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The metatheory of Scala’s core type system— the Dependent Object Types (DOT) calculus— is hard to extend,

like the metatheory of other type systems combining subtyping and dependent types. Soundness of important

Scala features therefore remains an open problem in theory and in practice. To address some of these problems,

we use a semantics-first approach to develop a logical relations model for a new version of DOT, called guarded
DOT (gDOT). Our logical relations model makes use of an abstract form of step-indexing, as supported by the

Iris framework, to model various forms of recursion in gDOT. To demonstrate the expressiveness of gDOT,

we show that it handles Scala examples that could not be handled by previous versions of DOT, and prove

using our logical relations model that gDOT provides the desired data abstraction. The gDOT type system, its

semantic model, its soundness proofs, and all examples in the paper have been mechanized in Coq.
1

1 INTRODUCTION
The Scala language has an expressive type system that supports, among other features, first-class

recursive modules, path dependent types, impredicative type members, and subtyping, achieving

strong information hiding. Alas, Scala has struggled for years with type soundness issues and ad-hoc

fixes. To address these issues more rigorously, the compiler of the new Scala 3 language (called

Dotty) has been designed hand in hand with a new foundational type system— the Dependent Object
Types (DOT) calculus. This development led to a number of increasingly expressive versions of DOT

and type soundness proofs thereof [Amin et al. 2016; Kabir and Lhoták 2018; Rapoport et al. 2017;

Rapoport and Lhoták 2016; Rompf and Amin 2016], culminating in the pDOT calculus [Rapoport

and Lhoták 2019], and has helped to fix various soundness bugs in Scala 3 [Rompf and Amin 2016].

Despite this exciting development, current DOT versions still lack features necessary to encode

full Scala, such as subtyping for recursive types [Rompf and Amin 2016], distributive subtyping [Gi-

arrusso 2019], higher-kinded types [Odersky 2016; Odersky et al. 2016; Stucki 2016], and mutually

recursive modules that hide information from each other (which we dub mutual information hiding,
and motivate in Sec. 1.1). Worse, one of the core DOT features is support for abstract types and

data abstraction, but traditional syntactic type soundness proofs cannot show that abstract types

behave correctly. Supporting these features in pDOT poses the following challenging questions:

(1) How to design a type system that soundly extends pDOT with these features?

(2) How to prove type soundness of such a type system?

(3) How to demonstrate proper support for data abstraction?

Question (1) is challenging because feature interaction in Scala 3 and (p)DOT is prone to unex-

pected type soundness issues. Question (2) is challenging because current syntactic type soundness

proofs for the various DOT variants are extremely intricate, and thus hard to scale to new DOT

variants. Indeed, syntactic type soundness proofs are known to be hard to scale to combinations of

1
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(path) dependent types and subtyping [Hutchins 2010; Yang and d. S. Oliveira 2017]. While Rapoport

et al. [2017] describe a recipe for syntactic proofs for DOT, applying this recipe to pDOT— the

most expressive version of DOT to date— involves 7 carefully designed variants of pDOT’s typing

judgment [Rapoport and Lhoták 2019]. Finally, question (3) is challenging because it cannot be

addressed through syntactic type soundness proofs.

To extend pDOT despite these challenges, we eschew traditional syntactic type soundness proofs,

and follow a semantics-first approach: first, we model each type and typing judgment semantically

via a logical relation, i.e., in terms of the program’s runtime behavior, instead of a fixed set of

syntactic rules. Such a semantic model immediately addresses question (2): only safe programs

are semantically typed. To solve question (1), we then derive from the semantic model a sound

type system called guarded DOT (gDOT): we give modular soundness proofs of rules that either

exist in some DOT variant or are suggested by the model, such as those for mutual information

hiding (see Sec. 1.1 and Sec. 3 and 4). Some rules, such as subtyping for recursive types, become

easier to prove sound than in past work [Amin et al. 2016; Rompf and Amin 2016]. Other rules

require extending gDOT with a “later” type operator (⊲) [Nakano 2000], which enforces certain

guardedness restrictions obtained from the semantic model (Sec. 4). Finally, as we demonstrate in

Sec. 6.3, logical relation models like ours support proving data abstraction, in particular safety of

syntactically ill-typed but semantically safe code, answering question (3).

In the rest of the introduction, we motivate extending pDOT to support mutual information

hiding (Sec. 1.1), discuss semantic typing (Sec. 1.2), and present contributions (Sec. 1.3).

1.1 Why Mutual Information Hiding Matters
Scala objects enable encoding a rich module system. Objects can contain not only value members

(such as fields and methods), but also type members, which enables using objects as modules. These

type members are translucent [Harper and Lillibridge 1994]. That is, their definition can be either

exposed or abstracted away from clients, supporting a strong form of information hiding. Moreover,

type members can be abstracted away after creation, through upcasting. Objects containing type
members are first-class values, avoiding the need for a separate module language. Notably, they can

be nested, thus supporting hierarchical modules, and they can be mutually recursive, thus enabling
mutually recursive modules. This combination of features enables in particular mutual information
hiding, that is, mutually recursive modules that hide information from each other.

To demonstrate usefulness of mutual information hiding, consider the example in Fig. 1, adapted

from Rapoport and Lhoták [2019], and inspired by the actual implementation of the Scala 3 compiler

(Dotty). The example models a system with mutually recursive modules types and symbols, encoded

as members of the object pcore and representing separate compilation units. The module types

represents the API for types. It uses nested classes to model an algebraic data type Type for types of

the object language,
2
which for simplicity can be either the the top-type TypeTop, or a reference

TypeRef to a symbol symb. The module symbols represents the API for a symbol table, and defines a

nested class Symbol for symbols, which contain an (optional) type tpe and an identifier id. Optional

types are encoded through the standard type constructor Option, with constructors Some and None,

and methods isEmpty and get. We elaborate on the encoding of Option in Sec. 6.3.

The classes TypeRef and Symbol have value members (symb for TypeRef, and tpe and id for

Symbol) that are initialized by a corresponding constructor. For instance, after executing val s =

new Symbol(None, 0), field s.id has value 0. To achieve strong information hiding, Scala classes

are nominal, i.e., they can only be constructed through constructors. For instance, Scala rejects

2
For our purposes, an abstract class is simply a class without constructors.
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1 object pcore {
2 object types {
3 abstract class Type
4 class TypeTop extends Type
5 class TypeRef(val symb: pcore.symbols.Symbol) extends Type {
6 assert(!symb.tpe.isEmpty) }
7 val typeFromTypeRefUnsafe = (t: types.TypeRef) =>
8 // relies on TypeRef invariant; only semantically well-typed.
9 t.symb.tpe.asInstanceOf[Some[types.Type]].get
10 }
11 object symbols {
12 class Symbol(val tpe: Option[pcore.types.Type], val id: Int)
13 // Encapsulation violation, and type error in Scala (but not pDOT)
14 // val fakeTypeRef : types.TypeRef =
15 // new { val symb = new Symbol(None, 0) }
16 }
17 }

Fig. 1. A (simplified) fragment of the Scala 3 compiler (Dotty), in Scala syntax.

fakeTypeRef, which creates an object of type TypeRef with all the right members (namely, a member

symb of the right type), because it sidesteps TypeRef’s constructor.

Nominality helps to enforce class invariants—constructors can validate parameters and initialize

objects correctly. For instance, TypeRef’s constructor checks that symb does contain a type (using

isEmpty). Method fakeTypeRefwould violate this invariant, and is thus rejected. Class invariants can

be relied upon by clients. Thanks to the invariants of Option and TypeRef, clients can assume that

symb.tpe is never None, and that symb.tpe.get can be called safely. Indeed, typeFromTypeRefUnsafe

relies on TypeRef’s invariant to safely extract the Type nested inside symb. The version of the

code with typeFromTypeRefUnsafe is not typable in either pDOT or gDOT, as it uses an unsafe cast.
Nonetheless, this code is in fact safe. While a syntactic type system cannot recognize all semantically

safe programs, our semantic model enables proving formally the safety of such examples, similarly

to the RustBelt model of Rust [Jung et al. 2018a]. We demonstrate this in Sec. 6.2 and 6.3.

Although Scala can enforce the desired abstraction in the example, pDOT cannot. To explain why,

we show in Fig. 2 the translation of the example (minus typeFromTypeRefUnsafe and the assert in

TypeRef’s constructor) into pDOT syntax. As the translation is verbose, we focus on key aspects.

First, we create objects through syntax 𝜈𝑥 . {𝑑}, where 𝑥 is the self variable that refers to the object
being created, and 𝑑 is a list of type and value member definitions. The definition of the top-level

object pcore uses the self variable pcore to create the mutual dependency between the subobjects

types and symbols, represented as value members. For brevity, we write the type declarations of
each member together with their definitions. In the core pDOT syntax, declarations would not

appear in object bodies, but in their types—we would write 𝜈𝑥 . {𝑑} : 𝜇𝑥 . {𝑇 }, where {𝑇 } contains
type declarations for all members in 𝑑 , which can refer to each other through self variable 𝑥 .

Second, while (p)DOT does not have native support for higher-kinded types, Option[𝑇] can be

encoded as options.Option ∧ {A :: ⊥ .. 𝑇 }, exposing the type 𝑇 of elements as type member A.3

Third, while classes are native constructs in Scala, they are encoded through abstract types in

(p)DOT. To model that classes are nominal (i.e., that they can only be created through constructors),

only an upper bound on the abstract type is exposed. Hence, nominality and enforcement of class

3
This encoding of higher-kinded types is insufficient for full Scala [Odersky et al. 2016], motivating the search for higher-

kinded DOT [Odersky 2016; Stucki 2016].
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let options = . . . in let pcore = 𝜈 pcore. {
types = 𝜈 types. {

Type >: ⊥ = ⊤
TypeTop >: ⊥ = types.Type
newTypeTop : ⊤ → types.TypeTop = 𝜆_. 𝜈_. {}
TypeRef >: ⊥ = types.Type ∧ {symb : pcore.symbols.Symbol}
newTypeRef : pcore.symbols.Symbol → types.TypeRef

= 𝜆𝑠. { 𝜈_. {symb = 𝑠} }
}
symbols = 𝜈 symbols. {

Symbol >: ⊥ = { tpe : options.Option ∧ {A :: ⊥ .. pcore.types.Type}; id : Nat }
newSymbol : (options.Option ∧ {A :: ⊥ .. pcore.types.Type}) → Nat → symbols.Symbol

= 𝜆𝑡 𝑖 . 𝜈_. {tpe = 𝑡 ; id = 𝑖}
}

} in . . .

Fig. 2. The (simplified) fragment of Dotty from Fig. 1, in pDOT syntax, minus typeFromTypeRefUnsafe and
the assertion. This code is not well-typed as-is in pDOT (see text).

invariants translate to proper data abstraction. As shorthand, we write A >: 𝐿 = 𝑈 for a type

member that is defined to be equal to𝑈 , but declared to have lower bound 𝐿 and upper bound𝑈 . For

example, the bounds on TypeRef are ⊥ .. pcore.types.Type ∧ {symb : pcore.symbols.Symbol}. Due
to the lower bound (⊥, the empty type), clients of types cannot construct a TypeRef themselves.

The upper bound (pcore.types.Type ∧ {symb : pcore.symbols.Symbol}) exposes that TypeRef is a
subtype of Type, and that it has a value member symb.
The code in Fig. 2 properly models the desired information hiding between the recursively

defined subobjects types and symbols. Alas, pDOT cannot type this code, as pDOT requires that

all (recursive) objects 𝜈 (𝑥 : 𝑇 ). {𝑑} must have a precise self type 𝑇 [Rapoport and Lhoták 2019].

Informally,𝑇 is precise if the bounds 𝐿 .. 𝑈 of all type members that appear hereditarily in𝑇 satisfy

𝐿 = 𝑈 — i.e., if the recursively defined object does not contain any abstract type members (we define

this notion formally in Fig. 4). In this case, the restriction implies that the object pcore cannot be
typed, for instance because type member TypeRef is imprecise.

4

pDOT’s restrictions to precise self types appear necessary: pDOT with imprecise self types has

known counterexamples to type soundness (see Sec. 3). To the best of our knowledge, gDOT is the

first DOT variant that supports sound imprecise self types.

1.2 Why Semantics First
To find sound typing rules for imprecise self types, we approach the problem semantics-first—
we first design a semantic model, and then derive the sound gDOT type system from it. Our

model is based on an old idea going back to at least Milner [1978]: we formalize the meaning

of DOT types semantically (using logical relations); by mapping syntactic types 𝑇 to semantic
types VJ𝑇 K ∈ SemType. Semantic types SemType ≜ (Var → SemVal) → SemVal → Prop are

predicates on values (or equivalently, functions from values to propositions) that take as a parameter

an environment mapping variables to values (since types can contain variables that point to values).

4
In pDOT one can construct the top-level object pcorewith a precise self type, and only after it is constructed use subsumption

to weaken the bounds on the type members. This way, one can achieve information hiding for clients of pcore, but not
information hiding between types and symbols. Hence, this is not a complete solution.
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We then show that if a closed expression has a certain type 𝑇 , then any result of evaluating that

expression satisfiesVJ𝑇 K∅ (the fundamental theorem). However, we need a novel idea to handle

abstract types, in particular because DOT type members are impredicative: that is, type members

can describe values containing in turn type members, without any stratification (see Sec. 8).

