal et al. [13] for a formal definition.

Just as with DRAs, theMTT formation and introduction

rules for modal types effectively transpose types and terms

across this adjunction:

tp/modal

Γ,µµ ⊢ A typeℓ @n

Γ ⊢ ⟨µ | A⟩ typeℓ @m

tm/modal-intro

Γ,µµ ⊢ M : A@n

Γ ⊢ modµ (M) : ⟨µ | A⟩@m

It remains to show how to eliminate modal types. Previous

work on Fitch-style calculi [13, 27] has employed elimination

rules which essentially invert the introduction rule tm/modal-

intro. Such rules remove one or more locks from the context

during type-checking, and sometimes even trim a part of it.

For example, a rule of this sort would be

µµ < Γ
′ Γ ⊢ M : ⟨µ | A⟩@m

Γ,µµ , Γ
′ ⊢ open(M) : A@n

However, this kind of rule tends to be unruly, and requires

delicate work to prove even basic results, such as the admis-

sibility of substitution: see the technical report by Gratzer

et al. [28] for a particularly laborious case. The results in op.
cit. could not possibly reuse any of the work of Birkedal et al.
[13], as a small change in the syntax leads to many subtle

changes in the metatheory. Consequently, it seems unlikely

that one could adapt this approach to a modality-agnostic

setting like ours.

We will use a different technique, which is reminiscent

of dual-context calculi [35]. First, we will let the variable

rule control the use of modal variables. Then, we will take a

‘modal cut’ rule, which will allow the substitution of modal

terms for modal variables, to be our modal elimination rule.

Accessing amodal variable The behavior of modal types

can often be clarified by asking a simple question: when can

we use x : ⟨µ | A⟩ to construct a term of type A? In previ-

ous Fitch-style calculi we would use the modal elimination

rule to reduce the goal to ⟨µ | A⟩, and then—had the modal
elimination rule not eliminated x from the context—we would
simply use the variable. We may thus write down a term of

type A using a variable x : ⟨µ | A⟩ only when our context

has the appropriate structure, and the final arbiter of that is

the modal elimination rule.

MTT turns this idea on its head: rather than handing con-

trol over to the modal elimination rule, we delegate this

decision to the variable rule itself. In order to ascertain

whether we can use a variable in our calculus, the vari-

able rule examines the locks to the right of the variable. The
rule of thumb is this: we should always be able to access

⟨µ | A⟩ behind µµ . Carrying the −,µµ ⊣ ⟨µ | −⟩ analogy fur-

ther, we see that the simplest judgment that fits this, namely

Γ, x : ⟨µ | A⟩,µµ ⊢ x : A@n, corresponds to the counit.
To correctly formulate the variable rule, we will require

one more idea: following modal type theories based on left
division [1, 2, 50, 51, 53], every variable in the context will

be annotated with a modality, x : (µ | A). Intuitively a

variable x : (µ | A) is the same as a variable x : ⟨µ | A⟩, but
the annotations are part of the structure of a context while

⟨µ | A⟩ is a type. This small circumlocution will ensure that

the variable rule respects substitution.

The most general form of the variable rule will be able

to handle the interaction of modalities, so we present it in

stages. A first ‘counit-like’ approximation is then

tm/var/counit

µ < Γ1 Γ0,µµ ⊢ A type
1

@n

Γ0, x : (µ | A),µµ , Γ1 ⊢ x : A@m

The first premise requires that no further locks occur in Γ1.

Context extension The switch to modality-annotated dec-

larations x : (µ | A) also requires us to revise the context

extension rule. The revised version, cx/extend, closely fol-

lows the formation rule for ⟨µ | −⟩: if Γ,µµ ⊢ A type
1

@n
is a type in the locked context Γ, then we may extend the

context Γ to include a declaration x : (µ | A), so that x stands

for a term of type A under the modality µ.

The elimination rule The difference between a modal

type ⟨µ | A⟩ and an annotated declaration x : (µ | A) in the

context is navigated by the modal elimination rule. In brief,

its role is to enable the substitution of a term of the former

type for a variable with the latter declaration. The full rule

is complex, so in this section we will only discuss the case

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Multimodal Dependent Type Theory Conference’17, July 2017, Washington, DC, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

of a single modality, µ : n →m. The rule for this µ is

tm/modal-elim/single-modality

Γ ⊢ M0 : ⟨µ | A⟩@m Γ, x : (1 | ⟨µ | A⟩) ⊢ B type
1

@m
Γ,y : (µ | A) ⊢ M1 : B[modµ (y)/x]@m

Γ ⊢ let modµ (y) ← M0 inM1 : B[M0/x]@m

Forgetting dependence for a moment, this rule is close to

the dual context style [35, 54]: if we think of annotations as

separating the context into multiple zones, then y : (µ | A)
clearly belongs to the ‘modal’ part.

In the dependent case we also need a motive Γ, x : (1 | ⟨µ |
A⟩) ⊢ B type

1
@m, which depends on a variable of modal

type, but under the identity modality 1. This premise is then

fulfilled byM0 in the conclusion. In a sense, this rule permits

a form ofmodal induction: every variable x : (1 | ⟨µ | A⟩) can
be assumed to be of the form modµ (y) for some y : (µ | A).
This kind of rule has appeared before in dependent modal

type theory, mainly in the work of Shulman [63].

In the type theory of Birkedal et al. [13] modalities are

taken to be dependent right adjoints, with terms witnessing

Eq. (†). This isomorphism can encode tm/modal-elim/single-

modality, but tm/modal-elim/single-modality cannot encode

Eq. (†). As a result, modalities inMTT are weaker than DRAs.

2.3 Multiple Modalities
Thus far we have only considered a single modality. In this

section we discuss the small changes that are needed to

enable MTT to support multiple interacting modalities. The

final version of the modal rules is given in Fig. 2.

Multimodal locks We have so far only used the operation

−,µµ on contexts for the single modality µ : n → m. This

operation should also work for any modality with the same

rule cx/lock, hence inducing an action of locks on contexts

that is contravariant with respect to the mode. The only

question, then, is how these locks should interact. This is

where the mode theory comes in: locks should be functo-
rial, so that ν : o → n, µ : n → m, and Γ ctx @m imply

Γ,µµ ,µν = Γ,µµ◦ν ctx @o. We additionally ask that the

identity modality 1 : m → m at each mode has a trivial,

invisible action on contexts, i.e. Γ,µ1 = Γ.
These two actions, which are encoded by cx/compose and

cx/id, ensure that µ is a contravariant functor onM, map-

ping each modem to the category of contexts Γ ctx @m. The

contravariance originates from the fact thatM is a specifi-

cation of the behavior of the modalities ⟨µ | −⟩, so that their

left-adjoint-like counterparts −,µµ act with the opposite

variance.

The full variable rule We have seen that µ induces a

functor fromM to categories of contexts, but we have not

yet used the 2-cells of M. In short, a 2-cell α : µ ⇒ ν
contravariantly induces a substitution from Γ,µν to Γ,µµ .

We will discuss this further in Section 4, but for now we only

mention that this gives rise to an admissible operation on

types: for each 2-cell we obtain an operation (−)α such that

Γ,µµ ⊢ A type @m implies Γ,µν ⊢ A
α type @m.

In order to prove the admissibility of this operation we

need a more expressive variable rule that builds in the action

of 2-cells. The first iteration (tm/var/counit) required that

the lock and the variable annotation were an exact match.

We relax this requirement by allowing for a mediating 2-cell:

tm/var/combined

µ,ν : n →m α : µ ⇒ ν

Γ, x : (µ | A),µν ⊢ x
α

: Aα
@n

The superscript in xα is now part of the syntax: each vari-

able must be annotated with the 2-cell, though we will still

write x tomean x1µ
. The final form of the variable rule, which

appears as tm/var in Fig. 2, is only a slight generalization

which allows the variable to occur at positions other than

the very front of the context. In fact, tm/var can be reduced

to tm/var/combined by using weakening to remove variables

to the right of x , and then invoking functoriality to fuse all

the locks to the right of x into a single one with modality

locks(Γ1).

