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Abstract
We introduce MTT, a dependent type theory which sup-

ports multiple modalities.MTT is parametrized by a mode

theory which specifies a collection of modes, modalities,

and transformations between them. We show that different

choices of mode theory allow us to use the same type theory

to compute and reason in many modal situations, includ-

ing guarded recursion, axiomatic cohesion, and parametric

quantification. We reproduce examples from prior work in

guarded recursion and axiomatic cohesion — demonstrating

thatMTT constitutes a simple and usable syntax whose in-

stantiations intuitively correspond to previous handcrafted

modal type theories. In some cases, instantiating MTT to

a particular situation unearths a previously unknown type

theory that improves upon prior systems. Finally, we inves-

tigate the metatheory of MTT. We prove the consistency

of MTT and establish canonicity through an extension of

recent type-theoretic gluing techniques. These results hold

irrespective of the choice of mode theory, and thus apply to

a wide variety of modal situations.
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1 Introduction
In order to increase the expressivity of Martin-Löf Type

Theory (MLTT) we often wish to extend it with new con-

nectives, and in particular with unary type operators that

we call modalities or modal operators. Some of these modal

operators arise as shorthands, while others are introduced as
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a device for expressing structure that appears in particular

models. Whereas the former class of modalities are internally

definable [58], the latter often require extensive modifica-

tions to the basic structure of type-theoretic judgments. In

some cases we are even able to prove that these changes are

necessary, by showing that the modality in question can-

not be expressed internally: see e.g. the ‘no-go’ theorems

by Shulman [63, §4.1] and Licata et al. [38]. This paper is

concerned with the development a systematic approach to

the formulation of type theories with multiple modalities.

The addition of a modality to a dependent type theory is a

non-trivial exercise. Modal operators often interact with the

context of a type or term in a complicated way, and naïve

approaches lead to undesirable interplay with other type

formers and substitution. However, the consequent gain in

expressivity is substantial, and so it is well worth the effort.

For example, modalities have been used to express guarded

recursive definitions [9, 14, 15, 30], parametric quantifica-

tion [50, 51], proof irrelevance [3, 50, 53], and to define op-

erations on which only exist globally and may be false in an

arbitrary context [38]. There has also been concerted effort

towards the development of a dependent type theory corre-

sponding to Lawvere’s axiomatic cohesion [37], which has

many interesting applications [29, 36, 60, 61, 63].

Despite this recent flurry of developments, a unifying ac-

count of modal dependent type theory has yet to emerge.

Faced with a new modal situation, a type theorist must hand-

craft a brand new system, and then prove the usual battery

of metatheorems. This introduces formidable difficulties on

two levels. First, an increasing number of these applications

aremultimodal: they involve multiple interacting modalities,

which significantly complicates the design of the appropri-

ate judgmental structure. Second, the technical development

of each such system is entirely separate, so that one can-

not share the burden of proof even between closely related

systems. To take a recent example, there is no easy way to

transfer the work done in the 80-page-long normalization

proof forMLTTµ [27] to a normalization proof for the modal

dependent type theory of Birkedal et al. [13], even though

these systems are only marginally different. Put simply, if

one wished to prove that type-checking is decidable for the

latter, then one would have to start afresh.
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We intend to avoid such duplication in the future. Rather

than designing a new dependent type theory for some preor-

dained set of modalities, we will introduce a system that is

parametrized by a mode theory, i.e. an algebraic specification

of a modal situation. This system, which we callMTT, solves
both problems at once. First, by instantiating it with different

mode theories we will show that MTT can capture a wide

class of situations. Some of these, e.g. the one for guarded re-

cursion, lead to a previously unknown system that improves

upon earlier work. Second, the predictable behavior of our

rules allows us to prove metatheoretic results about large

classes of instantiations of MTT at once. For example, our

canonicity theorem applies irrespective of the chosen mode

theory. As a result, we only need to prove such results once.
Returning to the previous example, careful choices of mode

theory yield two systems that closely resemble the calculi of

Birkedal et al. [13] andMLTTµ [27] respectively, so that our

proof of canonicity applies to both.

In fact, we take things one step further: MTT is not just

multimodal, but also multimode. That is, each judgment of

MTT can be construed as existing in a particular mode. All
modes have some things in common—e.g. there will be depen-

dent sums in each—but some might possess distinguishing

features. From a semantic point of view, different modes cor-

respond to different context categories. In this light, modal-

ities intuitively correspond to functors between those cate-

gories: in fact, they will be structures slightly weaker than

dependent right adjoints (DRAs) [13].

Mode theories At a high level,MTT can be thought of as

a machine that converts a concrete description of modes

and modalities into a type theory. This description, which

is often called a mode theory, is given in the form of a small
strict 2-category [39, 40, 57]. A mode theory gives rise to the

following correspondence:

object ∼ mode

morphism ∼ modality

2-cell ∼ natural map between modalities

The equations between morphisms and between 2-cells in a

mode theory can be used to precisely specify the interactions

we want between different modalities. We will illustrate this

point with an example.

Instantiating MTT Suppose we have a mode theoryM

with a single object m, a single generating morphism µ :

m →m, and no non-trivial 2-cells. Equipping MTT withM

produces a type theory with a single modal type constructor,

⟨µ | −⟩. This is the simplest non-trivial setting, and we can

prove very little about it without additional 2-cells.

If we add a 2-cell ϵ : µ ⇒ 1 toM, we can define a function

extractA : ⟨µ | A⟩ → A

inside the type theory. If we also add a 2-cell δ : µ ⇒ µ ◦ µ
then we can also define

duplicateA : ⟨µ | A⟩ → ⟨µ | ⟨µ | A⟩⟩

Furthermore, we can control the precise interaction between

duplicateA and extractA by adding more equations that re-

late ϵ and δ . For example, we may ask thatM be the walking
comonad [59] which leads to a type theory with a depen-

dent S4-like modality [24, 53, 54, 63]. We can be even more

specific, e.g. by asking that (µ, ϵ, δ ) be idempotent.
Thus, a morphism µ : n → m introduces a modality

⟨µ | −⟩, and a 2-cell α : µ ⇒ ν ofM allows the definition of

a function of type ⟨µ | A⟩ → ⟨ν | A⟩ @ m.

Relation to other modal type theories Most work on mo-

dal type theories still defies classification. However, we can

informatively position MTT with respect to two qualitative

criteria, viz. usability and generality.

Much of the prior work on modal type theory has fo-

cused on bolting a specific modality onto a type theory. The

benefit of this approach is that the syntax can be designed

to be as convenient as possible for the application at hand.

For example, spatial/cohesive type theory [63] features two

modalities, ♭ and ♯, and is presented in a dual-context style.

This judgmental structure, however, is applicable only be-

cause of the particular properties of ♭ and ♯. Nevertheless,
the numerous pen-and-paper proofs in op. cit. demonstrate

that the resulting system is easy to use.

At the other end of the spectrum, the framework of Licata-

Shulman-Riley (LSR) [40] comprises an extremely general

toolkit for simply-typed, substructural modal type theory.

Its dependent generalization, which is currently under de-

velopment, is able to handle a very large class of modalities.

However, this generality comes at a price: its syntax is com-

plex and unwieldy, even in the simply-typed case.

MTT attempts to strike a delicate balance between those

two extremes. By avoiding substructural settings and some

kinds of modalities we obtain a noticeably simpler apparatus.