To explain our gDOT model, we first sketch a naive semantics that is simple, but unsound because

of DOT impredicativity. We then explain how we can use step-indexing [Appel and McAllester

2001], a common technique to deal with circularities, to give a more refined but sound model.

In (g)DOT, ignoring both base values and paths, a value can be a variable, a function value (a

𝜆-abstraction), or an object (a finite map from member labels to semantic types or values). If we

think of semantic types as predicates (i.e., functions from values to propositions Prop), then we can

describe such values using a recursive domain equation of the following form:

SemType = (Var → SemVal) → SemVal → Prop

SemVal � Var +
{
𝜆𝑥 . 𝑒

}
+ (Label fin−⇀ (SemType + SemVal))

(Domain-Bad)

Intuitively, such a naive semantics would justify (p)DOT. But it would also be unsound, because
it is well-known that there are no solutions to the above recursive domain equation in ordinary set

theory due to the negative recursive occurrence of SemType.
Luckily, we can use the Iris logic [Jung et al. 2016, 2018b, 2015; Krebbers et al. 2017a] and an

abstract form of step-indexing [Appel et al. 2007; Birkedal et al. 2011] to stratify our definition and

build a sound version of this semantics. Our stratified equation is written as follows:

SemType = (Var → SemVal) → SemVal → iProp

SemVal � Var +
{
𝜆𝑥 . 𝑒

}
+ (Label fin−⇀ (▶SemType + SemVal))

(Domain)

Here iProp is the Iris universe of propositions. Moreover, now the recursive occurrence of SemType
is guarded by a “later” ▶, a contractive type operator that restricts how we can manipulate semantic

types. Formally, this can now be understood as a recursive domain equation in the category of

complete ordered families of equivalences (COFEs) and hence solved (see [America and Rutten

1989; Birkedal et al. 2010] for more details).

Using the solution to the recursive domain equation we obtain a sound model for gDOT. Infor-

mally, we consider this model “canonical”, as we have taken a straightforward but naive semantics,

and done the smallest possible change to turn it into a sound semantics using step-indexing. Inter-

estingly, our recursive domain equation differs from prior work on step-indexed logical relations,

which focused mostly on modeling general references, and thus had to solve the so-called “type-

world circularity” [Ahmed 2004; Birkedal et al. 2011]. Since such type systems in prior work do not

support dependent types, values cannot contain types, and as such, the domain of values was not

recursively defined (it was simply the set of syntactic values).

1.3 Contributions
To sum up, we take a semantics-first approach to take a fresh look at several open problems of

Scala’s core calculus pDOT. Through the semantics-first approach we obtain the new guarded DOT
(gDOT) calculus, which enforces certain guardedness restrictions by extending the type system

with a “later” operator (⊲). The later operator makes it possible to add a number of novel and

provably sound typing rules, e.g., to support imprecise self types and mutual information hiding,

that were unsound in prior versions of DOT. Unfortunately, gDOT’s later operator also comes with

a price— it hinders typing programs that were accepted by previous (p)DOT versions. Yet, despite

these limitations we demonstrate that we can encode many challenging examples from the Scala

and (p)DOT literature, as well as new examples that could not be handled before.

Concretely, this paper makes the following contributions:
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Syntax

TyLabel ∋ A Type member labels

ValLabel ∋ a Term member labels

Label ∋ 𝑙 ::= a | A Member labels

Val ∋ 𝑣 ::= 𝑥 | 𝜆𝑥. 𝑒 | 𝜈𝑥 . {𝑑} Values

Expr ∋ 𝑒 ::= 𝑣 | 𝑒 𝑒 | 𝑒.a | coerce 𝑒 Expressions/terms

Path ∋ 𝑝, 𝑞 ::= 𝑣 | 𝑝.a (Pre)paths

DefBody ∋ 𝑑 ::= 𝑝 | 𝑇 Definition bodies

DefList ∋ 𝑑 ::= 𝑙 = 𝑑 | 𝑑 ;𝑑 Definition lists

ECtx ∋ 𝐾 ::= [] | 𝐾 𝑒 | 𝑣 𝐾 | 𝐾.𝑎 | coerce 𝐾 Evaluation contexts

Type ∋ 𝐿, 𝑆,𝑇 ,𝑈 ,𝑉 ,𝑊 ::= ⊤ | ⊥ | 𝑆 ∧𝑇 | 𝑆 ∨𝑇 | ∀𝑥 : 𝑆.𝑇 (Pre)types

| {a : 𝑇 } | {A :: 𝐿 .. 𝑈 } | 𝑝.A | 𝑝.type | 𝜇𝑥 .𝑇 | ⊲𝑇

TyCtx ∋ Γ ::= 𝜀 | Γ, 𝑥 : 𝑇 Typing contexts

Member selection (looking up label 𝑙 in value 𝑣 finds definition 𝑑)

𝑣 .𝑙 ↘ 𝑑 ≜ ∃ 𝑥, 𝑑. 𝑣 = 𝜈𝑥 . {𝑑} ∧ lookup 𝑙 (𝑑 [𝑥 := 𝑣]) = 𝑑
Operational semantics (call-by-value head reduction 𝑒 →h 𝑒

′
, and its closure 𝑒 →t 𝑒

′
over contexts)

(𝜆𝑥 . 𝑒) 𝑣 →h 𝑒 [𝑥 ≔ 𝑣]
𝑣 .𝑎 ↘ 𝑝

𝑣.𝑎 →h 𝑝
coerce 𝑣 →h 𝑣

𝑒 →h 𝑒
′

𝐾 [𝑒] →t 𝐾 [𝑒 ′]

Fig. 3. pDOT/gDOT syntax and operational semantics. New gDOT constructs have a shaded background.

• Wemotivate extending pDOTwith support for imprecise self types, to enable type abstractions
between mutually recursive objects, despite the known difficulties (Sec. 1.1 and Sec. 3).

• After summarizing the pDOT calculus (Sec. 2), we introduce our new gDOT calculus (Sec. 4).

• We introduce a novel technique, based on step-indexed logical relations, to give a semantic

model of impredicative type members, and use it to prove soundness of gDOT (Sec. 5).

• We demonstrate gDOT’s expressivity by encoding various examples, and demonstrate its

support for data abstraction by proving semantic typing of functions whose correctness relies

on gDOT’s support for data abstraction (Sec. 6).

• We mechanize gDOT and all proofs in this paper in Coq using the Iris framework (Sec. 7).

2 BACKGROUND: PDOT
Before we present gDOT in Sec. 4, we summarize the pDOT calculus [Rapoport and Lhoták 2019],

which gDOT uses as a basis. To simplify the comparison, we use a reformulation of pDOT that is

closer to gDOT, but that is in essence the same as the original calculus.

2.1 Syntax and Operational Semantics
The pDOT and the gDOT calculi share syntax and operational semantics, which are presented

in Fig. 3. For brevity, we ignore primitives like numerals and addition. Unlike in Sec. 1.2, we define

syntactic values and types, not semantic ones (we return to semantic values in Sec. 5.3). pDOT values

are either functions 𝜆𝑥 . 𝑒 or objects 𝜈𝑥 . {𝑑}. An object contains a map from labels to definitions 𝑑 ,

which can reference the whole object through the self variable 𝑥 , modeling the this variable in
Scala. A definition 𝑑 can be a type member {A = 𝑇 }, where 𝐴 is a type label and 𝑇 is a type, or a

term member {𝑎 = 𝑝}, where 𝑎 is a label and 𝑝 is a (pre)path. Though they are central to the type
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Expression typing Γ ⊢ 𝑒 : 𝑇

Γ ⊢ 𝑒 : 𝑇1 Γ ⊢ 𝑇1 <: 𝑇2

Γ ⊢ 𝑒 : 𝑇2
(T-Sub)

𝑥 : 𝑇 ∈ Γ

Γ ⊢ 𝑥 : 𝑇
(T-Var)

Γ ⊢P 𝑝 : 𝑇

Γ ⊢ 𝑝 : 𝑇
(T-Path)

Γ |𝑥 : 𝑇 ⊢ {𝑑} : 𝑇
Γ ⊢ 𝜈𝑥 . {𝑑} : 𝜇𝑥 .𝑇

(T-{}-I)
Γ ⊢ 𝑒 : {a : 𝑇 }
Γ ⊢ 𝑒.a : 𝑇

(T-{}-E)
Γ, 𝑥 : 𝑆 ⊢ 𝑒 : 𝑇 𝑥 ∉ FV(𝑆)

Γ ⊢ 𝜆𝑥. 𝑒 : ∀𝑥 : 𝑆.𝑇
(T-∀-I)

Γ ⊢ 𝑒1 : 𝑆 → 𝑇 Γ ⊢ 𝑒2 : 𝑆
Γ ⊢ 𝑒1 𝑒2 : 𝑇

(T-∀-E)
Γ ⊢ 𝑒 : ∀𝑧 : 𝑆.𝑇 Γ ⊢ 𝑝 : 𝑆

Γ ⊢ 𝑒 𝑝 : 𝑇 [𝑧 ≔ 𝑝]
(T-∀-E𝑝 )

Path typing Γ ⊢P 𝑝 : 𝑇

Γ ⊢ 𝑥 : 𝑇

Γ ⊢P 𝑥 : 𝑇
(P-Var)

Γ ⊢P 𝑝 : 𝑇 [𝑥 ≔ 𝑝]
Γ ⊢P 𝑝 : 𝜇𝑥 .𝑇

(P-𝜇-I)
Γ ⊢P 𝑝 : 𝜇𝑥 .𝑇

Γ ⊢P 𝑝 : 𝑇 [𝑥 ≔ 𝑝]
(P-𝜇-E)

Γ ⊢P 𝑝 : 𝑇1 Γ ⊢P 𝑝 : 𝑇2

Γ ⊢P 𝑝 : 𝑇1 ∧𝑇2
(P-∧-I)

Γ ⊢P 𝑝 : 𝑇 Γ ⊢ 𝑇 <: 𝑈

Γ ⊢P 𝑝 : 𝑈
(P-Sub)

Γ ⊢P 𝑝 : {𝑎 : 𝑇 }
Γ ⊢P 𝑝.𝑎 : 𝑇

(P-Fld-E)
Γ ⊢P 𝑝.𝑎 : 𝑇

Γ ⊢P 𝑝 : {𝑎 : 𝑇 }
(P-Fld-I)

Γ ⊢P 𝑝 : 𝑞.type Γ ⊢P 𝑞 : 𝑇

Γ ⊢P 𝑝 : 𝑇
(P-Sngl-Trans)

Γ ⊢P 𝑝 : 𝑞.type Γ ⊢P 𝑞.𝑎 : 𝑇

Γ ⊢P 𝑝.𝑎 : 𝑞.𝑎.type
(P-Sngl-E)

Definition typing Γ | 𝑥 : 𝑉 ⊢ {𝑑} : 𝑇

Γ, 𝑥 : 𝑉 ⊢ 𝑣 : 𝑇 tight 𝑇
Γ | 𝑥 : 𝑉 ⊢ {𝑎 = 𝑣} : {𝑎 : 𝑇 }

(D-Val)
Γ, 𝑥 : 𝑉 | 𝑧 : 𝑥 .a.type ∧𝑇 ⊢ {𝑑} : 𝑇 tight 𝑇

Γ | 𝑥 : 𝑉 ⊢ {a = 𝜈𝑧. {𝑑}} : {a : 𝜇𝑧.𝑇 }
(D-Val-New)

Γ | 𝑥 : 𝑉 ⊢ {A = 𝑇 } : {A :: 𝑇 .. 𝑇 }
(D-Typ)

Γ, 𝑥 : 𝑉 ⊢P 𝑝 : 𝑇

Γ | 𝑥 : 𝑉 ⊢ {𝑎 = 𝑝} : {𝑎 : 𝑝.type}
(D-Path-Singl)

Γ | 𝑥 : 𝑉 ⊢ {𝑑1} : 𝑇1 Γ | 𝑥 : 𝑉 ⊢ {𝑑2} : 𝑇2 dom𝑑1, dom(𝑑2) disjoint
Γ | 𝑥 : 𝑉 ⊢ {𝑑1;𝑑2} : 𝑇1 ∧𝑇2

(D-And)

Tight (or precise) types tight 𝑇

tight 𝑇 =


𝐿 = 𝑈 if 𝑇 = {A :: 𝐿 .. 𝑈 }
tight 𝑈 if 𝑇 = 𝜇 (𝑥 : 𝑈 ) or 𝑇 = {a : 𝑈 }
tight 𝑈 and tight 𝑉 if 𝑇 = 𝑈 ∧𝑉
True otherwise

Fig. 4. pDOT rules for expression typing, path typing, and definition typing. Path typing is a special case of
expression typing in (p)DOT, but not in our presentation or in gDOT.

system, type members do not affect the operational semantics. Type and term members can be

projected out from objects using member selectors, respectively 𝑒.𝑎 and 𝑝.A. A path is either a value