The full elimination rule Recall that the elimination rule

for a single modality (tm/modal-elim/single-modality) al-

lowed us to plug a term of type ⟨µ | A⟩ for an assumption

x : (µ | A). Some additional generality is needed to cover

the case where the motive x : (ν | ⟨µ | A⟩) ⊢ B type @m de-

pends on x under a modality ν , 1. This is where the compo-

sition of modalities inM comes in handy: our new rule will

use it to absorbν by replacing the assumptionx : (ν | ⟨µ | A⟩)
with x : (ν ◦ µ | A). The new rule, tm/modal-elim, is given in

Fig. 2. The simpler rule may be recovered by setting ν ≜ 1.

Modal dependent products In the technical report we

have supplementedMTT with a primitive modal dependent
product type, (x : (µ | A)) → B, which bundles together

⟨µ | −⟩ and the ordinary product. If we ignore η-equality,
(x : (µ | A)) → B can be defined as (x0 : ⟨µ | A⟩) →
(let modµ (x) ← x0 in B). This modal

∏
-type is convenient

for programming but it is not essential, so we defer further

discussion to the technical report.

3 Programming with Modalities
In this sectionwe showhowMTT can be used to program and

reason with modalities. We develop a toolkit of modal combi-

nators, which we then use in Section 3.2 to show how MTT
can be effortlessly used to present an idempotent comonad.

3.1 Modal Combinators
We first show how each 2-cell α : µ ⇒ ν with µ,ν : n →m
induces a natural transformation ⟨µ | −⟩ → ⟨ν | −⟩. Given
Γ,µµ ⊢ A type

1
@m, we define

coe[α : µ ⇒ ν](−) : ⟨µ | A⟩ → ⟨ν | Aα ⟩

coe[α : µ ⇒ ν](x) ≜ let modµ (x0) ← x in modν (xα
0
)

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Conference’17, July 2017, Washington, DC, USA Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Γ ctx @m

cx/lock

µ : n →m Γ ctx @m

Γ,µµ ctx @n

cx/extend

µ : n →m Γ ctx @m Γ,µµ ⊢ A type
1

@n

Γ, x : (µ | A) ctx @m

cx/id

Γ ctx @m

Γ = Γ,µ1 ctx @m

cx/compose

ν : o → n µ : n →m Γ ctx @m

Γ,µµ ,µν = Γ,µµ◦ν ctx @o

Γ ⊢ A typeℓ @m Γ ⊢ M : A@m

tp/modal

Γ,µµ ⊢ A typeℓ @n

Γ ⊢ ⟨µ | A⟩ typeℓ @m

tm/var

ν : m → n α : ν ⇒ locks(Γ1)

Γ0, x : (ν | A), Γ1 ⊢ x
α

: Aα
@m

tm/modal-intro

Γ,µµ ⊢ M : A@n

Γ ⊢ modµ (M) : ⟨µ | A⟩@m

tm/modal-elim

ν : m → o µ : n →m Γ, x : (ν | ⟨µ | A⟩) ⊢ B type
1

@o
Γ,µν ⊢ M0 : ⟨µ | A⟩@m Γ, x : (ν ◦ µ | A) ⊢ M1 : B[modµ (x)/x]@o

Γ ⊢ letν modµ (x) ← M0 inM1 : B[M0/x]@o

tm/modal-beta

ν : m → o µ : n →m Γ, x : (ν | ⟨µ | A⟩) ⊢ B type
1

@o
Γ,µν◦µ ⊢ M0 : A@n Γ, x : (ν ◦ µ | A) ⊢ M1 : B[modµ (x)/x]@o

Γ ⊢ letν modµ (x) ← modµ (M0) inM1 = M1[M0/x] : B[modµ (M0)/x]@o

locks(Γ)

locks(·) = 1 locks(Γ, x : (µ | A)) = locks(Γ) locks(Γ,µµ) = locks(Γ) ◦ µ

Figure 2. Selected modal rules.

With this operation, we have completed the correspondence

from Section 1: objects of M correspond to modes, mor-

phisms to modalities, and 2-cells to coercions.

We can also show that the assignment µ 7→ ⟨µ | −⟩ is,
in some sense, functorial. Unlike the action of locks, this

functoriality is not definitional, but only a type-theoretic

equivalence [66, §4]. Fixing Γ,µµ◦ν ⊢ A type
1

@m, let

compµ ,ν : ⟨µ | ⟨ν | A⟩⟩ → ⟨µ ◦ ν | A⟩

compµ ,ν (x) ≜ let modµ (x0) ← x in
letµ modν (x1) ← x0 in
modµ◦ν (x1)

comp-1µ ,ν : ⟨µ ◦ ν | A⟩ → ⟨µ | ⟨ν | A⟩⟩

comp-1µ ,ν (x) ≜ let modµ◦ν (x0) ← x in modµ (modν (x0))

We elide the 2-cell annotations on variables, as they are all

identities (i.e. we only need tm/var/counit). Even in this

small example the context equations that involve locks are

essential: for ⟨µ | ⟨ν | A⟩⟩ to be a valid type we need that

Γ,µµ ,µν = Γ,µµ◦ν , which is ensured by cx/compose. Addi-

tionally, observe that compµ ,ν relies crucially on the mul-

timodal elimination rule tm/modal-elim: we must pattern-

match on x0, which is under µ in the context.

These combinators are only propositionally inverse. In

one direction, the proof is

_ : (x : ⟨µ | ⟨ν | A⟩⟩) → Id⟨µ | ⟨ν |A⟩⟩(x, comp-1µ ,ν (compµ ,ν (x)))
_ ≜ λx . let modµ (x0) ← x in letµ modν (x1) ← x0 in

refl(modµ (modν (x)))

This is a typical example of reasoning about modalities: we

use the modal elimination rule to induct on a modally-typed

term. This reduces it to a term of the form mod(−), and the

result follows definitionally. It is equally easy to construct

an equivalence ⟨1 | A⟩ ≃ A.
As a final example, we will show that each modal type

satisfies axiom K, a central axiom of Kripke-style modal

logics. This combinator will be immediately recognizable to

functional programmers as the term that shows that ⟨µ | −⟩

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Multimodal Dependent Type Theory Conference’17, July 2017, Washington, DC, USA

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

is an applicative functor [44].

−⊛µ − : ⟨µ | A→ B⟩ → ⟨µ | A⟩ → ⟨µ | B⟩

f ⊛µ a ≜ let modµ (f0) ← f in
let modµ (a0) ← a in
modµ (f0(a0))

We can also define a stronger combinator, which corresponds

to a dependent form of the Kripke axiom [13], and which

generalizes ⊛µ to dependent products (x : A) → B(x).

3.2 Idempotent Comonads in MTT
A great deal of prior work in modal type theory has focused

on comonads [24, 27, 54, 63], and in particular idempotent
comonads. Shulman [63, Theorem 4.1] has shown that such

modalities necessitate changes to the judgmental structure,

as the only idempotent comonads that are internally defin-

able are of the form − ×U for some proposition U . In this

section we present a mode theory for idempotent comonads,

and prove that the resulting type theory internally satisfies

the expected equations using just the combinators of the

previous section.

We define the mode theoryMic to consist of a single mode

m, and a single non-trivial morphism µ : m → m. We will

enforce idempotence by setting µ ◦ µ = µ. Finally, in order

to induce a morphism ⟨µ | A⟩ → A we include a unique

non-trivial 2-cell ϵ : µ → 1. We force uniqueness of this

2-cell by imposing equations such as µ⋆ϵ = ϵ ⋆ µ = ϵ . The
resulting mode theory is a 2-category, albeit a very simple

one: it is in fact only a poset-enriched category.

We can show that ⟨µ | A⟩ is a comonad by defining the

expected operations using the combinators of Section 3.1:

dupA : ⟨µ | A⟩ → ⟨µ | ⟨µ | A⟩⟩ extractA : ⟨µ | A⟩ → Aϵ

dupA ≜ comp-1µ ,µ extractA ≜ coe[ϵ : µ ⇒ 1]

We must also show that dupA and extractA satisfy the como-

nad laws, but that automatically follows from general facts

pertaining to coe and comp.1 This is indicative of the benefits
of usingMTT: every general result about it also applies to

this instance, including the canonicity theorem of Section 5.