These restrictions imply that, unlike LSR, we do not need

to annotate our term formers with delayed substitutions,

and that our system straightforwardly extends to dependent

types. We also show that MTT can be used for many impor-

tant examples, and that it is simple enough to be used in

pen-and-paper calculations.

Contributions In summary, we make the following con-

tributions:

• We introduce MTT, a general type theory for multiple

modes and multiple interacting modalities.

• We define its semantics, which constitute a category

of models.

• We prove that MTT satisfies canonicity, an important

metatheoretic property, through a modern gluing ar-

gument [5, 23, 33, 62].
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• We instantiate MTT with various mode theories, and

show its value in reasoning about guarded recursion [15],

degrees of relatedness [50], and other modal situations.

For want of space we omit many details and proofs, which

can be found in the accompanying technical report.

2 The Syntax of MTT
We now present the syntax of MTT. For the rest of this paper
we fix a mode theoryM, and usem,n,o to stand for modes,

µ,ν, τ for modalities, and α, β,γ for 2-cells.

In broad terms,MTT consists of a collection of type the-

ories, one for each modem ∈ M. These type theories will

eventually appear in one another, but only as spectres under

a modality. We thus begin by describing the individual type

theories at each mode, and only then discuss how modalities

can be used to relate them.

2.1 The Type Theory at Each Mode
Each mode in MTT is inhabited by a standard Martin-Löf

Type Theory (MLTT), and accordingly includes the usual

judgments. For example, we have the judgment Γ ctx @m
which states that Γ is a well-formed context in that particular
modem. There are likewise judgments for types, terms, and

substitutions at each mode.

In lieu of an exhaustive list of rules, we show only the im-

portant ones in Fig. 1. Briefly, each mode contains ordinary

intensional type theory with dependent sums, dependent

products, intensional identity types, booleans, and one uni-

verse. Both sums and products satisfy an η rule.

Universes à laCoquand There are several ways to present

universes in type theory [31, §2.1.6] [41, 52]. We use the

approach of Coquand [22], which is close to Tarski-style uni-

verses. However, instead of inductively defining codes that
represent particular types, Coquand-style universes come

with an explicit isomorphism between types and terms of the

universe U.
If this isomorphism were to cover all types then Girard’s

paradox [21] would apply, so we must restrict it to small
types. This, in turn, forces us to stratify our types into small
and large. The judgment Γ ⊢ A type

0
@m states that A is a

small type, and Γ ⊢ A type
1

@m that it is large. The universe

itself must be a large type, but otherwise both levels are

closed under all other connectives. Finally, we introduce an

operator that lifts a small type to a large one:

ℓ ≤ ℓ′ Γ ⊢ A typeℓ @m

Γ ⊢ ⇑A typeℓ′ @m

The lifting operation commutes definitionally with all the

connectives, e.g. ⇑(A→ B) = ⇑A→ ⇑B. We will use large

types for the most part: only they will be allowed in contexts,

and the judgment Γ ⊢ M : A@m will presuppose that A is

large. As we will not have terms at small types, we will not

need the term lifting operations used by Coquand [22] and

Sterling [64].

Following this stratification, we may introduce operations

that exhibit the isomorphism:

Γ ⊢ M : U@m

Γ ⊢ El(M) type
0

@m

Γ ⊢ A type
0

@m

Γ ⊢ Code(A) : U@m

alongwith the equationsCode(El(M)) = M and El(Code(A)) =
A. The advantage of universes à la Coquand is now evident:

rather than having to introduce Tarski-style codes, we now

find that they are definable. For example, assuming M : U
and x : El(M) ⊢ N : U, we let

(x : M) →̂ N ≜ Code((x : El(M)) → El(N )) : U

We can then calculate that

El((x : M) →̂ N ) = El(Code((x : El(M)) → El(N )))

= (x : El(M)) → El(N )

We will often suppress El(−) and ⇑−, and simply useM : U
as a type.

2.2 Introducing a Modality
Having sketched the basic type theory inhabiting each mode,

we now show how these type theories interact.

SupposeM contains a modality µ : n →m. We would like

to think of µ as a ‘map’ from mode n to modem. Then, for

each ⊢ A type @n we would like a type ⊢ ⟨µ | A⟩ type @m.

On the level of terms we would similarly like for each ⊢ M :

A@n an induced term ⊢ modµ (M) : ⟨µ | A⟩@m.

These constructs would be entirely satisfactory, were it

not for the presence of open terms. To illustrate the problem,

suppose we have a type Γ ⊢ A type @n. We would hope

that the corresponding modal type would live in the same

context, i.e. that Γ ⊢ ⟨µ | A⟩ type @m. However, this is not

possible, as Γ is only a context at mode n, and cannot be

carried over verbatim to modem. Hence, the only pragmatic

option is to introduce an operation that allows a context to

cross over to another mode.

Forming a modal type There are several different pro-

posed solutions to this problem in the literature [e.g. 19, 54].

In the case of MTT we will use a Fitch-style discipline [9, 13,
27]: we will require that µ induce an operation on contexts

in the reverse direction, which we will denote by a lock:
cx/lock

Γ ctx @m

Γ,µµ ctx @n

Intuitively, µµ behaves like a left adjoint to ⟨µ | −⟩. However,
⟨µ | −⟩ acts on types while −,µµ acts on contexts, so this

cannot be an adjunction. Birkedal et al. [13] call this situation

a dependent right adjoint (DRA). A DRA essentially consists

of a type former R and a context operation L such that

{N | L(Γ) ⊢ N : A} � {M | Γ ⊢ M : R(A)} (†)

3
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Γ ⊢ A typeℓ @m

Γ ⊢ U type
1

@m

Γ ctx @m

Γ ⊢ B typeℓ @m

ℓ ≤ ℓ′ Γ ctx @m Γ ⊢ A typeℓ @m

Γ ⊢ ⇑A typeℓ′ @m

Γ ctx @m Γ ⊢ A typeℓ @m Γ ⊢ M,N : ⇑A@m

Γ ⊢ IdA(M,N ) typeℓ @m

Γ ctx @m Γ ⊢ A typeℓ @m Γ, x : ⇑A ⊢ B typeℓ @m

Γ ⊢ (x : A) → B typeℓ @m Γ ⊢ (x : A) × B typeℓ @m

Figure 1. Selected mode-local rules.

See Birkedal et al. [13] for a formal definition.

Just as with DRAs, theMTT formation and introduction

rules for modal types effectively transpose types and terms

across this adjunction:

tp/modal

Γ,µµ ⊢ A typeℓ @n

Γ ⊢ ⟨µ | A⟩ typeℓ @m

tm/modal-intro

Γ,µµ ⊢ M : A@n

Γ ⊢ modµ (M) : ⟨µ | A⟩@m

It remains to show how to eliminate modal types. Previous

work on Fitch-style calculi [13, 27] has employed elimination

rules which essentially invert the introduction rule tm/modal-

intro. Such rules remove one or more locks from the context

during type-checking, and sometimes even trim a part of it.

For example, a rule of this sort would be

µµ < Γ
′ Γ ⊢ M : ⟨µ | A⟩@m

Γ,µµ , Γ
′ ⊢ open(M) : A@n

However, this kind of rule tends to be unruly, and requires

delicate work to prove even basic results, such as the admis-

sibility of substitution: see the technical report by Gratzer

et al. [28] for a particularly laborious case. The results in op.
cit. could not possibly reuse any of the work of Birkedal et al.
[13], as a small change in the syntax leads to many subtle

changes in the metatheory. Consequently, it seems unlikely

that one could adapt this approach to a modality-agnostic

setting like ours.