𝑣 or a selection 𝑝.𝑎. We rely on the type system to reject nonsensical paths such as (𝜆𝑥 . 𝑒).𝑎.
Like in storeless DOT [Amin 2016, Ch. 3], we use a conventional substitution-based call-by-value

semantics. Substitution of variables by values is written as 𝜒 [𝑥 ≔ 𝑣], where 𝜒 ranges over all

syntactic classes. We write 𝑒 →h 𝑒
′
for head reduction, and write 𝑒 →t 𝑒

′
for its closure under call-

by-value evaluation contexts 𝐾 . Head reduction has three rules: the usual call-by-value 𝛽-reduction
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Top, bottom, and intersection types Γ ⊢ 𝑇1 <: 𝑇2

Γ ⊢ 𝑇 <: ⊤ (<:-⊤) Γ ⊢ 𝑇1 ∧𝑇2 <: 𝑇1 (∧1-<:) Γ ⊢ 𝑇1 ∧𝑇2 <: 𝑇2 (∧2-<:) Γ ⊢ ⊥ <: 𝑇 (⊥-<:)

Γ ⊢ 𝑇 <: 𝑈1 Γ ⊢ 𝑇 <: 𝑈2

Γ ⊢ 𝑇 <: 𝑈1 ∧𝑈2

(<:-∧) Γ ⊢ 𝑇 <: 𝑇 (<:-Refl)
Γ ⊢ 𝑆 <: 𝑇 Γ ⊢ 𝑇 <: 𝑈

Γ ⊢ 𝑆 <: 𝑈
(<:-Trans)

Type members
Γ ⊢P 𝑝 : {A :: 𝐿 .. 𝑈 }

Γ ⊢ 𝐿 <: 𝑝.A
(<:-Sel)

Γ ⊢P 𝑝 : {A :: 𝐿 .. 𝑈 }
Γ ⊢ 𝑝.A <: 𝑈

(Sel-<:)

Co/contra-variant subtyping
Γ ⊢ 𝑇 <: 𝑈

Γ ⊢ {𝑎 : 𝑇 } <: {𝑎 : 𝑈 }
(Fld-<:-Fld)

Γ ⊢ 𝐿2 <: 𝐿1 Γ ⊢ 𝑈1 <: 𝑈2

Γ ⊢ {A :: 𝐿1 .. 𝑈1} <: {A :: 𝐿2 .. 𝑈2}
(Typ-<:-Typ)

Γ ⊢ 𝑇2 <: 𝑇1 Γ, 𝑥 : 𝑇2 ⊢ 𝑈1 <: 𝑈2

Γ ⊢ ∀𝑥 : 𝑇1 .𝑈1 <: ∀𝑥 : 𝑇2 .𝑈2

(∀-<:-∀)

Singleton types
Γ ⊢P 𝑝 : 𝑞.type 𝑇1 �

∗
𝑝≔𝑞 𝑇2

Γ ⊢ 𝑇1 <: 𝑇2
(Sngl𝑝𝑞 -<:)

Γ ⊢P 𝑝 : 𝑞.type 𝑇1 �
∗
𝑝≔𝑞 𝑇2

Γ ⊢ 𝑇2 <: 𝑇1
(Sngl𝑞𝑝 -<:)

Fig. 5. pDOT rules for subtyping.

for function values, evaluation of member selectors, and evaluation of coercions coerce. As DOT
objects are recursive, the member lookup relation 𝑣 .𝑙 ↘ 𝑑 for an object 𝑣 = 𝜈𝑥 . {𝑑} substitutes the
self variable 𝑥 by 𝑣 before looking up 𝑙 in the substitution result. Last, coercions applied to values

simply reduce away in one evaluation step, which will become significant in Sec. 5.3. Coercions get

their name because they appear in gDOT’s subsumption rule (T-Sub) in Fig. 6.

2.2 Type System
We now present the DOT (pre)types (Fig. 3) and type system (Fig. 4 and 5). We focus on the typing

rules that are essential to the rest of the paper, and defer to Rapoport and Lhoták [2019] for the

remaining ones. A term in DOT can be typed either with a dependent function type ∀𝑥 : 𝑆.𝑇 ,

where 𝑥 can appear in 𝑇 , a record type {𝑎 : 𝑇 } or {A :: 𝑆. .𝑇 }, a path selection 𝑝.A, a singleton
type 𝑝.type, or an object type 𝜇𝑥 .𝑇 . In addition, pDOT features the usual top (⊤), bottom (⊥), and
intersection (∧) types.5 We use {𝑇 } as sugar for intersections, e.g., we let {A :: 𝐿 .. 𝑈 ; a : 𝑇 } be
syntactic sugar for {A :: 𝐿 .. 𝑈 } ∧ {a : 𝑇 }. Distinct members 𝑇 of type 𝜇𝑥 . {𝑇 } cannot refer to each

other directly, but only through the self variable 𝑥 .

The typing judgments contain a context Γ, which is a list of mappings 𝑥 : 𝑇 from variables 𝑥 to

types 𝑇 . Contexts are dependently typed, but with non-standard scoping: in context Γ1, 𝑥 : 𝑇, Γ2,
the variable 𝑥 is bound not only in Γ2, but also in 𝑇 .

The expression typing judgment Γ ⊢ 𝑒 : 𝑇 (which also covers values), and subtyping judgment

Γ ⊢ 𝑇1 <: 𝑇2, as well as the subsumption rule (T-Sub), are standard. We write Γ ⊢ 𝑇1 <: 𝑇2 <: 𝑇3 for
having both Γ ⊢ 𝑇1 <: 𝑇2 and Γ ⊢ 𝑇2 <: 𝑇3. In our reference version of DOT, we follow WadlerFest

DOT [Amin et al. 2016] and pDOT by leaving out subtyping rules for recursive types, which we

will add back in gDOT in Sec. 4. Dependent function types ∀𝑥 : 𝑆.𝑇 support standard rules for

contravariant subtyping and introduction. Non-dependent functions can be applied to an arbitrary

5
Some versions of DOT [Rompf and Amin 2016] have union (∨) types, but pDOT does not. We readd union types in gDOT.
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argument expression using (T-∀-E). Dependent functions can only be applied to a path 𝑝 using

(T-∀-E𝑝 ) as we can only substitute paths into types using path substitution 𝑇 [𝑥 ≔ 𝑝].
Typing of object values 𝜈𝑥 . {𝑑} in rule (T-{}-I) depends on the definition typing judgment Γ |𝑥 : 𝑉 ⊢

{𝑑} : 𝑇 . Here, the binding for the self variable 𝑥 : 𝑉 (which refers to the object being constructed)

is placed in a stoup (i.e., one-element context) instead of the context Γ because it has a special role

in rules (D-Val) and (D-Val-New) to type value definitions. These rules require constructed objects

to have precise self types by using Rapoport and Lhoták’s predicate tight 𝑇 [2019].

Paths 𝑝 are the only terms that can appear in types, through selections 𝑝.A and singleton types

𝑝.type. Paths 𝑝 that appear in types always start with a variable, i.e., they do not contain values.

Paths are typed using the path typing judgment Γ ⊢P 𝑝 : 𝑇 , which, unlike expression typing, also

guarantees that evaluating 𝑝 terminates. Intuitively, a type selection 𝑝.A refers to the type definition

for member A in the result of evaluating 𝑝 . However, rules (Sel-<:) and (<:-Sel) relate 𝑝.A only to

the upper and lower bound of A in the type of 𝑝 , not the definition of 𝐴: this ensures that abstract

types are indeed abstract. Finally, (Typ-<:-Typ) enables making a type member of 𝑝 (more) abstract,

by simply upcasting 𝑝 .

Intuitively, the singleton type 𝑝.type contains a value 𝑣 if path 𝑝 is statically guaranteed to

evaluate to 𝑣 . We say that two paths 𝑝 and 𝑞 alias each other when Γ ⊢P 𝑝 : 𝑞.type is derivable,

which guarantees that both 𝑝 and 𝑞 evaluate to the same value. Aliases can be created among

others using rule (D-Val-New), which combines (D-Val) and (T-{}-I), but also records that 𝑧 and

𝑥 .𝑎 are aliases. Aliasing can be hidden through (P-Sngl-Trans): if 𝑥 is initialized with 𝑝 , but 𝑥 ’s

type is not a subtype of 𝑝.type, then 𝑥 will not alias 𝑝 . The rules (Sngl𝑝𝑞-<:) and (Sngl𝑞𝑝 -<:) use

the relation 𝑇 �∗𝑝≔𝑞 𝑈 , which is the reflexive transitive closure of Rapoport and Lhoták’s path

replacement [2019]. Informally, 𝑇 �∗𝑝≔𝑞 𝑈 means that zero or more occurrences of 𝑝 in 𝑇 are

replaced by 𝑞 in𝑈 , with the rest of 𝑇 , including any other occurrence of 𝑝 , left unchanged.

3 UNSOUNDNESS OF DOTWITH IMPRECISE SELF TYPES
As discussed in Sec. 1.1, imprecise self types are useful to support certain forms of information

hiding, but current versions of DOT do not support them soundly. In this section we indicate why

the restriction to tight (or precise) types (see Fig. 4) excludes the example in Fig. 2 from Sec. 1.1, but

is necessary for soundness of current versions of DOT.

To construct a typing derivation for the example in Fig. 2 we initially give type members such

as {TypeRef = (pcore.types.Type∧ {symb : pcore.symbols.Symbol})} a concrete type, i.e., we give
them exact lower and upper bounds. This is needed to type constructors such as newTypeRef, as
their bodies need to know the concrete types of the objects they construct. The bodies of symbols
and types are then typed using (T-{}-I). Since these bodies still have concrete types, we need the

subsumption rule (T-Sub) to upcast them to give them types 𝑆 and 𝑇 in which type members like

TypeRef are abstract. Finally, we need (D-Val) to type {symbols : 𝑆} and {types : 𝑇 } for the right
types 𝑆 and𝑇 , but this is impossible— since 𝑆 and𝑇 contain abstract types, they violate the tight 𝑇
side-condition on (D-Val), which prevents typing this example.

Unfortunately, as shown by Rapoport and Lhoták [2019], removing this side-condition is unsound,

similarly to other desirable generalizations of DOT rules. We discuss two such generalizations:

• Seemingly, to type our example, one could type {symbols : 𝑆 ′} and {types : 𝑇 ′} with tight

types 𝑇 ′
and 𝑆 ′ using (D-Val), and upcast them via subsumption to non-tight types 𝑇 and 𝑆 .

But this attempt fails, because DOT lacks the following subsumption rule for term members:

Γ | 𝑥 : 𝑉 ⊢ {𝑎 = 𝑝} : {𝑎 : 𝑇1} Γ, 𝑥 : 𝑉 ⊢ 𝑇1 <: 𝑇2
Γ | 𝑥 : 𝑉 ⊢ {𝑎 = 𝑝} : {𝑎 : 𝑇2}

(D-Path-Sub-Bad)
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Amin [2016, Sec. 3.5.5] showed that such a rule is unsound.

• The rule (D-Typ) restricts type members {A = 𝑇 } to have tight types {A :: 𝑇 .. 𝑇 }. One may

wonder if this rule could be generalized to non-tight bounds as follows:

Γ, 𝑥 : 𝑉 ⊢ 𝐿 <: 𝑇 Γ, 𝑥 : 𝑉 ⊢ 𝑇 <: 𝑈

Γ | 𝑥 : 𝑉 ⊢ {A = 𝑇 } : {A :: 𝐿 .. 𝑈 }
(D-Typ-Abs-Bad)

Amin [2016, Sec. 3.5.5] showed that such a rule is unsound as well.

All these rules break DOT type soundness in a similar way. A closed value with type {A :: 𝐿 ..𝑈 }
is a witness that 𝐿 <: 𝑈 , and allows upcasting 𝐿 to 𝑈 . Closed values with bad bounds [Amin

2016], such as ⊤ <: ⊥, enable casting values across arbitrary types, and thereby breaking type

soundness. All of the aforementioned unsound rules enable constructing closed values with type

𝜇_. {A :: ⊤ ..⊥}, from which one can deduce the inconsistent subtyping ⊤ <: ⊥. For example, using

the unsound rule (D-Typ-Abs-Bad) displayed above, one can show that 𝜈𝑥 . {A = ⊤} has said type:

𝑥 : {A :: ⊤ .. ⊥} ⊢ ⊤ <: ⊤ <: ⊥
𝜀 | 𝑥 : {A :: ⊤ .. ⊥} ⊢ {A = ⊤} : {A :: ⊤ .. ⊥}

(D-Typ-Abs-Bad)

𝜀 ⊢ 𝜈𝑥 . {A = ⊤} : 𝜇𝑥 . {A :: ⊤ .. ⊥}
(T-{}-I)

In the premise of (T-{}-I), the context is extended with an unsound subtyping witness, the self

variable 𝑥 . This witness enables proving ⊤ <: ⊥, hence proving (unsoundly) that type definition
{A = ⊤} is between its bounds.