4 The Substitution Calculus of MTT
Until this point we have presented a curated, high-level view

of MTT, and we have avoided any discussion of its metathe-

ory. Yet, these syntactic aspects can be quite complex, and

have historically proven to be sticking points for modal type

theory. While these details are not necessary for the casual

reader, it is essential to validate that MTT is syntactically

well-behaved, enjoying e.g. a substitution principle.

We have opted for a modern approach in the analysis

of MTT by presenting it as a generalized algebraic theory
(GAT) [17, 34].While this simplifies the study of its semantics

1
In particular, our modal combinators satisfy a variant of the interchange
law of a 2-category.

(see Section 5), it can also be used to study the syntax. For

example, the formulation of MTT as a GAT naturally leads us

to include explicit substitutions [26, 43] in the syntax. Thus,

substitution inMTT is not a metatheoretic operation on raw

terms, but a piece of the syntax. This presentation helps us

carefully state the equations that govern substitutions and

their interaction with type formers. We consequently obtain

an elegant substitution calculus, which can often be quite

complex for modal type theories. We only discuss the modal

aspects of substitution here; the full calculus may be found

in the technical report.

Modal substitutions In addition to the usual rules,MTT
features substitutions corresponding to the 1- and 2-cells of

the mode theory. First, recall that for each modality µ : n →
m we have the operation µµ on contexts. In keeping with

the algebraic syntax, we will write −.µµ instead of −,µµ in

this section. We extend its action to substitutions:

sb/lock

µ : n →m Γ ⊢ δ : ∆@m

Γ.µµ ⊢ δ .µµ : ∆.µµ @n

Second, each 2-cell α : µ ⇒ ν induces a natural transforma-
tion between µν and µµ , whose component at Γ is

sb/key

α : µ ⇒ ν

Γ.µν ⊢ ¤
α
Γ : Γ.µµ @n

These substitutions come with equations that ensure that

−.µµ is a functor, ¤
α
Γ is a natural transformation, and that

together they form a 2-functorMcoop → Cat: see Fig. 3.
While it is no longer necessary to prove that substitution

is admissible, we would like to show that explicit substitu-

tions can be pushed inside terms, and ultimately eliminated

on closed terms. The proof of canonicity (Theorem 5.5) im-

plicitly contains such an algorithm, but it is overkill: a simple

argument directly proves that all explicit substitutions can

be propagated down to variables.

Moreover, we may define the admissible operation men-

tioned in Section 2.3 by letting Aα ≜ A[¤α
Γ], and using the

algorithm mentioned above to derive steps that eliminate

the ‘key’ substitution.

Pushing substitutions under modalities In order for

the aforementioned algorithm to work, we must specify

how substitutions commute with the modal connectives of

MTT. Unlike previous work [28], the necessary equations

are straightforward:

⟨µ | A⟩[δ] = ⟨µ | A[δ .µµ]⟩

modµ (M)[δ] = modµ (M[δ .µµ])

This simplicity is not coincidental. Previous modal type

theories included rules that, in one way or another, trimmed
the context during type checking: some removed variables [54,

56, 63], while others erased context formers, e.g. locks [13,

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Conference’17, July 2017, Washington, DC, USA Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

sb/lock-id

µ : n →m

Γ ⊢ id.µµ = id : Γ @n

sb/id-lock

Γ ⊢ δ : ∆@m

Γ ⊢ δ .µ1 = δ : ∆@m

sb/lock-compose

µ : n →m Γ0 ⊢ γ1 : Γ1
@m Γ1 ⊢ γ2 : Γ2

@m

Γ0.µµ ⊢ (γ2 ◦ γ1).µµ = (γ2.µµ) ◦ (γ1.µµ) : Γ2.µµ @m

sb/compose-lock

µ : n →m ν : o → n Γ ⊢ δ : ∆@m

Γ.µµ◦ν ⊢ δ .µµ◦ν = δ .µµ .µν : ∆.µµ◦ν @m

sb/natural

µ,ν : n →m α : ν ⇒ µ Γ ⊢ δ : ∆@m

Γ.µµ ⊢ ¤
α
∆ ◦ (δ .µµ) = (δ .µν) ◦¤

α
Γ : ∆.µν @n

Figure 3. Selection of rules from the equational theory of modal substitutions.

27]. In either case, it was necessary to show that the trim-

ming operation, which we may write as ∥Γ∥, is functorial:
Γ ⊢ δ : ∆ should imply ∥Γ∥ ⊢ ∥δ ∥ : ∥∆∥. Unfortunately, the
proof of this fact is almost always very complicated. Some

type theories avoid it by ‘forcing’ substitution to be admis-

sible using delayed substitutions [11, 40], but this causes

serious complications to the equational theory.

MTT circumvents this by avoiding any context trimming.

As a result, we need neither delayed substitutions nor a

complex proof of admissibility.

5 The Semantics of MTT
As mentioned in Section 4, we have structured MTT as a

GAT. As a result, MTT automatically induces a category

of models and (strict) homomorphisms between them [17,

34]. However, this notion of model follows the syntax quite

closely. In order to work with it more effectively we factor it

into pieces, using the more familiar definition of categories
with families (CwFs) [25].2 We will then use this notion of

model to present a semantic proof of canonicity via gluing [5,
23, 33, 62].

Like MTT itself, the definition of model is parametrized

by a mode theory, so we fix a mode theoryM.

Mode-local structure Recall thatMTT is divided into sev-

eral modes, each of which is closed under the standard con-

nectives of MLTT. Accordingly, a model of MTT requires

a CwF (C[m],Tm, T̃m) for each modem ∈ M. Each CwF is

required to be a model of MLTTwith

∑
,

∏
and Id types, and

a Coquand-style universe. This part of the definition is en-

tirely standard, and can be found in the literature [8, 25, 31].

The novel portion of a MTT model describes the relations

between CwFs induced by the 1- and 2-cells ofM.

Locks and keys Recall that for Γ ctx @m and µ : n → m
we have a context Γ,µµ ctx @n, and that this construction

extends functorially to substitutions. Hence, we will require

for each modality µ : n →m a functor JµµK : C[m] → C[n].
Similarly, each α : µ ⇒ ν induces a natural transformation

from −,µν to −,µµ . Accordingly, a model should come with

2
In the technical report we have used a more categorical presentation of

CwFs, known as natural models [8]. However, in the interest of clarity we

state our results in terms of CwFs here.

a natural transformation J¤α K : Jµν K ⇒ JµµK. Moreover,

the equalities of Fig. 3 require that the assignments µ 7→ µµ
and α 7→ ¤α

be strictly 2-functorial. Thus, this part of the

model can be succinctly summarized by requiring a 2-functor

C[−] :Mcoop → Cat. The contravariance accounts for the
fact µ corresponds to ⟨µ | −⟩, but that the functor JµµK
models −,µµ , which acts with the opposite variance.

Modal comprehension structure Context declarations in

MTT are annotated with a modality, and the context exten-

sion rule cx/extend involves locks. Thus, our CwFs should be

equipped with more structure than mere context extension

to support it.

Recall that, in an ordinary CwF C, given a context Γ ∈ C
and a type A ∈ T(Γ) we have a context Γ.A along with a

substitution p : Γ.A→ Γ, and a term q ∈ T̃(Γ.A,A[p]).
To modelMTTwe need a modal comprehension operation,

which for each context Γ ∈ C[m], modality µ : n →m, and

type A ∈ Tn(JµµK(Γ)) yields
• a context Γ.(µ | A) ∈ C[m],
• a substitution p : Γ.(µ | A) → Γ, and

• a term q ∈ T̃n(JµµK(Γ.(µ | A)),A[JµµK(p)])
where Γ.(µ | A) is universal in an appropriate sense.

Intuitively, q corresponds to tm/var/counit. As mentioned

before, this suffices to model the full variable rule tm/var, as

p, ¤α
− , and q can be used to define it from tm/var/counit.