We will use a different technique, which is reminiscent

of dual-context calculi [35]. First, we will let the variable

rule control the use of modal variables. Then, we will take a

‘modal cut’ rule, which will allow the substitution of modal

terms for modal variables, to be our modal elimination rule.

Accessing amodal variable The behavior of modal types

can often be clarified by asking a simple question: when can

we use x : ⟨µ | A⟩ to construct a term of type A? In previ-

ous Fitch-style calculi we would use the modal elimination

rule to reduce the goal to ⟨µ | A⟩, and then—had the modal
elimination rule not eliminated x from the context—we would
simply use the variable. We may thus write down a term of

type A using a variable x : ⟨µ | A⟩ only when our context

has the appropriate structure, and the final arbiter of that is

the modal elimination rule.

MTT turns this idea on its head: rather than handing con-

trol over to the modal elimination rule, we delegate this

decision to the variable rule itself. In order to ascertain

whether we can use a variable in our calculus, the vari-

able rule examines the locks to the right of the variable. The
rule of thumb is this: we should always be able to access

⟨µ | A⟩ behind µµ . Carrying the −,µµ ⊣ ⟨µ | −⟩ analogy fur-

ther, we see that the simplest judgment that fits this, namely

Γ, x : ⟨µ | A⟩,µµ ⊢ x : A@n, corresponds to the counit.
To correctly formulate the variable rule, we will require

one more idea: following modal type theories based on left
division [1, 2, 50, 51, 53], every variable in the context will

be annotated with a modality, x : (µ | A). Intuitively a

variable x : (µ | A) is the same as a variable x : ⟨µ | A⟩, but
the annotations are part of the structure of a context while

⟨µ | A⟩ is a type. This small circumlocution will ensure that

the variable rule respects substitution.

The most general form of the variable rule will be able

to handle the interaction of modalities, so we present it in

stages. A first ‘counit-like’ approximation is then

tm/var/counit

µ < Γ1 Γ0,µµ ⊢ A type
1

@n

Γ0, x : (µ | A),µµ , Γ1 ⊢ x : A@m

The first premise requires that no further locks occur in Γ1.

Context extension The switch to modality-annotated dec-

larations x : (µ | A) also requires us to revise the context

extension rule. The revised version, cx/extend, closely fol-

lows the formation rule for ⟨µ | −⟩: if Γ,µµ ⊢ A type
1

@n
is a type in the locked context Γ, then we may extend the

context Γ to include a declaration x : (µ | A), so that x stands

for a term of type A under the modality µ.

The elimination rule The difference between a modal

type ⟨µ | A⟩ and an annotated declaration x : (µ | A) in the

context is navigated by the modal elimination rule. In brief,

its role is to enable the substitution of a term of the former

type for a variable with the latter declaration. The full rule

is complex, so in this section we will only discuss the case

4
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of a single modality, µ : n →m. The rule for this µ is

tm/modal-elim/single-modality

Γ ⊢ M0 : ⟨µ | A⟩@m Γ, x : (1 | ⟨µ | A⟩) ⊢ B type
1

@m
Γ,y : (µ | A) ⊢ M1 : B[modµ (y)/x]@m

Γ ⊢ let modµ (y) ← M0 inM1 : B[M0/x]@m

Forgetting dependence for a moment, this rule is close to

the dual context style [35, 54]: if we think of annotations as

separating the context into multiple zones, then y : (µ | A)
clearly belongs to the ‘modal’ part.

In the dependent case we also need a motive Γ, x : (1 | ⟨µ |
A⟩) ⊢ B type

1
@m, which depends on a variable of modal

type, but under the identity modality 1. This premise is then

fulfilled byM0 in the conclusion. In a sense, this rule permits

a form ofmodal induction: every variable x : (1 | ⟨µ | A⟩) can
be assumed to be of the form modµ (y) for some y : (µ | A).
This kind of rule has appeared before in dependent modal

type theory, mainly in the work of Shulman [63].

In the type theory of Birkedal et al. [13] modalities are

taken to be dependent right adjoints, with terms witnessing

Eq. (†). This isomorphism can encode tm/modal-elim/single-

modality, but tm/modal-elim/single-modality cannot encode

Eq. (†). As a result, modalities inMTT are weaker than DRAs.

2.3 Multiple Modalities
Thus far we have only considered a single modality. In this

section we discuss the small changes that are needed to

enable MTT to support multiple interacting modalities. The

final version of the modal rules is given in Fig. 2.

Multimodal locks We have so far only used the operation

−,µµ on contexts for the single modality µ : n → m. This

operation should also work for any modality with the same

rule cx/lock, hence inducing an action of locks on contexts

that is contravariant with respect to the mode. The only

question, then, is how these locks should interact. This is

where the mode theory comes in: locks should be functo-
rial, so that ν : o → n, µ : n → m, and Γ ctx @m imply

Γ,µµ ,µν = Γ,µµ◦ν ctx @o. We additionally ask that the

identity modality 1 : m → m at each mode has a trivial,

invisible action on contexts, i.e. Γ,µ1 = Γ.
These two actions, which are encoded by cx/compose and

cx/id, ensure that µ is a contravariant functor onM, map-

ping each modem to the category of contexts Γ ctx @m. The

contravariance originates from the fact thatM is a specifi-

cation of the behavior of the modalities ⟨µ | −⟩, so that their

left-adjoint-like counterparts −,µµ act with the opposite

variance.

The full variable rule We have seen that µ induces a

functor fromM to categories of contexts, but we have not

yet used the 2-cells of M. In short, a 2-cell α : µ ⇒ ν
contravariantly induces a substitution from Γ,µν to Γ,µµ .

We will discuss this further in Section 4, but for now we only

mention that this gives rise to an admissible operation on

types: for each 2-cell we obtain an operation (−)α such that

Γ,µµ ⊢ A type @m implies Γ,µν ⊢ A
α type @m.

In order to prove the admissibility of this operation we

need a more expressive variable rule that builds in the action

of 2-cells. The first iteration (tm/var/counit) required that

the lock and the variable annotation were an exact match.

We relax this requirement by allowing for a mediating 2-cell:

tm/var/combined

µ,ν : n →m α : µ ⇒ ν

Γ, x : (µ | A),µν ⊢ x
α

: Aα
@n

The superscript in xα is now part of the syntax: each vari-

able must be annotated with the 2-cell, though we will still

write x tomean x1µ
. The final form of the variable rule, which

appears as tm/var in Fig. 2, is only a slight generalization

which allows the variable to occur at positions other than

the very front of the context. In fact, tm/var can be reduced

to tm/var/combined by using weakening to remove variables

to the right of x , and then invoking functoriality to fuse all

the locks to the right of x into a single one with modality

locks(Γ1).

The full elimination rule Recall that the elimination rule

for a single modality (tm/modal-elim/single-modality) al-

lowed us to plug a term of type ⟨µ | A⟩ for an assumption

x : (µ | A). Some additional generality is needed to cover

the case where the motive x : (ν | ⟨µ | A⟩) ⊢ B type @m de-

pends on x under a modality ν , 1. This is where the compo-

sition of modalities inM comes in handy: our new rule will

use it to absorbν by replacing the assumptionx : (ν | ⟨µ | A⟩)
with x : (ν ◦ µ | A). The new rule, tm/modal-elim, is given in

Fig. 2. The simpler rule may be recovered by setting ν ≜ 1.