To rule out such unsound circular derivations, all previous calculi in the DOT family use the

same solution— they restrict object creation to tight (i.e., precise) self types, so that rule (T-{}-I)

becomes sound. If𝑇 is a precise self type, it can only carry proofs for subtypings of the form𝑈 <: 𝑈 ,

which are always true. To enforce this restriction, DOT puts the tight 𝑇 side-condition on (D-Val),

and eschews rules like (D-Path-Sub-Bad) and (D-Typ-Abs-Bad). While this ensures soundness, it

rules out imprecise self types, and therefore useful forms of data abstraction.

Our gDOT calculus takes a different route— it imposes a guardedness condition on the self

variable to ensure it is not used in circular way. Hence, we can soundly support imprecise self types,

i.e., allow variants of rules like (D-Val) without the tight 𝑇 side-condition, and (D-Path-Sub-Bad)

and (D-Typ-Abs-Bad). To realize such a guardedness condition, we give the self variable a different

and weaker type. Since DOT provides no suitable candidate, we will extend the language of DOT

types. These changes enable us to type examples including the one in Fig. 2 from Sec. 1.1.

Does this make Scala unsound? One might wonder if the aforementioned counterexamples to

type soundness affect Scala’s support for imprecise self types; but we are unable to encode the

counterexamples in Scala. To the best of our understanding, that is because counterexamples, like

𝜈𝑥 . {A = ⊤} from this section, rely on transitivity of subtyping to deduce 𝑥 : {A :: 𝐿 .. 𝑈 } ⊢ 𝐿 <: 𝑈

from 𝑥 : {A :: 𝐿 .. 𝑈 } ⊢ 𝐿 <: 𝑥 .A <: 𝑈 . This use of transitivity is not admissible the Scala compiler’s

(i.e., Dotty’s) algorithmic type system [Hu and Lhoták 2020; Nieto 2017]. Nevertheless, it is not

at all clear that all such counterexamples are forbidden by Dotty, nor how to prove soundness of

imprecise self types by relying on the absence of transitivity.

4 THE GDOT TYPE SYSTEM
To support imprecise self types while avoiding the soundness problems from Sec. 3, our guarded

DOT (gDOT) calculus imposes a guardedness condition that ensures that the self variable 𝑥 in

recursive objects 𝜈 (𝑥 : 𝑇 ). {𝑑} is not used in a cyclic way. We enforce this condition by extending

DOT with a “later” type operator (⊲), so that 𝑥 can be given type ⊲𝑇 instead of 𝑇 . The type ⊲𝑇 is
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weaker than 𝑇 , in the sense that it cannot be used directly in the construction of the object’s body

𝑑 . Instead, one needs to take a program step to eliminate the later, i.e., to turn ⊲𝑇 into 𝑇 . The most

prominent places where the later type (⊲) appears in gDOT are:

Γ | 𝑥 : ⊲𝑇 ⊢ {𝑑} : 𝑇
Γ ⊢ 𝜈𝑥 . {𝑑} : 𝜇𝑥 .𝑇

Γ, 𝑥 : 𝑉 , 𝑧 : 𝑆 ⊢ 𝑡 : 𝑇 𝑧 ∉ FV(𝑆)
Γ | 𝑥 : ⊲𝑉 ⊢ {a = 𝜆𝑧. 𝑡} : {a : ∀𝑧 : 𝑆.𝑇 }

Γ ⊢ 𝑒 : ⊲𝑇
Γ ⊢ coerce 𝑒 : 𝑇

The first rule is gDOT version of the introduction rule for recursive objects (T-{}-I), which puts

𝑥 : ⊲𝑉 instead of 𝑥 : 𝑉 in the context. The later can be eliminated using the other rules— either by

constructing a function, or by taking an explicit step using gDOT’s coerce construct.
Our use of the later type operator (⊲) is inspired by, and reflects into gDOT, the later modality (⊲)

in step-indexed (program) logics such as Iris (as we will see in Sec. 5.3). Such logics provide the

principle of Löb induction, which allows proving proposition 𝑃 under the induction hypothesis ⊲ 𝑃 ,

and which we use to prove (T-{}-I) sound. In Löb induction, the later in the induction hypothesis

⊲ 𝑃 can be eliminated by taking a program step.

By ensuring that self variables are only used in a guarded way, we can remove the tight 𝑇 side-

condition of rules (D-Val) and (D-Val-New), generalize (D-Path) to (D-Path-Singl), and add sound

versions of (D-Typ-Abs-Bad) and (D-Path-Sub-Bad) to gDOT. Such rules become sound because

rule (T-{}-I) only types the self variable as ⊲𝑉 , and thereby prevents unsound circular derivations.

Notably, the counterexamples from Sec. 3 are ruled out because it is impossible to deduce ⊤ <: ⊥
from 𝑥 : ⊲ {𝐴 :: ⊤ .. ⊥}, just like one cannot deduce False from ⊲ False in step-indexed logics.

Using gDOT’s sound version of (D-Val-New), the example in Fig. 2 becomes well-typed without

changes: imprecise self types enable hiding the definition of TypeRef and Symbol from each other,

ensuring mutual information hiding.

The typing rules and subtyping rules of gDOT are displayed in Fig. 6 and 7. In this section we

highlight some of the important parts. To enable flexible bookkeeping of laters, we generalize the

subtyping and path typing judgments to their delayed variants (Sec. 4.1). We explain the guardedness

restrictions gDOT imposes on type selectors (Sec. 4.2), and how laters can be eliminated through

function introduction (Sec. 4.3). We show that in addition to aforementioned new rules, gDOT also

supports a number of other rules that prior versions of DOT did not support (Sec. 4.4).

4.1 Delayed Judgments
Upon inspiration by Pfenning and Davies [2001], we extend subtyping Γ ⊢ 𝑆 i<: j 𝑇 and path typing

Γ ⊢P 𝑝 :
i 𝑇 judgments with so called delays 𝑖, 𝑗 ∈ N, allowing one to deal with laters flexibly.

Most of gDOT’s delayed subtyping rules are generalizations of pDOT rules to arbitrary delays,

except for a guardedness restriction in (Sel-<:) (see Sec. 4.2). As such, delayed subtyping Γ ⊢ 𝑆 i<: j 𝑇

with 𝑖 = 𝑗 = 0 corresponds to ordinary subtyping Γ ⊢ 𝑆 <: 𝑇 . In addition, the rules (Later-<:),

(<:-Later) make it possible to push laters into the delay, and (<:-Add-Later) ensures that ⊲𝑇

is a supertype of 𝑇 . From (Later-<:), (<:-Later), and transitivity, we obtain Γ ⊢ 𝑆 i<: j 𝑇 iff

Γ ⊢ ⊲𝑖 𝑆 <: ⊲ 𝑗 𝑇 . One may thus wonder why not always use Γ ⊢ ⊲𝑖 𝑆 <: ⊲ 𝑗 𝑇 ? The reason is

that application of rules like (∧1-<:) may be blocked by occurrences of later, but by using delayed

subtyping we can push the laters into the delay and unblock such rules.

Using gDOT’s subsumption rule (T-Sub), given Γ ⊢ 𝑇1 0<: i 𝑇2 we can coerce an expression 𝑒

of type 𝑇1 into coerce𝑖 𝑒 of type 𝑇2. Coercions are not allowed in paths, so gDOT’s subsumption

rule (P-Sub) for path typing is different— it involves the delayed path typing judgment Γ ⊢P 𝑝 :
i 𝑇 ,

which tracks of the number of delays obtained from delayed subsumption.
6
We can derive rule

(P-Later), saying that that Γ ⊢P 𝑝 :
i ⊲𝑇 implies Γ ⊢P 𝑝 :

i+1 𝑇 , but not the converse.

6
Rule (P-Sub) is restricted, so that it cannot reduce the judgment index 𝑖 , for reasons due to our semantic model.
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Expression typing (rules (T-Var), (T-{}-E), (T-∀-E), and (T-∀-E𝑝 ) are unchanged and thus elided) Γ ⊢ 𝑒 : 𝑇

Γ ⊢ 𝑒 : 𝑇1 Γ ⊢ 𝑇1 0<: i 𝑇2

Γ ⊢ coerce𝑖 𝑒 : 𝑇2
(T-Sub)

Γ ⊢P 𝑝 :
0 𝑇

Γ ⊢ 𝑝 : 𝑇
(T-Path)

Γ | 𝑥 : ⊲ 𝑇 ⊢ {𝑑} : 𝑇
Γ ⊢ 𝜈𝑥 . {𝑑} : 𝜇𝑥 .𝑇

(T-{}-I)

Γ1 ≫⊲ Γ2 Γ2, 𝑥 : 𝑆 ⊢ 𝑒 : 𝑇 𝑥 ∉ FV(𝑆)
Γ1 ⊢ 𝜆𝑥 . 𝑒 : ∀𝑥 : 𝑆.𝑇

(T-∀-I-Strong)

Path typing (rule (P-∧-I) is derivable) Γ ⊢P 𝑝 :
i 𝑇

Γ ⊢ 𝑥 : 𝑇

Γ ⊢P 𝑥 :
0 𝑇

(P-Var)
Γ ⊢P 𝑝 :

i 𝑇 [𝑧 ≔ 𝑝]
Γ ⊢P 𝑝 :

i 𝜇𝑧.𝑇
(P-𝜇-I)

Γ ⊢P 𝑝 :
i 𝜇𝑧.𝑇

Γ ⊢P 𝑝 :
i 𝑇 [𝑧 ≔ 𝑝]

(P-𝜇-E)

Γ ⊢P 𝑝 :
i 𝑇 Γ ⊢ 𝑇 i<: i+j 𝑈

Γ ⊢P 𝑝 :
i+j 𝑈

(P-Sub)
Γ ⊢P 𝑝 :

i {a : 𝑇 }
Γ ⊢P 𝑝.a :

i 𝑇
(P-Fld-E)

Γ ⊢P 𝑝.a :
i 𝑇

Γ ⊢P 𝑝 :
i {a : 𝑇 }

(P-Fld-I)

Γ ⊢P 𝑝 :
i 𝑞.type Γ ⊢P 𝑞 :

i 𝑇

Γ ⊢P 𝑝 :
i 𝑇

(P-Sngl-Trans)
Γ ⊢P 𝑝 :

i 𝑞.type Γ ⊢P 𝑞.a :
i 𝑇

Γ ⊢P 𝑝.a :
i 𝑞.a.type

(P-Sngl-E)

Γ ⊢P 𝑝 :
i 𝑇

Γ ⊢P 𝑝 :
i 𝑝.type

(P-Sngl-Refl)
Γ ⊢P 𝑝 :

i 𝑞.type

Γ ⊢P 𝑞 :
i ⊤

(P-Sngl-Inv)

Definition typing (rule (D-Path-Singl) is derivable) Γ | 𝑥 : 𝑉 ⊢ {𝑑} : 𝑇

Γ, 𝑥 : 𝑉 ⊢ 𝑣 : 𝑇
Γ | 𝑥 : 𝑉 ⊢ {a = 𝑣} : {a : 𝑇 }

(D-Val)
Γ, 𝑥 : 𝑉 | 𝑧 : 𝑥 .a.type ∧ ⊲ 𝑇 ⊢ {𝑑} : 𝑇
Γ | 𝑥 : 𝑉 ⊢ {a = 𝜈𝑧. {𝑑}} : {a : 𝜇𝑧.𝑇 }

(D-Val-New)

Γ, 𝑥 : 𝑉 ⊢ ⊲ 𝐿 0<:0 ⊲𝑇 Γ, 𝑥 : 𝑉 ⊢ ⊲𝑇 0<:0 ⊲𝑈

Γ | 𝑥 : 𝑉 ⊢ {A = 𝑇 } : {A :: 𝐿 .. 𝑈 }
(D-Typ-Abs)

Γ, 𝑥 : 𝑉 ⊢P 𝑝 :
0 𝑇

Γ | 𝑥 : 𝑉 ⊢ {a = 𝑝} : {a : 𝑇 }
(D-Path)

Γ | 𝑥 : 𝑉 ⊢ {a = 𝑝} : {a : 𝑇1} Γ, 𝑥 : 𝑉 ⊢ 𝑇1 0<:0 𝑇2

Γ | 𝑥 : 𝑉 ⊢ {a = 𝑝} : {a : 𝑇2}
(D-Path-Sub)

Γ | 𝑥 : 𝑉 ⊢ {𝑑1} : 𝑇1 Γ | 𝑥 : 𝑉 ⊢ {𝑑2} : 𝑇2 dom(𝑑1), dom(𝑑2) disjoint
Γ | 𝑥 : 𝑉 ⊢ {𝑑1;𝑑2} : 𝑇1 ∧𝑇2

(D-And)

Notable derivable typing rules

Γ ⊢ 𝑒 : 𝑝.A Γ ⊢P 𝑝 :
i {A :: 𝐿 .. 𝑈 }

Γ ⊢ coerce 𝑖+1 𝑒 : 𝑈
(T-Sel-Unfold)

Γ, 𝑥 : 𝑆 ⊢ 𝑒 : 𝑇 𝑥 ∉ FV(𝑆)
Γ ⊢ 𝜆𝑥 . 𝑒 : ∀𝑥 : 𝑆.𝑇

(T-∀-I)