Modal types The interpretation of the modal type ⟨µ | −⟩
for a modality µ : n → m requires operations for the for-

mation, introduction, and elimination rules. Just as with

the other connectives, these are a direct translation of the

rules tp/modal, tm/modal-intro, and tm/modal-elim to the

language of CwFs. For example, for every Γ ∈ C[m], A ∈

Tn(JµµK(Γ)), andM ∈ T̃n(JµµK(Γ),A), we requiremodµ (M) ∈
T̃m(Γ,Modµ (A)).
This discussion leads to the following definition.

Definition 5.1. A model of MTT is a 2-functor C[−] :

Mcoop → Cat, equipped with the following structure:

• for eachm ∈ M, a CwF (C[m],Tm, T̃m) that is closed
under

∏
,

∑
, Id, and U,

• a modal comprehension structure for M on these

CwFs, and

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Multimodal Dependent Type Theory Conference’17, July 2017, Washington, DC, USA

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

• for each modality µ : n →m, a modal type structure

(Modµ ,modµ , openµ).

Definition 5.2. A morphism between models F : C[−]1 →

C[−]2 is a strict 2-natural transformation such that each

Fm : C[m]1 → C[m]2 is part of a strict CwF morphism [18]

which strictly preserves modal comprehension and types.

We observed in Section 2.3 that modalities in MTT are

weaker than DRAs [13].
3
Since DRAs are often easier to

construct, we make this relation formal.

Theorem 5.3. A 2-functor C[−] :Mcoop → Cat satisfying
the following two conditions induces a model of MTT:

1. for eachm ∈ M, there is a CwF (C[m],Tm, T̃m) that is
closed under

∏
,
∑
, Id, and U.

2. for each µ : n →m, JµµK : C[m] → C[n] has a DRA.

In practice virtually all the models of MTT that we con-

sider will be constructed by applying Theorem 5.3. We can

also use it to immediately prove consistency:

Corollary 5.4. There is no closed term of type IdB(tt,ff).

Proof. By Theorem 5.3, any model C of MLTT is a valid

model of MTT: send each mode to C, and each modality to

the identity. Therefore, a closed term of type IdB(tt,ff) in
MTT would also be a term of the same type in MLTT. We

may therefore reduce the consistency of MTT to that of a

model of MLTT, and in particular the set-theoretic one. □

5.1 Canonicity
We can now use MTT models to prove canonicity via glu-

ing. Canonicity is an important metatheoretic result: it es-

tablishes the computational adequacy of MTT by ensuring

that every closed term already is in or is equal to a canon-
ical form—a value. Canonicity is traditionally established

through a logical relation [42, 65]. However, this method be-

comes very complicated when we have universes, as their

presence makes the definition by induction on types impos-

sible. It is instead necessary to construct a (large) relation

on types, which associates a pair of types with a PER; the

logical relation on terms is then subordinated to this relation

on types [4, 6]. This technique requires significant effort, and

involves many proofs by simultaneous induction.

This approach can be simplified by replacing proof-irrelevant
logical relations by a proof-relevant gluing construction [45].

This leads to the construction of a model in which (a) types

are paired with proof-relevant predicates and (b) terms are

equivalence classes of syntactic terms, along with a (type-

determined) proof of their canonicity. The proof-relevance

is crucial in the case of the universe, which contains not just

the canonicity data for A : U but also the predicate for El(A).

3
While Birkedal et al. [13] only consider endofunctors, there is no obstacle

to extending the definition of a DRA to different categories.

The full details of the glued model can be found in the

technical report. Once we construct it, the initiality of syn-

tax [17, 34] provides a witness of canonicity for every term.

Theorem 5.5 (Canonicity). If ·,µν ⊢ M : A@m is a closed
term, then the following conditions hold:
• If A = B, then ·,µν ⊢ M = ¯b : B@m where ¯b ∈ {tt,ff}.
• If A = IdA0

(N0,N1) then ·,µν ⊢ N0 = N1 : A0
@m and

·,µν ⊢ M = refl(N0) : IdA0
(N0,N1)@m.

• IfA = ⟨µ | A0⟩ then there is a term ·,µν◦µ ⊢ N : A0
@n

such that ·,µν ⊢ M = modµ (N) : ⟨µ | A0⟩@m.

6 Applying MTT
We will now show concretely how MTT can be used in spe-

cific modal situations by varying the mode theory.Wewill fo-

cus on two different examples: guarded recursion [15, 20, 47],

which captures productive recursive definitions through a

combination of modalities, and adjoint modalities [39, 40, 57,
63, 67], where two modalities form an adjunction internal to

the type theory. In both cases we will show how to recon-

struct examples from op. cit. in MTT. The case of guarded
recursion is particularly noteworthy, as the specialization of

MTT to the appropriate mode theory leads to a new syntax

which is considerably simpler than previous work.

6.1 Guarded Recursion
The key idea of guarded recursion [47] is to use the later
modality (�) tomark datawhichmay only be used after some

progress has been made, thereby enforcing productivity at

the level of types. Concretely, the later modality is equipped

with three basic operations:

next : A→ �A (⊛) : �(A→ B) → �A→ �B

löb : (�A→ A) → A

The first two operators make � into an applicative func-

tor [44] while the third, which is known as Löb induction,

encodes guarded recursion: it enables us to define a term

recursively, provided the recursion is provably productive.

The perennial example is, of course, the guarded stream

type StrA � A×�StrA. This recursive type requires that the
head of the stream is immediately available, but the tail may

only be accessed after some productive work has taken place.

This allows us to e.g. construct an infinite stream of ones:

inf_stream_of_ones ≜ löb(s . cons(1, s))

However, StrA does not behave like a coinductive type: we

may only define causal operations on streams, which ex-

cludes e.g. tail. In order to regain coinductive behavior, Clous-
ton et al. [20] introduced a second modality, 2 (‘always’), an

idempotent comonad for which

2 �A ≃ 2A. (∗)

Combining this modality with � has proved rather tricky:

previous work has used delayed substitutions [15], or has
9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Conference’17, July 2017, Washington, DC, USA Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

t sℓ

δ

γ
δ ◦ γ ≤ 1 1 = γ ◦ δ

1 ≤ ℓ γ = γ ◦ ℓ

Figure 4.Mд : a mode theory for guarded recursion.

replaced 2 with clock quantification [7, 9, 16, 46]. The for-

mer poses serious implementation issues, and—while more

flexible—the latter does not enjoy the conceptual simplicity

of a single modality. In contrast, MTT enables us to effort-

lessly combine the two modalities and satisfy Eq. (∗).

To encode guarded recursion inside MTT, we must

1. choose a mode theory which induces an applicative

functor � and a comonad 2 satisfying Eq. (∗),

2. construct the intended model ofMTT with this mode

theory, i.e. a model where these modalities are inter-

preted in the standard way [14], and

3. include Löb induction as an axiom.

To begin, we defineMд to be the mode theory generated

by Fig. 4. We require that Mд is poset-enriched, i.e. that

there is at most one 2-cell between a pair of modalities, µ,ν ,
which we denote µ ≤ ν when it exists. AsMд is not a full

2-category, we do not need to state any coherence equations

between 2-cells.

Unlike prior guarded type theories, Fig. 4 has two modes.
We will think of elements of s as being constant types and
terms, while types in t may vary over time. The reason for

enforcing this division will become apparent in Theorem 6.3,

but for now observe that we can construct an idempotent

comonad b ≜ δ ◦ γ .

Lemma 6.1. ⟨b | −⟩ is an idempotent comonad and ⟨ℓ | −⟩
is an applicative functor.

Proof. Follows from the combinators in Section 3. □

Next, Eq. (∗), which was hard to force in previous type

theories, is provable: as γ ◦ ℓ = γ , the combinator compb ,ℓ
from Section 3.1 has the appropriate type:

compb ,ℓ : ⟨b | ⟨ℓ | A⟩⟩ ≃ ⟨b ◦ ℓ | A⟩ = ⟨b | A⟩

In order to construct the intended model, recall that the stan-

dard interpretation of guarded type theory uses the topos of
trees, PSh(ω): see Birkedal et al. [14] for a thorough discus-

sion. Crucially, it is easy to see that 2 = ∆ ◦ Γ, where

Γ : PSh(ω) → Set ∆ : Set→ PSh(ω)

Γ ≜ X 7→ Hom(1,X) ∆ ≜ S 7→ λ_.S

As both Set and PSh(ω) are models of MLTT [14, 31], we

may use Theorem 5.3 to construct the intended model.