Modal dependent products In the technical report we

have supplementedMTT with a primitive modal dependent
product type, (x : (µ | A)) → B, which bundles together

⟨µ | −⟩ and the ordinary product. If we ignore η-equality,
(x : (µ | A)) → B can be defined as (x0 : ⟨µ | A⟩) →
(let modµ (x) ← x0 in B). This modal

∏
-type is convenient

for programming but it is not essential, so we defer further

discussion to the technical report.

3 Programming with Modalities
In this sectionwe showhowMTT can be used to program and

reason with modalities. We develop a toolkit of modal combi-

nators, which we then use in Section 3.2 to show how MTT
can be effortlessly used to present an idempotent comonad.

3.1 Modal Combinators
We first show how each 2-cell α : µ ⇒ ν with µ,ν : n →m
induces a natural transformation ⟨µ | −⟩ → ⟨ν | −⟩. Given
Γ,µµ ⊢ A type

1
@m, we define

coe[α : µ ⇒ ν ](−) : ⟨µ | A⟩ → ⟨ν | Aα ⟩

coe[α : µ ⇒ ν ](x) ≜ let modµ (x0) ← x in modν (xα
0
)
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Γ ctx @m

cx/lock

µ : n →m Γ ctx @m

Γ,µµ ctx @n

cx/extend

µ : n →m Γ ctx @m Γ,µµ ⊢ A type
1

@n

Γ, x : (µ | A) ctx @m

cx/id

Γ ctx @m

Γ = Γ,µ1 ctx @m

cx/compose

ν : o → n µ : n →m Γ ctx @m

Γ,µµ ,µν = Γ,µµ◦ν ctx @o

Γ ⊢ A typeℓ @m Γ ⊢ M : A@m

tp/modal

Γ,µµ ⊢ A typeℓ @n

Γ ⊢ ⟨µ | A⟩ typeℓ @m

tm/var

ν : m → n α : ν ⇒ locks(Γ1)

Γ0, x : (ν | A), Γ1 ⊢ x
α

: Aα
@m

tm/modal-intro

Γ,µµ ⊢ M : A@n

Γ ⊢ modµ (M) : ⟨µ | A⟩@m

tm/modal-elim

ν : m → o µ : n →m Γ, x : (ν | ⟨µ | A⟩) ⊢ B type
1

@o
Γ,µν ⊢ M0 : ⟨µ | A⟩@m Γ, x : (ν ◦ µ | A) ⊢ M1 : B[modµ (x)/x]@o

Γ ⊢ letν modµ (x) ← M0 inM1 : B[M0/x]@o

tm/modal-beta

ν : m → o µ : n →m Γ, x : (ν | ⟨µ | A⟩) ⊢ B type
1

@o
Γ,µν◦µ ⊢ M0 : A@n Γ, x : (ν ◦ µ | A) ⊢ M1 : B[modµ (x)/x]@o

Γ ⊢ letν modµ (x) ← modµ (M0) inM1 = M1[M0/x] : B[modµ (M0)/x]@o

locks(Γ)

locks(·) = 1 locks(Γ, x : (µ | A)) = locks(Γ) locks(Γ,µµ ) = locks(Γ) ◦ µ

Figure 2. Selected modal rules.

With this operation, we have completed the correspondence

from Section 1: objects of M correspond to modes, mor-

phisms to modalities, and 2-cells to coercions.

We can also show that the assignment µ 7→ ⟨µ | −⟩ is,
in some sense, functorial. Unlike the action of locks, this

functoriality is not definitional, but only a type-theoretic

equivalence [66, §4]. Fixing Γ,µµ◦ν ⊢ A type
1

@m, let

compµ ,ν : ⟨µ | ⟨ν | A⟩⟩ → ⟨µ ◦ ν | A⟩

compµ ,ν (x) ≜ let modµ (x0) ← x in
letµ modν (x1) ← x0 in
modµ◦ν (x1)

comp-1µ ,ν : ⟨µ ◦ ν | A⟩ → ⟨µ | ⟨ν | A⟩⟩

comp-1µ ,ν (x) ≜ let modµ◦ν (x0) ← x in modµ (modν (x0))

We elide the 2-cell annotations on variables, as they are all

identities (i.e. we only need tm/var/counit). Even in this

small example the context equations that involve locks are

essential: for ⟨µ | ⟨ν | A⟩⟩ to be a valid type we need that

Γ,µµ ,µν = Γ,µµ◦ν , which is ensured by cx/compose. Addi-

tionally, observe that compµ ,ν relies crucially on the mul-

timodal elimination rule tm/modal-elim: we must pattern-

match on x0, which is under µ in the context.

These combinators are only propositionally inverse. In

one direction, the proof is

_ : (x : ⟨µ | ⟨ν | A⟩⟩) → Id⟨µ | ⟨ν |A⟩⟩(x, comp-1µ ,ν (compµ ,ν (x)))
_ ≜ λx . let modµ (x0) ← x in letµ modν (x1) ← x0 in

refl(modµ (modν (x)))

This is a typical example of reasoning about modalities: we

use the modal elimination rule to induct on a modally-typed

term. This reduces it to a term of the form mod(−), and the

result follows definitionally. It is equally easy to construct

an equivalence ⟨1 | A⟩ ≃ A.
As a final example, we will show that each modal type

satisfies axiom K, a central axiom of Kripke-style modal

logics. This combinator will be immediately recognizable to

functional programmers as the term that shows that ⟨µ | −⟩
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is an applicative functor [44].

−⊛µ − : ⟨µ | A→ B⟩ → ⟨µ | A⟩ → ⟨µ | B⟩

f ⊛µ a ≜ let modµ (f0) ← f in
let modµ (a0) ← a in
modµ (f0(a0))

We can also define a stronger combinator, which corresponds

to a dependent form of the Kripke axiom [13], and which

generalizes ⊛µ to dependent products (x : A) → B(x).

3.2 Idempotent Comonads in MTT
A great deal of prior work in modal type theory has focused

on comonads [24, 27, 54, 63], and in particular idempotent
comonads. Shulman [63, Theorem 4.1] has shown that such

modalities necessitate changes to the judgmental structure,

as the only idempotent comonads that are internally defin-

able are of the form − ×U for some proposition U . In this

section we present a mode theory for idempotent comonads,

and prove that the resulting type theory internally satisfies

the expected equations using just the combinators of the

previous section.

We define the mode theoryMic to consist of a single mode

m, and a single non-trivial morphism µ : m → m. We will

enforce idempotence by setting µ ◦ µ = µ. Finally, in order

to induce a morphism ⟨µ | A⟩ → A we include a unique

non-trivial 2-cell ϵ : µ → 1. We force uniqueness of this

2-cell by imposing equations such as µ⋆ϵ = ϵ ⋆ µ = ϵ . The
resulting mode theory is a 2-category, albeit a very simple

one: it is in fact only a poset-enriched category.

We can show that ⟨µ | A⟩ is a comonad by defining the

expected operations using the combinators of Section 3.1:

dupA : ⟨µ | A⟩ → ⟨µ | ⟨µ | A⟩⟩ extractA : ⟨µ | A⟩ → Aϵ

dupA ≜ comp-1µ ,µ extractA ≜ coe[ϵ : µ ⇒ 1]

We must also show that dupA and extractA satisfy the como-

nad laws, but that automatically follows from general facts

pertaining to coe and comp.1 This is indicative of the benefits
of usingMTT: every general result about it also applies to

this instance, including the canonicity theorem of Section 5.