Γ ⊢P 𝑝 :
i 𝑇1 Γ ⊢P 𝑝 :

i 𝑇2

Γ ⊢P 𝑝 :
i 𝑇1 ∧𝑇2

(P-∧-I)
Γ ⊢P 𝑝 :

i ⊲𝑇

Γ ⊢P 𝑝 :
i+1 𝑇

(P-Later)
Γ ⊢P 𝑝 :

i 𝑞.type

Γ ⊢P 𝑞 :
i 𝑝.type

(P-Sngl-Sym)

Γ, 𝑥 : 𝑉 ⊢P 𝑝 : 𝑇

Γ | 𝑥 : 𝑉 ⊢ {𝑎 = 𝑝} : {𝑎 : 𝑝.type}
(D-Path-Singl)

Γ, 𝑥 : 𝑉 , 𝑧 : 𝑆 ⊢ 𝑡 : 𝑇 𝑧 ∉ FV(𝑆)
Γ | 𝑥 : ⊲ 𝑉 ⊢ {a = 𝜆𝑧. 𝑡} : {a : ∀𝑧 : 𝑆.𝑇 }

(D-∀)

Fig. 6. gDOT rules for expression typing, path typing, and definition typing.
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Bounded, distributive subtyping lattice Γ ⊢ 𝑇1 i<:
j
𝑇2

Γ ⊢ 𝑇 i<: i ⊤ (<:-⊤) Γ ⊢ 𝑇1 ∧𝑇2 i<: i 𝑇1 (∧1-<:) Γ ⊢ 𝑇1 ∧𝑇2 i<: i 𝑇2 (∧2-<:) Γ ⊢ ⊥ i<: i 𝑇 (⊥-<:)

Γ ⊢ 𝑇 i<: j 𝑈1 Γ ⊢ 𝑇 i<: j 𝑈2

Γ ⊢ 𝑇 i<: j 𝑈1 ∧𝑈2

(<:-∧) Γ ⊢ 𝑇 i<: i 𝑇 (<:-Refl)
Γ ⊢ 𝑆 i<: j 𝑇 Γ ⊢ 𝑇 j<:k 𝑈

Γ ⊢ 𝑆 i<:k 𝑈
(<:-Trans)

Γ ⊢ 𝑇1 i<: i 𝑇1 ∨𝑇2 (<:-∨1) Γ ⊢ 𝑇2 i<: i 𝑇1 ∨𝑇2 (<:-∨2)
Γ ⊢ 𝑇1 i<: j 𝑈 Γ ⊢ 𝑇2 i<: j 𝑈

Γ ⊢ 𝑇1 ∨𝑇2 i<: j 𝑈
(∨-<:)

Γ ⊢ (𝑆 ∨𝑇 ) ∧𝑈 i<: i (𝑆 ∧𝑈 ) ∨ (𝑇 ∧𝑈 ) (Distr-∧-∨)

Later types

Γ ⊢ ⊲𝑇 i<: i+1 𝑇 (Later-<:) Γ ⊢ 𝑇 i+1<: i ⊲𝑇 (<:-Later) Γ ⊢ 𝑇 i<: i ⊲𝑇 (<:-Add-Later)

Type members
Γ ⊢P 𝑝 :

i {A :: 𝐿 .. 𝑈 }
Γ ⊢ ⊲ 𝐿 i<: i 𝑝.A

(<:-Sel)
Γ ⊢P 𝑝 :

i {A :: 𝐿 .. 𝑈 }
Γ ⊢ 𝑝.A i<: i ⊲ 𝑈

(Sel-<:)

Recursive types

Γ, 𝑥 : ⊲𝑖 𝑇1 ⊢ 𝑇1 i<: j 𝑇2

Γ ⊢ 𝜇𝑥 .𝑇1 i<: j 𝜇𝑥 .𝑇2
(𝜇-<:-𝜇)

𝑥 ∉ 𝑇

Γ ⊢ 𝜇𝑥 .𝑇 i<: i 𝑇
(𝜇-<:)

𝑥 ∉ 𝑇

Γ ⊢ 𝑇 i<: i 𝜇𝑥 .𝑇
(<:-𝜇)

Co/contra-variant subtyping
Γ ⊢ 𝑇 i<: i 𝑈

Γ ⊢ {a : 𝑇 } i<: i {a : 𝑈 }
(Fld-<:-Fld)

Γ ⊢ ⊲ 𝐿2
i<: i ⊲ 𝐿1 Γ ⊢ ⊲𝑈1

i<: i ⊲𝑈2

Γ ⊢ {A :: 𝐿1 .. 𝑈1} i<: i {A :: 𝐿2 .. 𝑈2}
(Typ-<:-Typ)

Γ ⊢ ⊲𝑇2
i<: i ⊲𝑇1 Γ, 𝑥 : ⊲𝑖+1𝑇2 ⊢ ⊲𝑈1

i<: i ⊲𝑈2

Γ ⊢ ∀𝑥 : 𝑇1 .𝑈1

i<: i ∀𝑥 : 𝑇2 .𝑈2

(∀-<:-∀)

Singleton types (rule (Sngl𝑞𝑝 -<:) is derivable and thus elided)

Γ ⊢P 𝑝 :
i 𝑞.type 𝑇1 �

∗
𝑝≔𝑞 𝑇2

Γ ⊢ 𝑇1 i<: i 𝑇2
(Sngl𝑝𝑞 -<:)

Γ ⊢P 𝑝 :
i 𝑇 Γ ⊢ 𝑝.type i<: i 𝑞.type

Γ ⊢ 𝑞.type i<: i 𝑝.type
(Sngl-<:-Sym)

Γ ⊢P 𝑝 :
i 𝑇

Γ ⊢ 𝑝.type i<: i 𝑇
(Sngl-<:-Self)

Notable derivable subtyping rules

Γ ⊢ 𝑇1 i+1<: j+1 𝑇2

Γ ⊢ ⊲𝑇1
i<: j ⊲𝑇2

(<:-Later-Shift)
Γ, 𝑥 : ⊲𝑖 𝑇1 ⊢ 𝑇1 i<: j 𝑇2

Γ ⊢ 𝜇𝑥 .𝑇1 i<: j 𝑇2
(Bind-1)

Γ, 𝑥 : ⊲𝑖 𝑇1 ⊢ 𝑇1 i<: j 𝑇2

Γ ⊢ 𝑇1 i<: j 𝜇𝑥 .𝑇2
(Bind-2)

Fig. 7. gDOT rules for subtyping.

As an example, using delayed typing we can build derivations similar to:

Γ ⊢ ⊲ (𝑇1 ∧𝑇2) <: ⊲𝑇1
Γ ⊢ 𝑥 : 𝜇𝑧. {a : ⊲ {A :: 𝐿 .. 𝑧.b.B}; b : {B :: 𝐿′ .. 𝑈 }}

Γ ⊢ ⊲ 𝑥 .a.A <: ⊲2 𝑥 .b.B <: ⊲3𝑈
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4.2 Type Selections
The rules (<:-Sel) and (Sel-<:) for selectors derive Γ ⊢ ⊲ 𝐿 i<: i 𝑝.A and Γ ⊢ 𝑝.A i<: i ⊲𝑈 from

Γ ⊢P 𝑝 :
i {A :: 𝐿 .. 𝑈 }. These rules include a guardedness restriction in the form of a later, as

imposed by our semantic model. Intuitively, the model imposes this restriction because semantic

types occur under a later operator (▶) in the recursive domain equation (Sec. 1.2).

The presence of the later makes rule (Sel-<:) weaker than the corresponding rule in pDOT.

Luckily, we can adapt programs by inserting laters and eliminating them through our expression

subsumption rule, as shown by rule (T-Sel-Unfold), which is derived as follows:

Γ ⊢ 𝑒 : 𝑝.A

Γ ⊢P 𝑝 :
i {A :: 𝐿 .. 𝑈 }

Γ ⊢ 𝑝.A i<: i ⊲𝑈
(Sel-<:)

Γ ⊢ ⊲𝑈 i<: i+1 𝑈

Γ ⊢ 𝑝.A 0<: i 𝑝.A i<: i+1 𝑈

Γ ⊢ coerce𝑖+1 𝑒 : 𝑈
(T-Sub)

We believe all pDOT programs can be adapted to gDOT in this fashion, as discussed in Sec. 9.

Dual to the rules (<:-Sel) and (Sel-<:), which only give the bounds 𝐿 and𝑈 of 𝑝 : {A :: 𝐿 .. 𝑈 }
under a later, the rule (D-Typ-Abs) for introduction of type members {A = 𝑇 } : {A :: 𝐿 .. 𝑈 } only
requires subtyping of 𝑇 with respect to bounds 𝐿 and𝑈 under a later.

4.3 Function Introduction
The rule (T-∀-I-Strong) enables eliminating a later from each variable in the context when in-

troducing a function. At the core of this rule we find the judgment Γ1 ≫⊲ Γ2, which is defined as

the reflexive congruence closure under ⊲, ∧ and ∨ over ⊲𝑇 ≫⊲ 𝑇 . While rule (D-∀) is a common

special case of (T-∀-I-Strong), stripping a later from the typing contexts created by (D-Val-New)

requires the additional generality of (T-∀-I-Strong).

4.4 Other Typing Rules
Distributivity. Rule (Distr-∧-∨), together with other derived rules, makes gDOT’s subtyping a

lattice distributive, helping to deal with the interaction of intersection and union types.
7
This rule

revealed itself necessary in Sec. 6.3. For lack of space, we omit here other (primitive and derived)

typing rules that help distribute certain type constructors over each other.

Recursive Types. gDOT supports subtyping for recursive types [Rompf and Amin 2016], via rule

(𝜇-<:-𝜇) (cf. Rompf and Amin’s rule (BindX)), and allows one to drop unused 𝜇 binders via rules

(𝜇-<:) and (<:-𝜇). The latter rules enable one to derive Rompf and Amin’s rule (Bind1) and their

conjectured rule (Bind2). These rules are absent from WadlerFest DOT and pDOT, requiring the

insertion of redundant let bindings in some programs.

Singleton Types. Unlike in pDOT, gDOT path aliasing is reflexive and symmetric, as it is in Scala.

Moreover, gDOT has various rules from Scala that are missing in pDOT (and that are to the best of

our knowledge not derivable there):

• Aliasing is reflexive, i.e., any well-typed path aliases itself (P-Sngl-Refl).

• If 𝑝 aliases 𝑞, i.e., Γ ⊢P 𝑝 :
i 𝑞.type, then 𝑞 is well-typed (P-Sngl-Inv).

• Aliasing is symmetric (Sngl-<:-Sym).

• Singleton type 𝑝.type is a subtype of any type 𝑇 of 𝑝 (Sngl-<:-Self).

Using (P-Sngl-Refl) and (Sngl-<:-Self) we derive pDOT’s primitive rule (P-∧-I). Using all four

rules we derive (P-Sngl-Sym), which in turn gives pDOT’s primitive rule (Sngl𝑞𝑝 -<:).

7
The dual rule of (Distr-∧-∨) is derivable using a standard proof.
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5 SEMANTIC SOUNDNESS
We define a semantic model using the technique of logical relations to prove type soundness of

gDOT: well-typed expressions do not go wrong, i.e., they are safe in the following sense:

Definition 5.1 (Safety). A term 𝑒 is safe, if, for all 𝑒 ′ such that 𝑒 →∗
t 𝑒

′, term 𝑒 ′ is not stuck, that
is, 𝑒 ′ is either a value or 𝑒 ′ can reduce.

Theorem 5.2 (Type soundness). If 𝜀 ⊢ 𝑒 : 𝑇 , then 𝑒 is safe.

The main ingredient of a semantic soundness proof is the semantic typing judgment Γ ⊨ 𝑒 : 𝑇 ,
which expresses what programs are safe in terms of their behavior. The semantic typing judgment

is different and more flexible than syntactic typing judgment Γ ⊢ 𝑒 : 𝑇 , which is defined inductively

and dictates what programs are safe using a fixed set of rules. First, we can prove each typing rule

as a lemma. For example, the rule (D-Val) becomes the lemma:

Γ, 𝑥 : ⊲𝑉 ⊨ 𝑣 : 𝑇 implies Γ | 𝑥 : 𝑉 ⊨ {𝑎 = 𝑣} : {𝑎 : 𝑇 }

Stating typing rules as lemmas on a semantic model has a tangible benefit— it enables varying

existing rules and experimenting with new rules. The semantic model will suggest necessary

restrictions or generalizations to make these rules sound. This is how we designed many of the

new typing rules of gDOT in Sec. 4.

Second, beyond proving typing lemmas, we can prove semantic typing judgments for programs

that are not syntactically well-typed, e.g., for programs that make use of unsafe casts whose

correctness relies on (g)DOT’s support for data abstraction. In Sec. 6 we give examples of proofs

for such programs, including the function typeFromTypeRefUnsafe from Sec. 1.1.