Theorem 6.2. There exists a model of MTT with this mode
theory where ⟨b | −⟩ is interpreted as 2 and ⟨ℓ | −⟩ as �.

tm/lob

Γ, x : (ℓ | A1≤ℓ) ⊢ M : A@ t

Γ ⊢ löb(x . M) : A@ t

tm/lob-beta

Γ, x : (ℓ | A1≤ℓ) ⊢ M : A@ t

Γ ⊢ löb(x . M) = M[next(löb(x . M))/x] : A@ t

Figure 5. Axiomatization of Löb induction in MTT

Proof. We choose the 2-functor which sends s 7→ Set and
t 7→ PSh(ω). Moreover, we define JµℓK, Jµδ K, and Jµγ K to
be the left adjoints of �, ∆, and Γ respectively [13, 49]. □

From this point onwards we will write � ≜ ⟨ℓ | −⟩,
∆ ≜ ⟨γ | −⟩, and 2 ≜ ⟨δ | −⟩.

The only thing that remains is to add Löb induction. This

is a modality-specific operation that cannot be expressed in

the mode theory, so we must add it as an axiom: see Fig. 5

for the precise formulation. Unfortunately, any axiom dis-

rupts the metatheory of MTT so canonicity no longer applies.
However, adding it to the type theory is sound, as the model

supports it. At this point we may as well assume equality
reflection [32], as is commonplace in previous guarded type

theories [15]. This is stronger than necessary (function ex-

tensionality would suffice), but it simplifies proofs andmakes

comparison to previous work more direct.

ProgrammingwithGuardedMTT We can nowuseMTT
to program with and reason about guarded recursion. For

instance, we can define coinductive streams:

Str : U→ U @ s

Str(A) ≜ Γ(löb(S . ∆(A) ×�S))

Unlike prior guarded type theories, we have defined this

stream operator not in mode t , which represents PSh(ω), but
in mode s , which represents Set. Accordingly, this definition
does not use 2. It first uses ∆ to convert A to a t-type, and
then Γ to move the recursive definition back to s . This alle-
viates some bookkeeping: in previous work [15] the stream

type was actually coinductive only if A was a constant type

(i.e. A ≃ 2A). Accordingly, theorems about streams had to

pass around proofs that the elements of the stream are con-

stant. In our case, defining Str at mode s ensures that the
elements of the stream are automatically constant. Hence,

Str(A) is equivalent to the familiar definition, but it is no

longer necessary to carry through proofs of constancy. There-

fore, for any A : U@ s we have

Theorem 6.3. Str(A) is the final coalgebra for S 7→ A × S in
mode s .

We can also program with Str(A) by more directly appeal-

ing to the underlying guarded structure. For instance, we

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Multimodal Dependent Type Theory Conference’17, July 2017, Washington, DC, USA

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

can define a ‘zip with’ function. Let Str′A = löb(S . ∆(A)×�S)
and write zh and zt for pr0

(z) and pr
1
(z) respectively:

zipWith′ : ∆(A→ B → C) → Str′A → Str′B → Str′C
zipWith′(f) ≜ löb(r . λx,y. (f ⊛δ xh ⊛δ yh, r ⊛ℓ xt ⊛ℓ yt)

zipWith : (A→ B → C) → Str(A) → Str(B) → Str(C)
zipWith(f) ≜ λx,y. modγ (zipWith′(modδ (f)))⊛γ x ⊛γ y

where ⊛µ is defined in Section 3.1.

We can also use dependent types to reason about guarded

recursive programs. For example,

Theorem 6.4. If f is commutative then zipWith(f) is com-
mutative. That is, given A,B : U and f : A→ A→ B there is
a term of the following type:

((a0,a1 : A) → Id(f (a0,a1), f (a1,a0))) →

(s0, s1 : Str(A)) → Id(zipWith(f , s0, s1), zipWith(f , s1, s0))

All things considered, instantiating MTT withMд yields

a highly expressive guarded dependent type theory with

coinductive types. Unlike prior systems, e.g. Bahr et al. [9],

we do not need clock variables or syntactic checks of con-

stancy. Moreover, the syntax is more robust than previous

work that combines 2 and � [15, 20], as there is no need for

delayed substitutions. Unfortunately, the addition of the Löb

axiom means Theorem 5.5 cannot be directly applied, but

the syntax remains sound and tractable.

6.2 Internal Adjunctions
Up to this point we have only considered mode theories

which are poset-enriched: there is at most one 2-cell between

any pair of modalities. This has worked well for describing

strict structures (Section 3.2), as well as some specific settings

(Section 6.1). However, we would like to use MTT to reason

about less strict categorical models. In this section we will

show that we can readily use MTT to reason about a pair

ν ⊣ µ of adjoint modalities.

Adjoint modalities are common in modal type theory,

much in the same way that adjunctions are ubiquitous in

mathematics [38–40, 57, 63]. For example, the adjunction

δ ⊣ γ played an important role in the previous section. How-

ever, that particular case is unusually well-behaved, as it

arises from a Galois connection. In contrast, the behavior of

general adjoint modalities is much more subtle. We will show

that by instantiating MTT with a particular mode theory we

can internally prove many properties of adjoint modalities

that have previously been established only in special cases.

To begin, we pick thewalking adjunction [59] for our mode

theory, i.e. the 2-category generated by Fig. 6. This mode the-

ory is the classifying 2-category for internal adjunctions: ev-

ery 2-functorMadj
coop ≃ Madj → Cat determines a pair of

adjoint functors, and vice versa. Consequently, substitutions

∆ → Γ.µµ are in bijection with substitutions ∆.µν → Γ.
However, this is not enough on its own: we must also show

that ⟨ν | −⟩ and ⟨µ | −⟩ form an adjunction inside MTT.

n m

η : 1⇒ µ ◦ ν

ϵ : ν ◦ µ ⇒ 1

1µ = (1µ ⋆ ϵ) ◦ (η ⋆ 1µ)

1ν = (ϵ ⋆1ν) ◦ (1ν ⋆η)
ν

µ

Figure 6.Madj: a mode theory for adjunctions

Recovering the adjunction inMTT We can construct the

unit and counit internally:

unit : A→ ⟨µ | ⟨ν | Aη⟩⟩ counit : ⟨ν | ⟨µ | A⟩⟩ → Aϵ

unit(x) ≜ modµ (modν (xη))
counit(x) ≜ let modν (y0) ← x in letν modµ (y1) ← y0 in yϵ1
In order to account for dependence we must adjust the type

A by a 2-cell. For example, in the definition of unit we as-
sume Γ ⊢ A type

1
@m, so ⟨µ | ⟨ν | A⟩⟩ is ill-typed. We can,

however, obtain a version of A that is typable in the context

Γ,µµ◦ν by applying (−)η to it, as in tm/var.

We can prove that these two operations form an adjunc-

tion by showing they satisfy the triangle identities, e.g.

_ : (x : ⟨ν | A⟩) → Id⟨ν |A⟩(x, counit(modν (unit)⊛ν x))

_ ≜ λx . let modν (y) ← x in refl(modν (y))

This proof relies on the fact that the modalities ν and µ satisfy
the triangle identities themselves inMadj.