4 The Substitution Calculus of MTT
Until this point we have presented a curated, high-level view

of MTT, and we have avoided any discussion of its metathe-

ory. Yet, these syntactic aspects can be quite complex, and

have historically proven to be sticking points for modal type

theory. While these details are not necessary for the casual

reader, it is essential to validate that MTT is syntactically

well-behaved, enjoying e.g. a substitution principle.

We have opted for a modern approach in the analysis

of MTT by presenting it as a generalized algebraic theory
(GAT) [17, 34].While this simplifies the study of its semantics

1
In particular, our modal combinators satisfy a variant of the interchange
law of a 2-category.

(see Section 5), it can also be used to study the syntax. For

example, the formulation of MTT as a GAT naturally leads us

to include explicit substitutions [26, 43] in the syntax. Thus,

substitution inMTT is not a metatheoretic operation on raw

terms, but a piece of the syntax. This presentation helps us

carefully state the equations that govern substitutions and

their interaction with type formers. We consequently obtain

an elegant substitution calculus, which can often be quite

complex for modal type theories. We only discuss the modal

aspects of substitution here; the full calculus may be found

in the technical report.

Modal substitutions In addition to the usual rules,MTT
features substitutions corresponding to the 1- and 2-cells of

the mode theory. First, recall that for each modality µ : n →
m we have the operation µµ on contexts. In keeping with

the algebraic syntax, we will write −.µµ instead of −,µµ in

this section. We extend its action to substitutions:

sb/lock

µ : n →m Γ ⊢ δ : ∆@m

Γ.µµ ⊢ δ .µµ : ∆.µµ @n

Second, each 2-cell α : µ ⇒ ν induces a natural transforma-
tion between µν and µµ , whose component at Γ is

sb/key

α : µ ⇒ ν

Γ.µν ⊢ ¤
α
Γ : Γ.µµ @n

These substitutions come with equations that ensure that

−.µµ is a functor, ¤
α
Γ is a natural transformation, and that

together they form a 2-functorMcoop → Cat: see Fig. 3.
While it is no longer necessary to prove that substitution

is admissible, we would like to show that explicit substitu-

tions can be pushed inside terms, and ultimately eliminated

on closed terms. The proof of canonicity (Theorem 5.5) im-

plicitly contains such an algorithm, but it is overkill: a simple

argument directly proves that all explicit substitutions can

be propagated down to variables.

Moreover, we may define the admissible operation men-

tioned in Section 2.3 by letting Aα ≜ A[¤α
Γ ], and using the

algorithm mentioned above to derive steps that eliminate

the ‘key’ substitution.

Pushing substitutions under modalities In order for

the aforementioned algorithm to work, we must specify

how substitutions commute with the modal connectives of

MTT. Unlike previous work [28], the necessary equations

are straightforward:

⟨µ | A⟩[δ ] = ⟨µ | A[δ .µµ ]⟩

modµ (M)[δ ] = modµ (M[δ .µµ ])

This simplicity is not coincidental. Previous modal type

theories included rules that, in one way or another, trimmed
the context during type checking: some removed variables [54,

56, 63], while others erased context formers, e.g. locks [13,

7
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sb/lock-id

µ : n →m

Γ ⊢ id.µµ = id : Γ @n

sb/id-lock

Γ ⊢ δ : ∆@m

Γ ⊢ δ .µ1 = δ : ∆@m

sb/lock-compose

µ : n →m Γ0 ⊢ γ1 : Γ1
@m Γ1 ⊢ γ2 : Γ2

@m

Γ0.µµ ⊢ (γ2 ◦ γ1).µµ = (γ2.µµ ) ◦ (γ1.µµ ) : Γ2.µµ @m

sb/compose-lock

µ : n →m ν : o → n Γ ⊢ δ : ∆@m

Γ.µµ◦ν ⊢ δ .µµ◦ν = δ .µµ .µν : ∆.µµ◦ν @m

sb/natural

µ,ν : n →m α : ν ⇒ µ Γ ⊢ δ : ∆@m

Γ.µµ ⊢ ¤
α
∆ ◦ (δ .µµ ) = (δ .µν ) ◦¤

α
Γ : ∆.µν @n

Figure 3. Selection of rules from the equational theory of modal substitutions.

27]. In either case, it was necessary to show that the trim-

ming operation, which we may write as ∥Γ∥, is functorial:
Γ ⊢ δ : ∆ should imply ∥Γ∥ ⊢ ∥δ ∥ : ∥∆∥. Unfortunately, the
proof of this fact is almost always very complicated. Some

type theories avoid it by ‘forcing’ substitution to be admis-

sible using delayed substitutions [11, 40], but this causes

serious complications to the equational theory.

MTT circumvents this by avoiding any context trimming.

As a result, we need neither delayed substitutions nor a

complex proof of admissibility.

5 The Semantics of MTT
As mentioned in Section 4, we have structured MTT as a

GAT. As a result, MTT automatically induces a category

of models and (strict) homomorphisms between them [17,

34]. However, this notion of model follows the syntax quite

closely. In order to work with it more effectively we factor it

into pieces, using the more familiar definition of categories
with families (CwFs) [25].2 We will then use this notion of

model to present a semantic proof of canonicity via gluing [5,
23, 33, 62].

Like MTT itself, the definition of model is parametrized

by a mode theory, so we fix a mode theoryM.

Mode-local structure Recall thatMTT is divided into sev-

eral modes, each of which is closed under the standard con-

nectives of MLTT. Accordingly, a model of MTT requires

a CwF (C[m],Tm, T̃m) for each modem ∈ M. Each CwF is

required to be a model of MLTTwith

∑
,

∏
and Id types, and

a Coquand-style universe. This part of the definition is en-

tirely standard, and can be found in the literature [8, 25, 31].

The novel portion of a MTT model describes the relations

between CwFs induced by the 1- and 2-cells ofM.

Locks and keys Recall that for Γ ctx @m and µ : n → m
we have a context Γ,µµ ctx @n, and that this construction

extends functorially to substitutions. Hence, we will require

for each modality µ : n →m a functor JµµK : C[m] → C[n].
Similarly, each α : µ ⇒ ν induces a natural transformation

from −,µν to −,µµ . Accordingly, a model should come with

2
In the technical report we have used a more categorical presentation of

CwFs, known as natural models [8]. However, in the interest of clarity we

state our results in terms of CwFs here.

a natural transformation J¤α K : Jµν K ⇒ JµµK. Moreover,

the equalities of Fig. 3 require that the assignments µ 7→ µµ
and α 7→ ¤α

be strictly 2-functorial. Thus, this part of the

model can be succinctly summarized by requiring a 2-functor

C[−] :Mcoop → Cat. The contravariance accounts for the
fact µ corresponds to ⟨µ | −⟩, but that the functor JµµK
models −,µµ , which acts with the opposite variance.

Modal comprehension structure Context declarations in

MTT are annotated with a modality, and the context exten-

sion rule cx/extend involves locks. Thus, our CwFs should be

equipped with more structure than mere context extension

to support it.

Recall that, in an ordinary CwF C, given a context Γ ∈ C
and a type A ∈ T(Γ) we have a context Γ.A along with a

substitution p : Γ.A→ Γ, and a term q ∈ T̃(Γ.A,A[p]).
To modelMTTwe need a modal comprehension operation,

which for each context Γ ∈ C[m], modality µ : n →m, and

type A ∈ Tn(JµµK(Γ)) yields
• a context Γ.(µ | A) ∈ C[m],
• a substitution p : Γ.(µ | A) → Γ, and

• a term q ∈ T̃n(JµµK(Γ.(µ | A)),A[JµµK(p)])
where Γ.(µ | A) is universal in an appropriate sense.