We now highlight interesting aspects to our semantic model. As explained in Sec. 1.2, to define

the semantic typing judgment Γ ⊨ 𝑒 : 𝑇 , one needs to define a mapping from syntactic types 𝑇

to semantic types VJ𝑇 K ∈ SemType, which express what values are safe for a given type 𝑇 . To

model impredicative type members in (g)DOT, we can use step-indexing to model SemType as the
solution to the recursive domain equation Eq. (Domain) (ignoring paths and primitives):

SemType = (Var → SemVal) → SemVal → iProp

SemVal � Var +
{
𝜆𝑥 . 𝑒

}
+ (Label fin−⇀ (▶SemType + SemVal))

This recursive domain equation could in principle be solved directly in Iris (see Sec. 1.2). However,

we will solve it indirectly. Instead of letting values contain semantic types, we let values contain

so-called stamps, which refer to semantic types indirectly through a stamping context, which in turn

appears in the domain of semantic types in Iris. We can thus keep the syntax of values first-order

(which aids mechanization in Coq), and reuse Iris’s support for saved predicates [Jung et al. 2016].

This section is organized as follows. We describe the version of gDOT with stamps— called

stamped gDOT — in Sec. 5.1, the Iris logic in Sec. 5.2, and finally our semantic model in Sec. 5.3.

5.1 Stamped gDOT
To enable reasoning about syntactic and semantic values in a uniform way, we introduce a new

variant of gDOT, called stamped gDOT. In contrast to unstamped gDOT (the variant of gDOT that

we have used until now), type definitions in stamped gDOT store types only indirectly—values

store stamps, i.e., identifiers that are mapped to types by a stamping context that appears in the

typing judgment. In this section we present a syntactic version of stamped gDOT, whose stamping

context maps stamps to syntactic types. In Sec. 5.3, to construct the semantic model of gDOT, we

present a semantic version, whose stamping context maps stamps to semantic types.
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⊲-Intro

𝑃 ⊢I ⊲ 𝑃

⊲-Mono

𝑃 ⊢I 𝑄
⊲ 𝑃 ⊢I ⊲𝑄

⊲-Impl

⊲(𝑃 ⇒ 𝑄) ⊢I (⊲ 𝑃 ⇒ ⊲𝑄)
Impl-⊲

(⊲ 𝑃 ⇒ ⊲𝑄) ⊢I ⊲(𝑃 ⇒ 𝑄)

Löb

(⊲ 𝑃 ⇒ 𝑃) ⊢I 𝑃
Saved-Pred-Agree

(𝑠 { 𝜑1) ∧ (𝑠 { 𝜑2) ⊢I ⊲(𝜑1 = 𝜑2)

Fig. 8. A selection of proof rules of the considered fragment of Iris.

To disambiguate between unstamped and stamped gDOT, we color the syntax of unstamped

gDOT in blue, and that of stamped gDOT in purple. Unstamped and stamped gDOT share their

syntax except for definition bodies, which are respectively:

DefBody ∋ 𝑑 ::= 𝑝 | 𝑇 DefBody ∋ 𝑑 ::= 𝑝 | 𝜎, 𝑠
No distinction is needed between unstamped and stamped types, because types cannot contain

values or definitions. In stamped gDOT definitions, stamps 𝑠 ∈ Stamp are simply identifiers, and

are accompanied by a deferred substitution 𝜎 that accumulates the substitutions applied to the value

containing the definition. Stamps 𝑠 are mapped to types 𝑇 by a stamping context 𝑔. The syntax of
deferred substitutions and stamping contexts is:

Subst ∋ 𝜎 ::= ∅ | 𝜎, 𝑥 := 𝑣 StampCtx ∋ 𝑔 ::= ∅ | 𝑔, 𝑠 := 𝑇
The typing judgments of stamped gDOT resemble those of unstamped gDOT, but are additionally

indexed by a stamping context 𝑔, which is threaded unchanged through all typing rules. Rule

(D-Typ-Abs) is modified, to retrieve the type definition using stamps and deferred substitution:

𝑇 = 𝑔(𝑠) [𝜎] Γ, 𝑥 : ⊲𝑉 ⊢𝑔 ⊲ 𝐿 0<:0 ⊲𝑇 Γ, 𝑥 : ⊲𝑉 ⊢𝑔 ⊲𝑇 0<:0 ⊲𝑈

Γ | 𝑥 : 𝑉 ⊢𝑔 {A = 𝜎, 𝑠} : {A :: 𝐿 .. 𝑈 }

The operational semantics of stamped gDOT also resembles that of unstamped gDOT. While

type members do not affect the operational semantics of either gDOT version, substitutions affect

type members— either directly, in unstamped gDOT, or indirectly though the deferred substitution

𝜎 , in stamped gDOT. This becomes particularly relevant in the semantic counterpart of stamped

gDOT that we consider in Sec. 5.3.

The following theorem shows that any well-typed unstamped gDOT expression 𝑒 can be trans-

lated into a corresponding well-typed stamped gDOT expression 𝑒 ′, such that 𝑒 are 𝑒 ′ are in

bisimulation, denoted 𝑒 ≈ 𝑒 ′. The bisimulation guarantees that 𝑒 is safe iff 𝑒 ′ is safe.

Theorem 5.3 (Stamping). If Γ ⊢ 𝑒 : 𝑇 in unstamped gDOT, then for any stamping context 𝑔, there
exists an expression 𝑒 ′ in stamped gDOT, and stamping context 𝑔′ ⊇ 𝑔 with Γ ⊢𝑔′ 𝑒 ′ : 𝑇 and 𝑒 ≈ 𝑒 ′.

To combine derivations with different 𝑔, we use monotonicity of stamped typing over stamp table

extension. The proof is by mutual induction on derivations of all the typing judgments: each case

translates subexpressions in sequence and adds entries to the stamp context. Deferred substitutions

are initialized to the identity.

5.2 The Iris Logic
The Iris framework provides a programming language independent separation logic, which we

instantiate with the stamped gDOT language. Since (stamped) gDOT is a pure language, we make

little use of Iris’s support for separation logic, but we crucially use its support for abstract step-

indexing and the corresponding tactics in Coq (see Sec. 7). For the purpose of this paper, we thus
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focus on the following fragment of Iris:

𝜏 ::= 0 | 1 | iProp | ▶𝜏 | 𝜏 + 𝜏 | 𝜏 × 𝜏 | 𝜏 → 𝜏 | Expr | Val | . . .
𝑡, 𝑢, 𝑃,𝑄, 𝜑 ::= 𝑥 | 𝜆𝑥 : 𝜏 . 𝑡 | 𝑡 (𝑢) | False | True | 𝑡 =𝜏 𝑢 | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ⇒ 𝑄

| ∃ 𝑥 : 𝜏 . 𝑃 | ∀𝑥 : 𝜏 . 𝑃 | ⊲ 𝑃 | □ 𝑃 | 𝜇 𝑥 : 𝜏 . 𝑡 | 𝑠 { 𝜑 | . . .

Since Iris is a higher-order logic, its grammar includes the simply-typed lambda-calculus with a

number of primitive types and terms operating on these types. Most important is the type iProp of

Iris propositions, and the types for all syntactical categories of stamped gDOT (e.g., Expr and Val).
The Iris typing judgment is mostly standard and can be derived from the use of meta variables—𝜏

ranges over Iris types, 𝑃 and𝑄 range over Iris propositions, and 𝑡 and 𝑢 range over Iris terms of any

type. The fragment of Iris we consider includes higher-order impredicative quantification (∃ 𝑥 : 𝜏 . 𝑃

and ∀𝑥 : 𝜏 . 𝑃 ), the later modality (⊲) for abstract step-indexing, and guarded fixpoints (𝜇 𝑥 : 𝜏 . 𝑡 ).

Readers unfamiliar with Iris can ignore the persistence modality □—we use it to ensure that all our

definitions obey the laws of intuitionistic logic, even though full Iris is a substructural logic. The

connective 𝑠 { 𝜑 for saved predicates [Jung et al. 2016] is used for modeling semantic stamping

contexts. We describe saved predicates in Sec. 5.2.3.

We write 𝑃 ⊢I 𝑄 when 𝑃 entails 𝑄 in Iris. A selection of rules of the fragment of Iris we consider

is displayed in Fig. 8. Since we restrict ourselves to a fragment of Iris (with just saved predicates, and

not its full support for ghost state), we additionally get the rule (Impl-⊲), which does not hold in full

Iris. We need this rule for proving the semantic typing lemmas corresponding to the contravariant

subtyping rules (Typ-<:-Typ) and (∀-<:-∀).

5.2.1 Expression Weakest Preconditions. Support for reasoning about programs (using weakest

preconditions or Hoare triples) is not hard-wired into Iris. Instead, using Iris one can define custom

reasoning principles for the program language in question [Krebbers et al. 2017a]. Since gDOT

is a pure language, we define a custom notion of pure weakest preconditions for stamped gDOT

expressions (in this section, we only consider stamped gDOT, so we omit syntax coloring):

wp 𝑒 {𝜑} ≜
{
𝜑 (𝑒) if 𝑒 ∈ Val
(∃ 𝑒 ′. 𝑒 →t 𝑒

′) ∧ (∀𝑒 ′. 𝑒 →t 𝑒
′ ⇒ ⊲wp 𝑒 ′ {𝜑}) otherwise

Intuitively, wp 𝑒 {𝜑} asserts that 𝑒 is safe, and any resulting value 𝑣 of 𝑒 satisfies 𝜑 (𝑣). We write

wp 𝑒 {𝑣 . 𝑃} as shorthand for wp 𝑒 {𝜆 𝑣. 𝑃}. Like the standard Iris weakest precondition for stateful

languages, the above definition is formalized using the Iris guarded fixpoint operator 𝜇𝑥 : 𝜏 . 𝑡 .

Weakest preconditions enjoy the following rules:

𝜙 (𝑣) ⊢I wp 𝑣 {𝜙}𝜑 (Wp-Val)

(𝑒1 →t 𝑒2) ∧ ⊲wp 𝑒2 {𝜑} ⊢I wp 𝑒1 {𝜑} (Wp-Step)

The later modality (⊲) in the (Wp-Step) enables eliminating a later in all hypotheses each time we

take a program step. This is crucial for proving partial program correctness using (Löb) induction,

which allows proving 𝑃 while assuming the induction hypothesis ⊲ 𝑃 —using (Wp-Step) and

(⊲-Mono) one can turn the induction hypothesis ⊲ 𝑃 into just 𝑃 .

5.2.2 Path Weakest Preconditions. While weakest preconditions for expressions ensure partial

correctness, weakest preconditions for paths ensure total correctness (i.e., normalization):

wpP 𝑝 {𝜑} ≜
{
𝜑 (𝑝) if 𝑝 ∈ Val
∃ 𝑣𝑞, 𝑞′. wpP 𝑞 {𝑣 . 𝑣 = 𝑣𝑞} ∧ 𝑣𝑞 .a ↘ 𝑞′ ∧ wpP 𝑞

′ {𝜑} if 𝑝 = 𝑞.a
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Intuitively,wpP 𝑝 {𝜑} asserts that 𝑝 normalizes to a value 𝑣 satisfying𝜑 (𝑣).WewritewpP 𝑝 {𝑣 . 𝑃}
as shorthand for wpP 𝑝 {𝜆 𝑣. 𝑃}. Similarly to Iris’s notion of total weakest preconditions, this defi-
nition does not include a later modality (⊲), and is formalized as a least fixpoint.

5.2.3 Saved Predicates. To model semantic stamping contexts in Sec. 5.3, which map stamps to

semantic types, wemake use of Iris’s support for saved predicates [Jung et al. 2016]. Saved predicates

appear in the logic through the connective 𝑠 { 𝜑 , where 𝑠 is an identifier, and 𝜑 is an Iris predicate.

They enjoy the rule (Saved-Pred-Agree): if an identifier maps to two predicates, they are equal.

This equality appears under a later modality (⊲) because saved predicates can refer to themselves,

and such self-references must be guarded through a later modality (⊲) to be sound [Jung et al. 2018b,

Sec. 3.3]. We do not show the rules for introducing saved predicates, since they require a bigger

fragment of Iris than we describe in this paper. However, as we will discuss in Sec. 5.3.3, when

proving that a closed program is safe, we can introduce any number of 𝑠 { 𝜑 connectives.

In our semantic model, we instantiate Iris’s generic saved predicate construction with semantic

types, i.e., with predicates over stamped gDOT environments and stamped gDOT values:

SemType ≜ (Var → Val) → Val → iProp

To see how the use of saved predicates relates to the explicit model as a solution of the recursive

domain equation Eq. (Domain) at page 5, let us unfold the model of Iris. The type of propositions

of (our fragment of) Iris is the solution to the following recursive domain equation:

iProp = Auth(Stamp
fin−⇀ Ag(▶SemType)) → siProp

Here, siProp is the type of step-indexed propositions, and Auth and Ag are Iris’s authoritative and

agreement cameras used to describe the allowed resource sharing. Most of these details can be

ignored; what matters is that SemType, which contains a recursive occurrence of iProp, appears
under a later type former (▶). As such, the model of Iris with saved predicates is isomorphic (modulo

the indirection via stamps) to a direct model of gDOT as described by Eq. (Domain).