The existence of the unit and counit is enough to inter-

nally determine an adjunction. We might want to use an

alternative description, e.g. to manipulate a natural bijection

of hom-sets, Hom(L(A),B) � Hom(A,R(B)).
Unfortunately, this isomorphism cannot be recovered in-

ternally. First, notice that ⟨ν | A⟩ → B and A → ⟨µ | B⟩
are types in different modes—n andm respectively—so (⟨ν |
A⟩ → B) ≃ (A → ⟨µ | B⟩) is ill-typed. Second, even if

n = m so that ν and µ are endomodalities and this equiv-

alence is well-typed, an internal equivalence is a stronger

condition than a bijection of hom-sets: it is equivalent to an

isomorphism of exponential objects BL(A) � R(B)A.
Prior work [38] addressed this by introducing a third

modality 2, such that terms of 2A represent global elements

of A, and then requiring transposition only for functions un-

der2. Global elements of BA are in bijection with Hom(A,B),
so the postulated equivalence corresponds to the expected

bijection. We can rephrase this argument in MTT. Suppose
that n = m, and that Hom(m,m) is equipped with an ini-

tial object, i.e. a modality τ : m → m and a unique 2-cell

! : τ → ξ for all ξ . Then,

Theorem 6.5. The following equivalence is definable inMTT:
⟨τ | ⟨ν | A!⟩ → B⟩ ≃ ⟨τ | A→ ⟨µ | B!⟩⟩.

Crisp induction for the left adjoint Having internalized

ν ⊣ µ, many of the classical results about adjunctions can be

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

Conference’17, July 2017, Washington, DC, USA Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

replayed insideMTT. For instance, by carrying out a proof

that left adjoints preserve colimits internally to MTT, we
recover modal or crisp induction principles for ν [39, 63]. We

can then show e.g. that ⟨ν | B⟩ ≃ B. However, in order to

construct this equivalence it will be convenient to formulate

a general induction principle for ⟨ν | B⟩.
Supposing that Γ,µν◦µ ⊢ C : ⟨ν | B⟩ → U@m, we can

define a term

ifνC : ⟨ν ◦ µ | C(modν (tt))⟩ → ⟨ν ◦ µ | C(modν (ff))⟩

→ (b : ⟨ν | B⟩) → Cϵ (b)

This is a version of the conditional that operates on ⟨ν | B⟩
rather thanB. In fact, more is possible: in the technical report

we prove that ifν can be constructed for anyC , not just small

types. Using this stronger induction principle, we can show

Theorem 6.6. ⟨ν | B⟩ ≃ B

Similarly, we can prove that ν preserves identity types:

Theorem6.7. ⟨ν | IdA(M,N)⟩ ≃ Id⟨ν |A⟩(modν (M),modν (N))

This instantiation of MTT withMadj yields a systematic

treatment of an internal transposition axiom [38], and is suf-

ficiently expressive to derive crisp induction principles [63].

In both cases we can useMTT instead of a handcrafted modal

type theory. Moreover, as we have not added any new ax-

ioms to deal with internal adjunctions, our canonicity result

applies.

6.3 Further Examples
In addition to the examples described above, we have applied

MTT to a wide variety of other situations, including

• parametricity, via degrees of relatedness [50],

• synchronous and guarded programmingwithwarps [30],

• finer grained notions of realizability and local maps of

categories of assemblies [12].

While interesting, we cannot discuss the details of these

applications here for want of space. We invite the interested

reader to consult the accompanying technical report.

7 Related Work
MTT is related to many prior modal type theories. In partic-

ular, its formulation draws on three important techniques:

split contexts, left division, and the Fitch style.

Split-context type theories [24, 35, 48, 54, 55, 63, 67] divide

the context into different zones, one for each modality, which

are then manipulated by modal connectives. This has proven

to be an effective approach for a number of modalities, and

sometimes even scales to full dependent type theories [24,

63, 67]. However, the structure of contexts becomes very

complex as the number of modalities increases.

In order to manage this complexity, some modal type the-

ories employ left-division: each variable declaration in the

context is annotated with a modality, and a left-division op-
eration, which is a left adjoint to post-composition of modal-

ities, is used to state the introduction rules [1–3, 50, 51, 53].

Left-division calculi handle multiple modalities and support

full dependent types, but many important modal situations

cannot be equipped with a left-division structure.

Another technique stipulates that modalities are essen-

tially right adjoints, with the corresponding left adjoints

being constructors on contexts. These Fitch-style type theo-
ries [9, 10, 13, 19, 27] are relatively simple, which has made

them convenient for programming applications [10, 27]. Nev-

ertheless, scaling this approach to a multimodal setting has

proven difficult. In particular, extending the elimination rule

to a multimodal setting remains an open problem.

MTT synthesizes these approaches by including both Fitch-
style locks and left-division-style annotations in its judgmen-

tal structure. The combination of these devices circumvents

the difficulties that plagued previous calculi. For example,

this combination obviates the need for a left division opera-

tion, instead MTT uses a Fitch-style introduction rule. On

the other hand,MTT includes a left-division-style elimina-

tion rule which smoothly accommodates multiple interacting

modalities.

Most prior modal type theories have focused on incorpo-

rating a specific collection of modalities. The sole exception

is the work of Licata et al. (LSR) [40]. The LSR framework sup-

ports an arbitrary collection of substructural modalities over

simple types, and there is ongoing work on a dependently-

typed system. The price to pay for this expressivity is practi-

cality: for example, some LSR connectives require delayed
substitutions [15], which complicate the equational theory,

and make pen-and-paper calculations cumbersome.

8 Conclusion
We introduced and studiedMTT, a dependent type theory
parametrized by a mode theory that describes interacting

modalities. We have demonstrated thatMTT may be used to

reason about several important modal settings, and proven

basic metatheorems about its syntax, including canonicity.

In the future we plan to further develop the metatheory

of MTT. We specifically hope to prove that MTT enjoys

normalization, and hence that type-checking is decidable—

provided the mode theory is. This result would pave the

way to a practical implementation of a multimodal proof

assistant.

We also hope to extend our analysis to some class of

modality-specific operations, e.g. Löb induction. These oper-
ations cannot be captured by a mode theory, and so can only

be added axiomatically to MTT (as was done in Section 6.1),

thus invalidating some of our metatheorems. However, such

operations play an important role in many applications, and

should be accounted for in a systematic way.

12

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Multimodal Dependent Type Theory Conference’17, July 2017, Washington, DC, USA

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

Acknowledgments
We are grateful for productive conversations with Carlo

Angiuli, Dominique Devriese, Adrien Guatto, Magnus Baun-

sgaard Kristensen, Daniel Licata, Rasmus Ejlers Møgelberg,

Matthieu Sozeau, Jonathan Sterling, and Andrea Vezzosi.

Alex Kavvos was supported in part by a research grant

(12386, Guarded Homotopy Type Theory) from the VILLUM

Foundation. Andreas Nuyts holds a PhD Fellowship from

the Research Foundation - Flanders (FWO). This work was

supported in part by a Villum Investigator grant (no. 25804),

Center for Basic Research in Program Verification (CPV),

from the VILLUM Foundation.

References
[1] Andreas Abel. 2006. A Polymorphic Lambda-Calculus with Sized Higher-

Order Types. Ph.D. Dissertation. Ludwig-Maximilians-Universität

München.

[2] Andreas Abel. 2008. Polarised subtyping for sized types. Mathematical
Structures in Computer Science 18, 5 (2008), 797–822. https://doi.org/
10.1017/S0960129508006853

[3] Andreas Abel and Gabriel Scherer. 2012. On Irrelevance and Algorith-

mic Equality in Predicative Type Theory. Logical Methods in Computer
Science Volume 8, Issue 1 (03 2012). https://doi.org/10.2168/LMCS-8(1:
29)2012

[4] Stuart Frazier Allen. 1987. A non-type-theoretic semantics for type-
theoretic language. Ph.D. Dissertation.

[5] Thorsten Altenkirch and Ambrus Kaposi. 2016. Normalisation by

Evaluation for Dependent Types. In 1st International Conference on
Formal Structures for Computation and Deduction (FSCD 2016). https:
//doi.org/10.4230/LIPIcs.FSCD.2016.6

[6] Carlo Angiuli. 2019. Computational Semantics of Cartesian Cubical
Type Theory. Ph.D. Dissertation.

[7] Robert Atkey and Conor McBride. 2013. Productive coprogramming

with guarded recursion. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Functional Programming. ACM, New York,

NY.

[8] Steve Awodey. 2018. Natural models of homotopy type theory. 28, 2

(2018), 241–286. https://doi.org/10.1017/S0960129516000268
[9] P. Bahr, H. B. Grathwohl, and R. E. Møgelberg. 2017. The clocks are

ticking: No more delays!. In 2017 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). 1–12.