Intuitively, q corresponds to tm/var/counit. As mentioned

before, this suffices to model the full variable rule tm/var, as

p, ¤α
− , and q can be used to define it from tm/var/counit.

Modal types The interpretation of the modal type ⟨µ | −⟩
for a modality µ : n → m requires operations for the for-

mation, introduction, and elimination rules. Just as with

the other connectives, these are a direct translation of the

rules tp/modal, tm/modal-intro, and tm/modal-elim to the

language of CwFs. For example, for every Γ ∈ C[m], A ∈

Tn(JµµK(Γ)), andM ∈ T̃n(JµµK(Γ),A), we requiremodµ (M) ∈
T̃m(Γ,Modµ (A)).
This discussion leads to the following definition.

Definition 5.1. A model of MTT is a 2-functor C[−] :

Mcoop → Cat, equipped with the following structure:

• for eachm ∈ M, a CwF (C[m],Tm, T̃m) that is closed
under

∏
,

∑
, Id, and U,

• a modal comprehension structure for M on these

CwFs, and
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• for each modality µ : n →m, a modal type structure

(Modµ ,modµ , openµ ).

Definition 5.2. A morphism between models F : C[−]1 →

C[−]2 is a strict 2-natural transformation such that each

Fm : C[m]1 → C[m]2 is part of a strict CwF morphism [18]

which strictly preserves modal comprehension and types.

We observed in Section 2.3 that modalities in MTT are

weaker than DRAs [13].
3
Since DRAs are often easier to

construct, we make this relation formal.

Theorem 5.3. A 2-functor C[−] :Mcoop → Cat satisfying
the following two conditions induces a model of MTT:

1. for eachm ∈ M, there is a CwF (C[m],Tm, T̃m) that is
closed under

∏
,
∑
, Id, and U.

2. for each µ : n →m, JµµK : C[m] → C[n] has a DRA.

In practice virtually all the models of MTT that we con-

sider will be constructed by applying Theorem 5.3. We can

also use it to immediately prove consistency:

Corollary 5.4. There is no closed term of type IdB(tt,ff).

Proof. By Theorem 5.3, any model C of MLTT is a valid

model of MTT: send each mode to C, and each modality to

the identity. Therefore, a closed term of type IdB(tt,ff) in
MTT would also be a term of the same type in MLTT. We

may therefore reduce the consistency of MTT to that of a

model of MLTT, and in particular the set-theoretic one. □

5.1 Canonicity
We can now use MTT models to prove canonicity via glu-

ing. Canonicity is an important metatheoretic result: it es-

tablishes the computational adequacy of MTT by ensuring

that every closed term already is in or is equal to a canon-
ical form—a value. Canonicity is traditionally established

through a logical relation [42, 65]. However, this method be-

comes very complicated when we have universes, as their

presence makes the definition by induction on types impos-

sible. It is instead necessary to construct a (large) relation

on types, which associates a pair of types with a PER; the

logical relation on terms is then subordinated to this relation

on types [4, 6]. This technique requires significant effort, and

involves many proofs by simultaneous induction.

This approach can be simplified by replacing proof-irrelevant
logical relations by a proof-relevant gluing construction [45].

This leads to the construction of a model in which (a) types

are paired with proof-relevant predicates and (b) terms are

equivalence classes of syntactic terms, along with a (type-

determined) proof of their canonicity. The proof-relevance

is crucial in the case of the universe, which contains not just

the canonicity data for A : U but also the predicate for El(A).

3
While Birkedal et al. [13] only consider endofunctors, there is no obstacle

to extending the definition of a DRA to different categories.

The full details of the glued model can be found in the

technical report. Once we construct it, the initiality of syn-

tax [17, 34] provides a witness of canonicity for every term.

Theorem 5.5 (Canonicity). If ·,µν ⊢ M : A@m is a closed
term, then the following conditions hold:
• If A = B, then ·,µν ⊢ M = ¯b : B@m where ¯b ∈ {tt,ff}.
• If A = IdA0

(N0,N1) then ·,µν ⊢ N0 = N1 : A0
@m and

·,µν ⊢ M = refl(N0) : IdA0
(N0,N1)@m.

• IfA = ⟨µ | A0⟩ then there is a term ·,µν◦µ ⊢ N : A0
@n

such that ·,µν ⊢ M = modµ (N ) : ⟨µ | A0⟩@m.

6 Applying MTT
We will now show concretely how MTT can be used in spe-

cific modal situations by varying the mode theory.Wewill fo-

cus on two different examples: guarded recursion [15, 20, 47],

which captures productive recursive definitions through a

combination of modalities, and adjoint modalities [39, 40, 57,
63, 67], where two modalities form an adjunction internal to

the type theory. In both cases we will show how to recon-

struct examples from op. cit. in MTT. The case of guarded
recursion is particularly noteworthy, as the specialization of

MTT to the appropriate mode theory leads to a new syntax

which is considerably simpler than previous work.

6.1 Guarded Recursion
The key idea of guarded recursion [47] is to use the later
modality (�) tomark datawhichmay only be used after some

progress has been made, thereby enforcing productivity at

the level of types. Concretely, the later modality is equipped

with three basic operations:

next : A→ �A (⊛) : �(A→ B) → �A→ �B

löb : (�A→ A) → A

The first two operators make � into an applicative func-

tor [44] while the third, which is known as Löb induction,

encodes guarded recursion: it enables us to define a term

recursively, provided the recursion is provably productive.

The perennial example is, of course, the guarded stream

type StrA � A×�StrA. This recursive type requires that the
head of the stream is immediately available, but the tail may

only be accessed after some productive work has taken place.

This allows us to e.g. construct an infinite stream of ones:

inf_stream_of_ones ≜ löb(s . cons(1, s))

However, StrA does not behave like a coinductive type: we

may only define causal operations on streams, which ex-

cludes e.g. tail. In order to regain coinductive behavior, Clous-
ton et al. [20] introduced a second modality, 2 (‘always’), an

idempotent comonad for which

2 �A ≃ 2A. (∗)

Combining this modality with � has proved rather tricky:

previous work has used delayed substitutions [15], or has
9



991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Conference’17, July 2017, Washington, DC, USA Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

t sℓ

δ

γ
δ ◦ γ ≤ 1 1 = γ ◦ δ

1 ≤ ℓ γ = γ ◦ ℓ

Figure 4.Mд : a mode theory for guarded recursion.

replaced 2 with clock quantification [7, 9, 16, 46]. The for-

mer poses serious implementation issues, and—while more

flexible—the latter does not enjoy the conceptual simplicity

of a single modality. In contrast, MTT enables us to effort-

lessly combine the two modalities and satisfy Eq. (∗).

To encode guarded recursion inside MTT, we must

1. choose a mode theory which induces an applicative

functor � and a comonad 2 satisfying Eq. (∗),

2. construct the intended model ofMTT with this mode

theory, i.e. a model where these modalities are inter-

preted in the standard way [14], and

3. include Löb induction as an axiom.

To begin, we defineMд to be the mode theory generated

by Fig. 4. We require that Mд is poset-enriched, i.e. that

there is at most one 2-cell between a pair of modalities, µ,ν ,
which we denote µ ≤ ν when it exists. AsMд is not a full

2-category, we do not need to state any coherence equations

between 2-cells.