5.3 The Semantic Model of gDOT
We now put Iris and stamped gDOT to work by proving type soundness of gDOT (Theorem 5.2). In

Sec. 5.3.1 we define a semantic typing judgment Γ ⊨𝐺 𝑒 : 𝑇 for stamped gDOT, and in Sec. 5.3.2 we

prove that syntactically well-typed stamped gDOT terms are also semantically well-typed:

Theorem 5.4 (Fundamental). If Γ ⊢𝑔 𝑒 : 𝑇 , then Γ ⊨VJ𝑔 K 𝑒 : 𝑇 , where VJ𝑔 K is the semantic
stamping context corresponding to the syntactic stamping context 𝑔.

Finally, in Sec. 5.3.3 we prove adequacy of semantic typing for stamped gDOT:

Theorem 5.5 (Adeqacy). If 𝜀 ⊨𝐺 𝑒 : 𝑇 , then 𝑒 is safe.

Putting these theorems together, we obtain type soundness of unstamped gDOT (Theorem 5.2) as a

corollary, i.e., if 𝜀 ⊢ 𝑒 : 𝑇 , then 𝑒 is safe.

Proof of Theorem 5.2. Assume 𝜀 ⊢ 𝑒 : 𝑇 for an unstamped 𝑒 . By Theorem 5.3 we get 𝜀 ⊢𝑔 𝑒 ′ : 𝑇
for a stamped term 𝑒 ′ with 𝑒 ≈ 𝑒 ′, and a syntactic stamping context 𝑔. By Theorem 5.4 we obtain

𝜀 ⊨VJ𝑔 K 𝑒
′
: 𝑇 . By Theorem 5.5 we obtain that 𝑒 ′ is safe, which by 𝑒 ≈ 𝑒 ′ gives that 𝑒 is safe. □

Since the rest of this section is concerned with stamped gDOT, we omit syntax coloring.
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Auxilary definitions

wellMapped(𝐺) ≜ ∀ 𝑠 ∈ dom(𝐺). 𝑠 { 𝐺 (𝑠)
𝑠 {𝜎 𝜓 ≜ ∃𝜑. (𝑠 { 𝜑) ∧ ⊲(𝜓 = 𝜑 (𝜎))

Definition interpretation DJ _ K_ (_) : Type → Env → DefList → iProp

DJ⊤ K𝜌 (𝑑) ≜ True

DJ 𝑆 ∧𝑇 K𝜌 (𝑑) ≜ DJ 𝑆 K𝜌 (𝑑) ∧ DJ𝑇 K𝜌 (𝑑)

DJ {a : 𝑇 } K𝜌 (𝑑) ≜ ∃ 𝑝. lookup(a, 𝑑) = 𝑝 ∧ wpP 𝑝 {VJ𝑇 K𝜌 }

DJ {A :: 𝑆 .. 𝑈 } K𝜌 (𝑑) ≜ ∃𝜎, 𝑠,𝜓 . lookup(A, 𝑑) = (𝜎, 𝑠) ∧ (𝑠 {𝜎 𝜓 ) ∧(
∀ 𝑣 . ⊲VJ 𝑆 K𝜌 (𝑣) ⇒ ⊲□𝜓 (𝑣)

)
∧
(
∀ 𝑣 . ⊲□𝜓 (𝑣) ⇒ ⊲VJ𝑈 K𝜌 (𝑣)

)
DJ𝑇 K𝜌 (𝑑) ≜ False (if 𝑇 is not ⊤, 𝑆 ∧𝑇 , {A :: 𝑆 .. 𝑈 }, or {a : 𝑇 })

Value interpretation VJ _ K_ (_) : Type → Env → Val → iProp

VJ⊤ K𝜌 (𝑣) ≜ True

VJ⊥ K𝜌 (𝑣) ≜ False

VJ 𝑆 ∧𝑇 K𝜌 (𝑣) ≜ VJ 𝑆 K𝜌 (𝑣) ∧ VJ𝑇 K𝜌 (𝑣)
VJ 𝑆 ∨𝑇 K𝜌 (𝑣) ≜ VJ 𝑆 K𝜌 (𝑣) ∨ VJ𝑇 K𝜌 (𝑣)

VJ∀𝑥 : 𝑆.𝑇 K𝜌 (𝑣) ≜ ∃ 𝑒. (𝑣 =𝛼 𝜆𝑥 . 𝑒) ∧ □
(
∀𝑤. ⊲VJ 𝑆 K𝜌 (𝑤) ⇒ ⊲ EJ𝑇 K(𝜌,𝑥 :=𝑤) (𝑒 [𝑥 ≔ 𝑤])

)
VJ {a : 𝑇 } K𝜌 (𝑣) ≜ ∃ 𝑥, 𝑑. (𝑣 =𝛼 𝜈𝑥 . {𝑑}) ∧ DJ {a : 𝑇 } K𝜌 (𝑑 [𝑥 := 𝑣])

VJ {A :: 𝑆 .. 𝑈 } K𝜌 (𝑣) ≜ ∃ 𝑥, 𝑑. (𝑣 =𝛼 𝜈𝑥 . {𝑑}) ∧ DJ {A :: 𝑆 .. 𝑈 } K𝜌 (𝑑 [𝑥 := 𝑣])
VJ𝑝.A K𝜌 (𝑣) ≜ wpP 𝑝 [𝜌] {𝑤. ∃𝜎, 𝑠,𝜓 . (𝑤.A ↘ (𝜎, 𝑠)) ∧ (𝑠 {𝜎 𝜓 ) ∧ ⊲□ 𝜓 (𝑣)}

VJ𝑝.type K𝜌 (𝑣) ≜ wpP 𝑝 [𝜌] {𝑤. 𝑣 =𝛼 𝑤}
VJ 𝜇𝑥 .𝑇 K𝜌 (𝑣) ≜ VJ𝑇 K(𝜌,𝑥 :=𝑣) (𝑣)
VJ ⊲𝑇 K𝜌 (𝑣) ≜ ⊲VJ𝑇 K𝜌 (𝑣)

Expression interpretation EJ _ K_ (_) : Type → Env → Expr → iProp

EJ𝑇 K𝜌 (𝑒) ≜ wp 𝑒 {VJ𝑇 K𝜌 }

Environment interpretation GJ _ K(_) : TyCtx → Env → iProp

GJ 𝜀 K(𝜌) ≜ True

GJ Γ, 𝑥 : 𝑇 K(𝜌) ≜ GJ Γ K(𝜌 |Γ) ∧ VJ𝑇 K𝜌 (𝜌 (𝑥))
Semantic typing judgments

Γ ⊨P 𝑝 :
i 𝑇 ≜ □

(
∀ 𝜌. GJ Γ K(𝜌) ⇒ ⊲𝑖 wpP 𝑝 [𝜌] {VJ𝑇 K𝜌 }

)
Γ ⊨ 𝑒 : 𝑇 ≜ □

(
∀ 𝜌. GJ Γ K(𝜌) ⇒ EJ𝑇 K𝜌 (𝑒 [𝜌])

)
Γ | 𝑥 : 𝑉 ⊨ {𝑑} : 𝑇 ≜ wf 𝑑 ∧ □

(
∀ 𝜌, 𝑑𝑣 . wf 𝑑𝑣 ⇒ (𝑑 ⊆ 𝑑𝑣 [𝑥 := 𝜈𝑥 . {𝑑𝑣}]) ⇒

GJ Γ, 𝑥 : 𝑉 K(𝜌, 𝑥 := 𝜈𝑥 . {𝑑𝑣}) ⇒ DJ𝑇 K𝜌 (𝑑 [𝜌])
)

Γ ⊨ 𝑇1
i<: j 𝑇2 ≜ □

(
∀ 𝜌, 𝑣 . GJ Γ K(𝜌) ⇒ ⊲𝑖 VJ𝑇1 K𝜌 (𝑣) ⇒ ⊲ 𝑗 VJ𝑇2 K𝜌 (𝑣)

)
Γ ⊨𝐺 𝑒 : 𝑇 ≜ □(wellMapped(𝐺) ⇒ Γ ⊨ 𝑒 : 𝑇 )

Fig. 9. The semantic model of gDOT. The entire figure is phrased on stamped syntax. Relation wf 𝑑 asserts
that 𝑑 contains no duplicate labels. Environment restriction 𝜌 |Γ restricts 𝜌 to entries in Γ.
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5.3.1 Semantic Typing Judgments. Fig. 9 shows our semantic model for gDOT. Its definition fol-

lows the conventional setup of a logical relations model. First we define interpretation relations

DJ𝑇 K𝜌 (𝑑),VJ𝑇 K𝜌 (𝑣), and EJ𝑇 K𝜌 (𝑒) that describe the closed definition lists 𝑑 , closed values 𝑣 ,

and closed expressions 𝑒 that safety inhabit a type 𝑇 , under an environment 𝜌 ∈ Env ≜ Var → Val
that gives the interpretation of the variables in𝑇 . These interpretation relations are defined by struc-

tural recursion on types 𝑇 . Second, we lift these interpretation relations using closing substitutions

to the various semantic typing judgments for open terms.

Before we detail the interpretation relations and semantic typing judgments, we describe how

stamps are handled. Using Iris’s saved predicates we define 𝑠 {𝜎 𝜓 , which says that stamp 𝑠

and deferred substitution 𝜎 map to semantic type 𝜓 ∈ SemType ≜ Env → Val → iProp. Instead

of threading semantic stamping contexts 𝐺 ∈ Stamp
fin−⇀ SemType through all semantic typing

judgments, we keep them implicit using wellMapped(𝐺), which asserts that𝐺 is reflected through

Iris’s{. Only the top-level judgment Γ ⊨𝐺 𝑒 : 𝑇 makes the stamping context 𝐺 explicit.

The value interpretations of the basic types are standard for a logical relations model. The

interpretations of ⊥, ⊤, ∧, ∨ and ⊲ use the corresponding logical connectives of Iris.

The value interpretation of function typesVJ∀ (𝑥 : 𝑆).𝑇 K𝜌 (𝑣) expresses that 𝑣 is 𝛼-equivalent
to a function 𝜆𝑥. 𝑒 that maps values 𝑤 of type 𝑆 into expressions 𝑒 [𝑥 ≔ 𝑤] of type 𝑇 . The latter
is expressed by the expression interpretation EJ𝑇 K(𝜌,𝑥 :=𝑤) (𝑒 [𝑥 ≔ 𝑤]), which is defined using

weakest preconditions as is standard for logical relations in Iris. However, since gDOT supports

dependent functions (where the argument 𝑥 is in scope in type 𝑇 ), we interpret 𝑇 in the extended

context 𝜌, 𝑥 := 𝑤 . Moreover, we use the later modality (⊲), like in step-indexed logical relations for

equi-recursive types, where type constructors must be contractive rather than non-expansive [Appel
and McAllester 2001]. This choice provides stronger typing rules, and is for instance the reason

why (T-∀-I-Strong) can strip a later (⊲) from gDOT’s typing context.

The value interpretation of record typesVJ {a : 𝑈 } K𝜌 (𝑣) andVJ {A :: 𝐿 .. 𝑈 } K𝜌 (𝑣) expresses
that 𝑣 is 𝛼-equivalent to an object 𝜈𝑥 . {𝑑} with value member a (or type member A) that enjoys
the right property. The latter is expressed using the interpretation DJ _ K𝜌 (𝑑) for definition lists

𝑑 . We highlight the interpretation of type members DJ {A :: 𝑆 .. 𝑈 } K𝜌 (𝑑). Since values only store

semantic types𝜓 that are guarded through saved predicates in Iris, we only refer to𝜓 under the

later modality (⊲). This definition prevents bad bounds by ensuring that 𝜓 respects its bounds 𝑆

and𝑈 : for instance,VJ {A :: ⊤ .. ⊥} K𝜌 (𝑣) is false. Therefore, objects with bad bounds cannot be

typed in the empty context, and unsound subtyping evidence cannot be constructed.

The value interpretation of abstract types VJ𝑝.A K𝜌 (𝑣) describes that 𝑝 normalizes to object𝑤 ,

which in field𝑤.A holds stamp 𝑠 that refers to semantic type𝜓 . Since (paths in) types are able to

contain variables, this definition substitutes 𝜌 in 𝑝 , and then uses the path weakest precondition

to reason about the resulting object𝑤 . It asserts that 𝑣 , under the later modality (⊲), satisfies the

semantic type𝜓 . Similarly, the interpretation of singleton typesVJ𝑝 .typeK𝜌 (𝑣) normalizes 𝑝 to

𝑤 , and checks that 𝑣 and𝑤 coincide.

The value interpretation of 𝜇-types VJ 𝜇 (𝑥 : 𝑇 ) K𝜌 (𝑣) interprets 𝑇 in the extended environment

𝜌, 𝑥 := 𝑣 , matching the informal semantics.