[10] Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg.

2019. Simply RaTT: A Fitch-styleModal Calculus for Reactive Program-

ming Without Space Leaks. Proc. ACM Program. Lang. 3, ICFP, Article
109 (July 2019), 109:1–109:27 pages. https://doi.org/10.1145/3341713

[11] G. M. Bierman and V. C. V. de Paiva. 2000. On an Intuitionistic

Modal Logic. Studia Logica 65, 3 (2000). https://doi.org/10.1023/A:
1005291931660

[12] Lars Birkedal. 2000. Developing Theories of Types and Computability

via Realizability. Electronic Notes in Theoretical Computer Science 34
(2000).

[13] Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgel-

berg, Andrew M. Pitts, and Bas Spitters. 2018. Modal Dependent

Type Theory and Dependent Right Adjoints. (2018). arXiv:1804.05236

http://arxiv.org/abs/1804.05236 To appear in Mathematical Structures

in Computer Science.

[14] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and

Kristian Støvring. 2012. First steps in synthetic guarded domain theory:

step-indexing in the topos of trees. Logical Methods in Computer Science
(2012).

[15] Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus E.

Møgelberg, and Lars Birkedal. 2016. Guarded Dependent Type The-

ory with Coinductive Types. In Foundations of Software Science and
Computation Structures: 19th International Conference, FOSSACS 2016,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2–8, 2016,
Proceedings, Bart Jacobs and Christof Löding (Eds.). Springer Berlin

Heidelberg, 20–35.

[16] Ales Bizjak and Rasmus Ejlers Møgelberg. 2015. A Model of Guarded

Recursion With Clock Synchronisation. Electr. Notes Theor. Comput.
Sci. (2015). https://doi.org/10.1016/j.entcs.2015.12.007

[17] John Cartmell. 1978. Generalised Algebraic Theories and Contextual
Categories. Ph.D. Dissertation.

[18] Simon Castellan, Pierre Clairambault, and Peter Dybjer. 2015. Un-

decidability of Equality in the Free Locally Cartesian Closed Cat-

egory. Logical Methods in Computer Science 13 (04 2015). https:
//doi.org/10.23638/LMCS-13(4:22)2017

[19] Ranald Clouston. 2018. Fitch-Style Modal Lambda Calculi. In Foun-
dations of Software Science and Computation Structures, Christel Baier
and Ugo Dal Lago (Eds.). Springer International Publishing, 258–275.

[20] Ranald Clouston, Aleš Bizjak, Hans Bugge Grathwohl, and Lars

Birkedal. 2015. Programming and Reasoning with Guarded Recursion

for Coinductive Types. In Foundations of Software Science and Com-
putation Structures, Andrew Pitts (Ed.). Springer Berlin Heidelberg,

407–421.

[21] Thierry Coquand. 1986. An Analysis of Girard’s Paradox. In Proceed-
ings of the First Annual IEEE Symposium on Logic in Computer Science
(LICS 1986). IEEE Computer Society Press, 227–236.

[22] Thierry Coquand. 2013. Presheaf model of type theory. http://www.
cse.chalmers.se/~coquand/presheaf.pdf

[23] Thierry Coquand. 2018. Canonicity and normalization for Dependent

Type Theory. arXiv:1810.09367 https://arxiv.org/abs/1810.09367
[24] Valeria de Paiva and Eike Ritter. 2015. Fibrational Modal Type Theory,

In Proceedings of the TenthWorkshop on Logical and Semantic Frame-

works, with Applications (LSFA 2015). Electronic Notes in Theoretical
Computer Science. https://doi.org/10.1016/j.entcs.2016.06.010

[25] Peter Dybjer. 1996. Internal type theory. In Types for Proofs and
Programs: International Workshop, TYPES ’95 Torino, Italy, June 5–8,
1995 Selected Papers, Stefano Berardi and Mario Coppo (Eds.). Springer

Berlin Heidelberg, 120–134.

[26] Johan G. Granström. 2013. Treatise on Intuitionistic Type Theory.
Springer Publishing Company, Incorporated.

[27] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. 2019. Imple-

menting a Modal Dependent Type Theory. Proc. ACM Program. Lang.,
Article 107 (2019), 29 pages. https://doi.org/10.1145/3341711

[28] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal.

2019. Normalization-by-Evaluation for Modal Depen-

dent Type Theory. https://jozefg.github.io/papers/
2019-implementing-modal-dependent-type-theory-tech-report.pdf
Technical Report for the ICFP paper by the same name.

[29] Jacob A Gross, Daniel R Licata, Max S New, Jennifer Paykin, Mitchell

Riley, Michael Shulman, and Felix Wellen. 2017. Differential Co-

hesive Type Theory (Extended Abstract). In Extended abstracts for
the Workshop "Homotopy Type Theory and Univalent Foundations".
https://hott-uf.github.io/2017/abstracts/cohesivett.pdf

[30] Adrien Guatto. 2018. A Generalized Modality for Recursion. In Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS ’18). ACM. https://doi.org/10.1145/3209108.3209148

[31] Martin Hofmann. 1997. Syntax and semantics of dependent
types. Springer London, London, 13–54. https://doi.org/10.1007/
978-1-4471-0963-1_2

[32] B. Jacobs. 1999. Categorical Logic and Type Theory. Number 141 in

Studies in Logic and the Foundations of Mathematics. North Holland.

13

https://doi.org/10.1017/S0960129508006853
https://doi.org/10.1017/S0960129508006853
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.4230/LIPIcs.FSCD.2016.6
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.1145/3341713
https://doi.org/10.1023/A:1005291931660
https://doi.org/10.1023/A:1005291931660
http://arxiv.org/abs/1804.05236
http://arxiv.org/abs/1804.05236
https://doi.org/10.1016/j.entcs.2015.12.007
https://doi.org/10.23638/LMCS-13(4:22)2017
https://doi.org/10.23638/LMCS-13(4:22)2017
http://www.cse.chalmers.se/~coquand/presheaf.pdf
http://www.cse.chalmers.se/~coquand/presheaf.pdf
https://arxiv.org/abs/1810.09367
https://doi.org/10.1016/j.entcs.2016.06.010
https://doi.org/10.1145/3341711
https://jozefg.github.io/papers/2019-implementing-modal-dependent-type-theory-tech-report.pdf
https://jozefg.github.io/papers/2019-implementing-modal-dependent-type-theory-tech-report.pdf
https://hott-uf.github.io/2017/abstracts/cohesivett.pdf
https://doi.org/10.1145/3209108.3209148
https://doi.org/10.1007/978-1-4471-0963-1_2
https://doi.org/10.1007/978-1-4471-0963-1_2

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

Conference’17, July 2017, Washington, DC, USA Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

[33] Ambrus Kaposi, Simon Huber, and Christian Sattler. 2019. Gluing

for type theory. In Proceedings of the 4th International Conference on
Formal Structures for Computation and Deduction (FSCD 2019), Herman

Geuvers (Ed.), Vol. 131.

[34] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. 2019. Con-

structing Quotient Inductive-inductive Types. Proc. ACM Program.
Lang. 3, POPL, Article 2 (Jan. 2019), 24 pages. https://doi.org/10.1145/
3290315

[35] G. A. Kavvos. 2017. Dual-context calculi for modal logic. In 2017 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
1–12. https://doi.org/10.1109/LICS.2017.8005089 arXiv:1602.04860

[36] G. A. Kavvos. 2019. Modalities, Cohesion, and Information Flow.

Proceedings of the ACM on Programming Languages 3, POPL (Jan. 2019),
20:1–20:29. https://doi.org/10.1145/3290333

[37] William F. Lawvere. 2007. Axiomatic Cohesion. Theory and Applica-
tions of Categories 19 (06 2007), 41–49.

[38] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. 2018.