Unlike prior guarded type theories, Fig. 4 has two modes.
We will think of elements of s as being constant types and
terms, while types in t may vary over time. The reason for

enforcing this division will become apparent in Theorem 6.3,

but for now observe that we can construct an idempotent

comonad b ≜ δ ◦ γ .

Lemma 6.1. ⟨b | −⟩ is an idempotent comonad and ⟨ℓ | −⟩
is an applicative functor.

Proof. Follows from the combinators in Section 3. □

Next, Eq. (∗), which was hard to force in previous type

theories, is provable: as γ ◦ ℓ = γ , the combinator compb ,ℓ
from Section 3.1 has the appropriate type:

compb ,ℓ : ⟨b | ⟨ℓ | A⟩⟩ ≃ ⟨b ◦ ℓ | A⟩ = ⟨b | A⟩

In order to construct the intended model, recall that the stan-

dard interpretation of guarded type theory uses the topos of
trees, PSh(ω): see Birkedal et al. [14] for a thorough discus-

sion. Crucially, it is easy to see that 2 = ∆ ◦ Γ, where

Γ : PSh(ω) → Set ∆ : Set→ PSh(ω)

Γ ≜ X 7→ Hom(1,X ) ∆ ≜ S 7→ λ_.S

As both Set and PSh(ω) are models of MLTT [14, 31], we

may use Theorem 5.3 to construct the intended model.

Theorem 6.2. There exists a model of MTT with this mode
theory where ⟨b | −⟩ is interpreted as 2 and ⟨ℓ | −⟩ as �.

tm/lob

Γ, x : (ℓ | A1≤ℓ) ⊢ M : A@ t

Γ ⊢ löb(x . M) : A@ t

tm/lob-beta

Γ, x : (ℓ | A1≤ℓ) ⊢ M : A@ t

Γ ⊢ löb(x . M) = M[next(löb(x . M))/x] : A@ t

Figure 5. Axiomatization of Löb induction in MTT

Proof. We choose the 2-functor which sends s 7→ Set and
t 7→ PSh(ω). Moreover, we define JµℓK, Jµδ K, and Jµγ K to
be the left adjoints of �, ∆, and Γ respectively [13, 49]. □

From this point onwards we will write � ≜ ⟨ℓ | −⟩,
∆ ≜ ⟨γ | −⟩, and 2 ≜ ⟨δ | −⟩.

The only thing that remains is to add Löb induction. This

is a modality-specific operation that cannot be expressed in

the mode theory, so we must add it as an axiom: see Fig. 5

for the precise formulation. Unfortunately, any axiom dis-

rupts the metatheory of MTT so canonicity no longer applies.
However, adding it to the type theory is sound, as the model

supports it. At this point we may as well assume equality
reflection [32], as is commonplace in previous guarded type

theories [15]. This is stronger than necessary (function ex-

tensionality would suffice), but it simplifies proofs andmakes

comparison to previous work more direct.

ProgrammingwithGuardedMTT We can nowuseMTT
to program with and reason about guarded recursion. For

instance, we can define coinductive streams:

Str : U→ U @ s

Str(A) ≜ Γ(löb(S . ∆(A) ×�S))

Unlike prior guarded type theories, we have defined this

stream operator not in mode t , which represents PSh(ω), but
in mode s , which represents Set. Accordingly, this definition
does not use 2. It first uses ∆ to convert A to a t-type, and
then Γ to move the recursive definition back to s . This alle-
viates some bookkeeping: in previous work [15] the stream

type was actually coinductive only if A was a constant type

(i.e. A ≃ 2A). Accordingly, theorems about streams had to

pass around proofs that the elements of the stream are con-

stant. In our case, defining Str at mode s ensures that the
elements of the stream are automatically constant. Hence,

Str(A) is equivalent to the familiar definition, but it is no

longer necessary to carry through proofs of constancy. There-

fore, for any A : U@ s we have

Theorem 6.3. Str(A) is the final coalgebra for S 7→ A × S in
mode s .

We can also program with Str(A) by more directly appeal-

ing to the underlying guarded structure. For instance, we

10
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can define a ‘zip with’ function. Let Str′A = löb(S . ∆(A)×�S)
and write zh and zt for pr0

(z) and pr
1
(z) respectively:

zipWith′ : ∆(A→ B → C) → Str′A → Str′B → Str′C
zipWith′(f ) ≜ löb(r . λx,y. (f ⊛δ xh ⊛δ yh, r ⊛ℓ xt ⊛ℓ yt )

zipWith : (A→ B → C) → Str(A) → Str(B) → Str(C)
zipWith(f ) ≜ λx,y. modγ (zipWith′(modδ (f )))⊛γ x ⊛γ y

where ⊛µ is defined in Section 3.1.

We can also use dependent types to reason about guarded

recursive programs. For example,

Theorem 6.4. If f is commutative then zipWith(f ) is com-
mutative. That is, given A,B : U and f : A→ A→ B there is
a term of the following type:

((a0,a1 : A) → Id(f (a0,a1), f (a1,a0))) →

(s0, s1 : Str(A)) → Id(zipWith(f , s0, s1), zipWith(f , s1, s0))

All things considered, instantiating MTT withMд yields

a highly expressive guarded dependent type theory with

coinductive types. Unlike prior systems, e.g. Bahr et al. [9],

we do not need clock variables or syntactic checks of con-

stancy. Moreover, the syntax is more robust than previous

work that combines 2 and � [15, 20], as there is no need for

delayed substitutions. Unfortunately, the addition of the Löb

axiom means Theorem 5.5 cannot be directly applied, but

the syntax remains sound and tractable.

6.2 Internal Adjunctions
Up to this point we have only considered mode theories

which are poset-enriched: there is at most one 2-cell between

any pair of modalities. This has worked well for describing

strict structures (Section 3.2), as well as some specific settings

(Section 6.1). However, we would like to use MTT to reason

about less strict categorical models. In this section we will

show that we can readily use MTT to reason about a pair

ν ⊣ µ of adjoint modalities.

Adjoint modalities are common in modal type theory,

much in the same way that adjunctions are ubiquitous in

mathematics [38–40, 57, 63]. For example, the adjunction

δ ⊣ γ played an important role in the previous section. How-

ever, that particular case is unusually well-behaved, as it

arises from a Galois connection. In contrast, the behavior of

general adjoint modalities is much more subtle. We will show

that by instantiating MTT with a particular mode theory we

can internally prove many properties of adjoint modalities

that have previously been established only in special cases.

To begin, we pick thewalking adjunction [59] for our mode

theory, i.e. the 2-category generated by Fig. 6. This mode the-

ory is the classifying 2-category for internal adjunctions: ev-

ery 2-functorMadj
coop ≃ Madj → Cat determines a pair of

adjoint functors, and vice versa. Consequently, substitutions

∆ → Γ.µµ are in bijection with substitutions ∆.µν → Γ.
However, this is not enough on its own: we must also show

that ⟨ν | −⟩ and ⟨µ | −⟩ form an adjunction inside MTT.

n m

η : 1⇒ µ ◦ ν

ϵ : ν ◦ µ ⇒ 1

1µ = (1µ ⋆ ϵ) ◦ (η ⋆ 1µ )

1ν = (ϵ ⋆1ν ) ◦ (1ν ⋆η)
ν

µ

Figure 6.Madj: a mode theory for adjunctions

Recovering the adjunction inMTT We can construct the

unit and counit internally:

unit : A→ ⟨µ | ⟨ν | Aη⟩⟩ counit : ⟨ν | ⟨µ | A⟩⟩ → Aϵ

unit(x) ≜ modµ (modν (xη))
counit(x) ≜ let modν (y0) ← x in letν modµ (y1) ← y0 in yϵ1
In order to account for dependence we must adjust the type

A by a 2-cell. For example, in the definition of unit we as-
sume Γ ⊢ A type

1
@m, so ⟨µ | ⟨ν | A⟩⟩ is ill-typed. We can,

however, obtain a version of A that is typable in the context

Γ,µµ◦ν by applying (−)η to it, as in tm/var.

We can prove that these two operations form an adjunc-

tion by showing they satisfy the triangle identities, e.g.

_ : (x : ⟨ν | A⟩) → Id⟨ν |A⟩(x, counit(modν (unit)⊛ν x))

_ ≜ λx . let modν (y) ← x in refl(modν (y))

This proof relies on the fact that the modalities ν and µ satisfy
the triangle identities themselves inMadj.

The existence of the unit and counit is enough to inter-

nally determine an adjunction. We might want to use an

alternative description, e.g. to manipulate a natural bijection

of hom-sets, Hom(L(A),B) � Hom(A,R(B)).
Unfortunately, this isomorphism cannot be recovered in-

ternally. First, notice that ⟨ν | A⟩ → B and A → ⟨µ | B⟩
are types in different modes—n andm respectively—so (⟨ν |
A⟩ → B) ≃ (A → ⟨µ | B⟩) is ill-typed. Second, even if

n = m so that ν and µ are endomodalities and this equiv-

alence is well-typed, an internal equivalence is a stronger

condition than a bijection of hom-sets: it is equivalent to an

isomorphism of exponential objects BL(A) � R(B)A.
Prior work [38] addressed this by introducing a third

modality 2, such that terms of 2A represent global elements

of A, and then requiring transposition only for functions un-

der2. Global elements of BA are in bijection with Hom(A,B),
so the postulated equivalence corresponds to the expected

bijection. We can rephrase this argument in MTT. Suppose
that n = m, and that Hom(m,m) is equipped with an ini-

tial object, i.e. a modality τ : m → m and a unique 2-cell

! : τ → ξ for all ξ . Then,

Theorem 6.5. The following equivalence is definable inMTT:
⟨τ | ⟨ν | A!⟩ → B⟩ ≃ ⟨τ | A→ ⟨µ | B!⟩⟩.

Crisp induction for the left adjoint Having internalized

ν ⊣ µ, many of the classical results about adjunctions can be

11
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replayed insideMTT. For instance, by carrying out a proof

that left adjoints preserve colimits internally to MTT, we
recover modal or crisp induction principles for ν [39, 63]. We

can then show e.g. that ⟨ν | B⟩ ≃ B. However, in order to

construct this equivalence it will be convenient to formulate

a general induction principle for ⟨ν | B⟩.
Supposing that Γ,µν◦µ ⊢ C : ⟨ν | B⟩ → U@m, we can

define a term

ifνC : ⟨ν ◦ µ | C(modν (tt))⟩ → ⟨ν ◦ µ | C(modν (ff))⟩

→ (b : ⟨ν | B⟩) → Cϵ (b)

This is a version of the conditional that operates on ⟨ν | B⟩
rather thanB. In fact, more is possible: in the technical report

we prove that ifν can be constructed for anyC , not just small

types. Using this stronger induction principle, we can show

Theorem 6.6. ⟨ν | B⟩ ≃ B

Similarly, we can prove that ν preserves identity types:

Theorem6.7. ⟨ν | IdA(M,N )⟩ ≃ Id⟨ν |A⟩(modν (M),modν (N ))

This instantiation of MTT withMadj yields a systematic

treatment of an internal transposition axiom [38], and is suf-

ficiently expressive to derive crisp induction principles [63].

In both cases we can useMTT instead of a handcrafted modal

type theory. Moreover, as we have not added any new ax-

ioms to deal with internal adjunctions, our canonicity result

applies.

6.3 Further Examples
In addition to the examples described above, we have applied

MTT to a wide variety of other situations, including

• parametricity, via degrees of relatedness [50],

• synchronous and guarded programmingwithwarps [30],

• finer grained notions of realizability and local maps of

categories of assemblies [12].

While interesting, we cannot discuss the details of these

applications here for want of space. We invite the interested

reader to consult the accompanying technical report.

7 Related Work
MTT is related to many prior modal type theories. In partic-

ular, its formulation draws on three important techniques:

split contexts, left division, and the Fitch style.

Split-context type theories [24, 35, 48, 54, 55, 63, 67] divide

the context into different zones, one for each modality, which

are then manipulated by modal connectives. This has proven

to be an effective approach for a number of modalities, and

sometimes even scales to full dependent type theories [24,

63, 67]. However, the structure of contexts becomes very

complex as the number of modalities increases.

In order to manage this complexity, some modal type the-

ories employ left-division: each variable declaration in the

context is annotated with a modality, and a left-division op-
eration, which is a left adjoint to post-composition of modal-

ities, is used to state the introduction rules [1–3, 50, 51, 53].

Left-division calculi handle multiple modalities and support

full dependent types, but many important modal situations

cannot be equipped with a left-division structure.

Another technique stipulates that modalities are essen-

tially right adjoints, with the corresponding left adjoints

being constructors on contexts. These Fitch-style type theo-
ries [9, 10, 13, 19, 27] are relatively simple, which has made

them convenient for programming applications [10, 27]. Nev-

ertheless, scaling this approach to a multimodal setting has

proven difficult. In particular, extending the elimination rule

to a multimodal setting remains an open problem.

MTT synthesizes these approaches by including both Fitch-
style locks and left-division-style annotations in its judgmen-

tal structure. The combination of these devices circumvents

the difficulties that plagued previous calculi. For example,

this combination obviates the need for a left division opera-

tion, instead MTT uses a Fitch-style introduction rule. On

the other hand,MTT includes a left-division-style elimina-

tion rule which smoothly accommodates multiple interacting

modalities.

Most prior modal type theories have focused on incorpo-

rating a specific collection of modalities. The sole exception

is the work of Licata et al. (LSR) [40]. The LSR framework sup-

ports an arbitrary collection of substructural modalities over

simple types, and there is ongoing work on a dependently-

typed system. The price to pay for this expressivity is practi-

cality: for example, some LSR connectives require delayed
substitutions [15], which complicate the equational theory,

and make pen-and-paper calculations cumbersome.

8 Conclusion
We introduced and studiedMTT, a dependent type theory
parametrized by a mode theory that describes interacting

modalities. We have demonstrated thatMTT may be used to

reason about several important modal settings, and proven

basic metatheorems about its syntax, including canonicity.

In the future we plan to further develop the metatheory

of MTT. We specifically hope to prove that MTT enjoys

normalization, and hence that type-checking is decidable—

provided the mode theory is. This result would pave the

way to a practical implementation of a multimodal proof

assistant.

We also hope to extend our analysis to some class of

modality-specific operations, e.g. Löb induction. These oper-
ations cannot be captured by a mode theory, and so can only

be added axiomatically to MTT (as was done in Section 6.1),

thus invalidating some of our metatheorems. However, such

operations play an important role in many applications, and

should be accounted for in a systematic way.

12
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