Internal Universes in Models of Homotopy Type Theory. In 3rd In-
ternational Conference on Formal Structures for Computation and De-
duction, FSCD 2018, July 9-12, 2018, Oxford, UK. 22:1–22:17. https:
//doi.org/10.4230/LIPIcs.FSCD.2018.22

[39] Daniel R. Licata and Michael Shulman. 2016. Adjoint Logic with a 2-
Category of Modes. Springer International Publishing, 219–235. https:
//doi.org/10.1007/978-3-319-27683-0_16

[40] Daniel R. Licata, Michael Shulman, and Mitchell Riley. 2017. A Fibra-

tional Framework for Substructural and Modal Logics. In 2nd Interna-
tional Conference on Formal Structures for Computation and Deduction
(FSCD 2017) (Leibniz International Proceedings in Informatics (LIPIcs)),
Dale Miller (Ed.), Vol. 84.

[41] Zhaohui Luo. 2012. Notes on Universes in Type Theory. http:
//www.dcs.rhul.ac.uk/home/zhaohui/universes.pdf Notes for a talk at

Institute for Advanced Study in Princeton in Oct 2012.

[42] Per Martin-Löf. 1975. An intuitionistic theory of types: predicative

part. In Logic Colloquium ’73, Proceedings of the Logic Colloquium, H.E.

Rose and J.C. Shepherdson (Eds.). Studies in Logic and the Foundations

of Mathematics, Vol. 80. North-Holland, 73–118.

[43] Per Martin-Löf. 1992. Substitution calculus. Notes from a lecture

given in Göteborg.

[44] Conor McBride and Ross Paterson. 2008. Applicative Programming

with Effects. J. Funct. Program. 18, 1 (Jan. 2008), 1–13. https://doi.org/
10.1017/S0956796807006326

[45] John C. Mitchell and Andre Scedrov. 1993. Notes on sconing and

relators. In Computer Science Logic, E. Börger, G. Jäger, H. Kleine Bün-
ing, S. Martini, and M. M. Richter (Eds.). Springer Berlin Heidelberg,

352–378.

[46] Rasmus Ejlers Møgelberg. 2014. A Type Theory for Productive Co-

programming via Guarded Recursion. In Proceedings of the Joint Meet-
ing of the Twenty-Third EACSL Annual Conference on Computer Sci-
ence Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sympo-
sium on Logic in Computer Science (LICS) (CSL-LICS ’14). https:
//doi.org/10.1145/2603088.2603132

[47] H. Nakano. 2000. A modality for recursion. In Proceedings Fifteenth An-
nual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).
IEEE Computer Society, 255–266.

[48] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Con-

textual modal type theory. ACM Transactions Computational Logic 9
(June 2008). https://doi.org/10.1145/1352582.1352591

[49] Andreas Nuyts. 2018. Presheaf Models of Relational Modalities in

Dependent Type Theory. arXiv:cs.LO/1805.08684

[50] Andreas Nuyts and Dominique Devriese. 2018. Degrees of Relatedness:

A Unified Framework for Parametricity, Irrelevance, Ad Hoc Polymor-

phism, Intersections, Unions and Algebra in Dependent Type Theory.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS ’18). ACM. https://doi.org/10.1145/3209108.

3209119
[51] Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. 2017. Para-

metric Quantifiers for Dependent Type Theory. Proc. ACM Program.
Lang. 1, ICFP (2017). https://doi.org/10.1145/3110276

[52] Erik Palmgren. 1998. On universes in type theory. Twenty Five Years
of Constructive Type Theory (1998), 191–204. http://www2.math.uu.
se/~palmgren/universe.pdf

[53] Frank Pfenning. 2001. Intensionality, Extensionality, and Proof Irrel-

evance in Modal Type Theory. In Symposium on Logic in Computer
Science. 01.

[54] Frank Pfenning and RowanDavies. 2001. A Judgmental Reconstruction

of Modal Logic. Mathematical Structures in Computer Science 11 (2001),
511–540.

[55] Brigitte Pientka, Andreas Abel, Francisco Ferreira, David Thibodeau,

and Rébecca Zucchini. 2019. A Type Theory for Defining Logics and

Proofs. In Proceedings of the 34th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS).

[56] Dag Prawitz. 1967. Natural Deduction. A Proof-Theoretical Study.

Journal of Symbolic Logic 32, 2 (1967), 255–256.
[57] Jason Reed. 2009. A Judgmental Deconstruction of Modal Logic. (2009).

http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf Manuscript.

[58] Egbert Rijke, Michael Shulman, and Bas Spitters. 2020. Modalities in

homotopy type theory. Logical Methods in Computer Science Volume

16, Issue 1 (2020). https://lmcs.episciences.org/6015
[59] Stephen Schanuel and Ross Street. 1986. The free adjunction. Cahiers

de topologie et géométrie différentielle catégoriques 27, 1 (1986), 81–83.
[60] Urs Schreiber. 2013. Differential cohomology in a cohesive

infinity-topos. arXiv e-prints, Article arXiv:1310.7930 (10 2013),

arXiv:1310.7930 pages. arXiv:math-ph/1310.7930

[61] Urs Schreiber and Michael Shulman. 2014. Quantum Gauge Field The-

ory in Cohesive Homotopy Type Theory. In Proceedings 9th Workshop
on Quantum Physics and Logic Brussels, Belgium, 10-12 October 2012.
109–126. https://doi.org/10.4204/EPTCS.158.8

[62] Michael Shulman. 2014. Univalence for inverse diagrams and homo-

topy canonicity. Mathematical Structures in Computer Science (2014).
https://doi.org/10.1017/s0960129514000565

[63] Michael Shulman. 2018. Brouwer’s fixed-point theorem in real-

cohesive homotopy type theory. Mathematical Structures in Com-
puter Science 28, 6 (2018), 856–941. https://doi.org/10.1017/
S0960129517000147

[64] Jonathan Sterling. 2019. Algebraic Type Theory and Universe Hierar-

chies. (2019). arXiv:1902.08848 http://arxiv.org/abs/1902.08848
[65] W. W. Tait. 1967. Intensional Interpretations of Functionals of Finite

Type I. 32, 2 (1967), 198–212. http://www.jstor.org/stable/2271658
[66] The Univalent Foundations Program. 2013. Homotopy Type Theory:

Univalent Foundations of Mathematics. https://homotopytypetheory.
org/book, Institute for Advanced Study.

[67] Colin Zwanziger. 2019. Natural Model Semantics for Comonadic and

Adjoint Type Theory: Extended Abstract. In Preproceedings of Applied
Category Theory Conference 2019.

14

https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
https://doi.org/10.1109/LICS.2017.8005089
https://doi.org/10.1145/3290333
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.1007/978-3-319-27683-0_16
https://doi.org/10.1007/978-3-319-27683-0_16
http://www.dcs.rhul.ac.uk/home/zhaohui/universes.pdf
http://www.dcs.rhul.ac.uk/home/zhaohui/universes.pdf
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1145/2603088.2603132
https://doi.org/10.1145/2603088.2603132
https://doi.org/10.1145/1352582.1352591
http://arxiv.org/abs/cs.LO/1805.08684
https://doi.org/10.1145/3209108.3209119
https://doi.org/10.1145/3209108.3209119
https://doi.org/10.1145/3110276
http://www2.math.uu.se/~palmgren/universe.pdf
http://www2.math.uu.se/~palmgren/universe.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf
https://lmcs.episciences.org/6015
http://arxiv.org/abs/math-ph/1310.7930
https://doi.org/10.4204/EPTCS.158.8
https://doi.org/10.1017/s0960129514000565
https://doi.org/10.1017/S0960129517000147
https://doi.org/10.1017/S0960129517000147
http://arxiv.org/abs/1902.08848
http://arxiv.org/abs/1902.08848
http://www.jstor.org/stable/2271658
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

	Abstract
	1 Introduction
	2 The Syntax of MTT
	2.1 The Type Theory at Each Mode
	2.2 Introducing a Modality
	2.3 Multiple Modalities

	3 Programming with Modalities
	3.1 Modal Combinators
	3.2 Idempotent Comonads in MTT

	4 The Substitution Calculus of MTT
	5 The Semantics of MTT
	5.1 Canonicity

	6 Applying MTT
	6.1 Guarded Recursion
	6.2 Internal Adjunctions
	6.3 Further Examples

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