Using the interpretation relations we define the semantic typing judgments. For instance, the

semantic expression typing judgment Γ ⊨ 𝑒 : 𝑇 asserts that 𝑒 runs safely in any environment 𝜌

matching Γ, and results in a value satisfyingVJ𝑇 K. The semantic path typing judgment Γ ⊨P 𝑝 :
i 𝑇

is defined using path weakest preconditions, so it asserts that path 𝑝 normalizes to a value satisfying

VJ𝑇 K. Unlike expression typing, path typing thus does not allow its subject to diverge (unlike in

pDOT, paths in gDOT cannot loop; see Sec. 8 for further discussion).

2020-03-10 14:53. Page 20 of 1–27.



Scala Step-by-Step 21

5.3.2 Semantic Typing Lemmas. After having defined the semantic typing judgments, we can prove

the semantic typing lemmas. Basically, for each typing rule, we replace ⊢𝑔 with ⊨, and prove the

result as a lemma. In fact, while designing gDOT, what we did was exactly the opposite—we first

proved the semantic typing lemmas before turning gDOT into a syntactic type system.

The proofs of the bulk of the semantic type lemmas are fairly straightforward— themajority of the

work was in devising the right interpretations of types. Two typing rules with interesting proofs are

(Sel-<:), and (T-{}-I). Rule (T-{}-I) is interesting because its proof relies on (Löb) induction: to prove

that the object 𝑣 ≜ 𝜈𝑥 . {𝑑} satisfies VJ 𝜇𝑥 .𝑇 K𝜌 (𝑣), we can assume it satisfies ⊲(VJ 𝜇𝑥 .𝑇 K𝜌 (𝑣)).
The proof of rule (Sel-<:) is interesting because it uses Iris’s proof rule (Saved-Pred-Agree) for

saved propositions. This proof also explains the ⊲ in the rule (Sel-<:) — it appears in rule (Sel-<:)

because it appears in (Saved-Pred-Agree). In general, the proofs of the semantic typing rules led

to the insight that types and function bodies only contain information later, hence introduction

and elimination rules only require information under a later type former.

As expected for a semantic model based on logical relation, putting together the semantic typing

lemmas, we prove the fundamental property (Theorem 5.4), i.e., if Γ ⊢𝑔 𝑒 : 𝑇 , then Γ ⊨VJ𝑔 K 𝑒 : 𝑇 .

Proof of Theorem 5.4. The theorem is proved by mutual induction on all typing judgments

that make up our type system. Each case of the proof follows directly from the semantic typing

lemmas that have been proved for each syntactic typing rule. □

5.3.3 Adequacy of semantic typing. We outline the proof of the adequacy theorem of our semantic

typing judgment (Theorem 5.5), i.e., if ⊨𝐺 𝑒 : 𝑇 , then 𝑒 is safe.

Proof of Theorem 5.5. To use the judgment ⊨𝐺 𝑒 : 𝑇 , wemust prove its premisewellMapped(𝐺)
by initializing the saved predicates.

8
This giveswp 𝑒 {VJ𝑇 K𝜌 }, which by adequacy of pure weakest

preconditions, shows that 𝑒 is safe. The adequacy proof of pure weakest preconditions resembles

the adequacy proof of stateful weakest preconditions in Iris [Krebbers et al. 2017a]. □

6 EXPRESSIVITY EVALUATION
We show that, despite gDOT’s guardedness restrictions, we can encode both existing and new

examples from the literature. All examples presented in this section, and additional ones, including

all examples in Sec. 1-5 of the WadlerFest DOT paper [Amin et al. 2016], are mechanized in Coq.

In Sec. 6.1 we describe the syntactic typing of an encoding of covariant lists, a highly recursive

benchmark from the DOT literature. In Sec. 6.2 and Sec. 6.3 we show that gDOT enforces data

abstraction: we semantically type two programs whose safety relies on class invariants, including

our motivating example from the introduction (Sec. 1.1).

6.1 Covariant Lists
As it is standard in the DOT literature [Amin et al. 2016; Rapoport and Lhoták 2019; Rompf and

Amin 2016], we encode the Scala type List[𝑇] of lists, together with its core methods. Our encoding,

which is shown in Fig. 10, is mostly standard in DOT (except for the shaded parts, to which we

return in a moment), but we summarize a few features of this encoding. Object lists defines an
abstract type of lists List, together with constructors nil and cons. In turn, the type of lists defines a

type member A representing the type of elements, together with accessor methods. The definition

of lists.List is highly recursive: it uses self variables lists and list to refer to both itself and its own

type member list .A. Since DOT lacks exceptions, here and in later examples we let failing methods

invoke an infinite loop diverge with type ⊥, like in other DOT papers [Amin et al. 2016; Rapoport

8
This proof uses a bigger Iris fragment than shown in Sec. 5.2; we omit details in the paper.
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let bools = . . . in let lists = 𝜈 lists. {
List >: ⊥ = 𝜇 list .

{A >: ⊥ <: ⊤; isEmpty : ⊤ → bools.Bool; head : ⊤ → list .A; tail : ⊤ → lists.List ∧ {A <: list .A}}
nil : ⊲ lists.List ∧ {A = ⊥}

= 𝜈 _. {A = ⊥; isEmpty = 𝜆_. bools.true; head = 𝜆_. diverge; tail = 𝜆_. diverge}
cons : ∀ (𝑥 : {S <: ⊤}). 𝑥 .S → (lists.List ∧ {A <: 𝑥 .S}) → lists.List ∧ {A <: 𝑥 .S}

= 𝜆 𝑥 hd tl. 𝜈 _. {A = 𝑥 .S; isEmpty = 𝜆_. bools.false; head = 𝜆_. hd; tail = 𝜆_. tl}
} in . . .

Fig. 10. Covariant lists in gDOT using (elided for space) Church-encoded Booleans [Amin et al. 2016].

posSemT ∈ SemType ≜ 𝜆 𝜌, 𝑣 . ∃𝑛 : Z. 𝑣 = n ∧ 𝑛 > 0

let positives = 𝜈 positives. {
Pos >: ⊥ <: Int = posSemT
mkPos : Int → positives.Pos = 𝜆𝑚. if 𝑚 > 0 then𝑚 else diverge
div : Int → positives.Pos → Int = 𝜆𝑚 𝑛. 𝑚/

(
coerce 𝑛

)
} in . . .

Fig. 11. A module for positive numbers and safe division using abstract types.

and Lhoták 2019; Rompf and Amin 2016]. We encode the Scala type List[𝑇] as lists.List∧ {A <: 𝑇 }.
Similarly to lists in Scala, this encoding is covariant, i.e., if 𝑇1 <: 𝑇2 then List[𝑇 1] <: List[𝑇2].

Type checking the body of cons relies on gDOT’s rules (𝜇-<:) and (<:-𝜇) for subtyping of recursive

types [Rompf and Amin 2016]. Since most other DOT variants [Amin et al. 2016; Rapoport et al.

2017; Rapoport and Lhoták 2019] do not support those rules, they require instead modifying the

source code and inserting a spurious let-binding, to then use rules analogous to (P-𝜇-I) and (P-𝜇-E).

The only unusual guardedness restriction of gDOT is the use of a later in front of the type of nil.
Since nil is defined as a value member, we cannot use coercions; and since the type of self variable

lists is guarded during construction, we cannot derive bounds for lists.List but only for ⊲ lists.List.
This restriction could be avoided by thunking nil (i.e., making it a method). In the present encoding,

the later can be removed at the client side via a coerce.

6.2 Positive Numbers
A syntactic type system (like gDOT’s) cannot recognize all semantically safe programs because

safety may rely on functional correctness or the language’s support for data abstraction. Similarly

to the RustBelt model of Rust [Jung et al. 2018a], our semantic model of gDOT enables proving the

safety of such examples by dropping down to the definition of semantic typing in Iris. In this and

the next section, we discuss two such examples.

As a warm-up, and to demonstrate the use of semantic types, we show that object positives in
Fig. 11 is semantically well-typed. This object defines a type member Pos of positive numbers, and

safe methods to create (mkPos), and consume them (div). The method mkPos represents a “smart

constructor”: it returns the input number𝑚 if positive, and fails by looping otherwise. The method

div makes use of an unsafe division operator, which gets stuck in the operational semantics when

called with the argument 0.
9
Since safety of the division operator relies on functional correctness

9
Whereas we used Church encoded Booleans in Sec. 6.1, the version of gDOT that we mechanized in Coq in fact has

primitive support for Booleans and integers, which we use in this section.
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assert 𝑐 ≜ if 𝑐 then 0 else diverge;
None ≜ {isEmpty : true.type; . . .}
Some ≜ 𝜇 some. {

A >: ⊥ <: ⊤
isEmpty : false.type // The only value in singleton type false.type is false.
pmatch : ∀ (𝑥 : {U <: ⊤}). 𝑥 .U → (some.A → 𝑥 .U) → 𝑥 .U
get : ⊲ some.A

}
let options : {Option <: None ∨ Some} = . . . in
let pcore = 𝜈 pcore. {
types = 𝜈 types. {

Type >: ⊥ = ⊤
TypeTop >: ⊥ = types.Type
newTypeTop : ⊤ → types.TypeTop = 𝜆_. 𝜈_. {}
TypeRef >: ⊥ <: types.Type ∧ {symb : pcore.symbols.Symbol}

= types.Type ∧ {symb : (pcore.symbols.Symbol ∧ {tpe : Some})}
newTypeRef : pcore.symbols.Symbol → types.TypeRef

= 𝜆𝑠. { assert(¬( coerce 𝑠) .tpe.isEmpty); 𝜈_. {symb = 𝑠} }
typeFromTypeRef : types.TypeRef → types.Type =

= 𝜆𝑡 . { coerce2 ( coerce ( coerce 𝑡) .symb) .tpe.get }
} // symbols is unchanged

} in . . .

Fig. 12. The (simplified) fragment of Dotty from Fig. 1 in gDOT (assert, None, and Some are abbreviations).

(i.e., the argument being non-zero), it cannot be typed in the syntactic type system of (g)DOT. In

turn, object positives cannot be typed syntactically.

Yet, we can prove that positives is semantically typed. While the class invariant of Pos cannot be
expressed through a syntactic type, we can express it as the logical predicate posSemT in stamped

gDOT.
10
To prove semantic typing of positives, we unfold the semantic typing judgment of our

gDOT model and perform a manual proof in Iris. Let us walk through that proof. First, we need to

prove that Pos respects its type bounds ⊥ and Int. This holds trivially because positive integers are
integers. Next, we should prove semantic typing of mkPos. For that, we need to show that if the

conditional succeeds, the argument satisfies posSemT . Finally, we should prove semantic typing of

div. Since its argument 𝑛 has abstract type positives.Pos, it satisfies semantic type posSemT . Note
that since type members are modeled using saved predicates in Iris, method div uses a coercion,
allowing us to strip a later when acquiring the semantic type posSemT of type member positives.Pos.

Thanks to the Iris framework, we do not have to deal with explicit step-indexing. All proofs are

carried out using Iris’s support for abstract step-indexing. Moreover, to streamline semantic typing

proofs such as the above, we have generalized semantic typing judgments to semantic types in our

Coq mechanization, which enable us to reuse our typing lemmas both here and in Sec. 6.3.

6.3 Mutual Information Hiding
We now return to our motivating example from the introduction (Sec. 1.1). As discussed in Sec. 4,

we have shown in Coq that the gDOT version (Fig. 2) of the Scala code (Fig. 1) is syntactically

well-typed. However, method typeFromTypeRefUnsafe (which is present in the Scala version, but not

10
The definition of Pos is encoded using a stamp and an identity deferred substitution.
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in the DOT version), cannot be shown to be syntactically well-typed in any DOT calculus— it uses

an unsafe cast whose safety crucially relies on (g)DOT’s support for data abstraction. Using gDOT’s

semantic model we show that this example is in fact semantically well-typed. This demonstrates

the flexibility of semantic typing, and shows that gDOT enforces the data abstraction that mutual

information hiding should provide.

Method typeFromTypeRefUnsafe in Fig. 1 retrieves an actual types.Type by invoking the get

method on t.symb.tpe, which has type Option[types.Type]. In Scala, invoking Option[𝑇 ]’s method

get on None will trigger an exception. However, since gDOT (like all DOT calculi) lacks exceptions,

and to show gDOT’s support for data abstraction, we model (unlike the Scala standard library) get

as a function from Some[𝑇 ] to 𝑇 , where Some[𝑇 ] is a subtype of Option[𝑇 ] that has a get function.

Hence, to call get, we first must unsafely cast tpe via tpe.asInstanceOf[Some[types.Type]] to get

a value of type Some[types.Type]. Although this cast cannot be typed syntactically, it is safe due to

the assert in constructor TypeRef. In turn, safety of this assert relies on Option’s class invariant:

isEmpty only returns false on instances of the Some constructor.

We encode the Scala example from Fig. 1 in gDOT as shown in Fig. 12. As usual in gDOT, we

use coercions when unfolding abstract types to ensure guardedness. More importantly, we express

the class invariants of types options.Option and pcore.types.TypeRef by defining them to stricter

types than in Scala. In particular, the upper bound of Option formalizes the informal invariants

of options’s public API using union and singleton types. An instance of Option is then either an

instance ofNone, exposing an isEmptymethod that returns true, or an instance of Some, exposing
an isEmpty method that returns false and a get method that returns the contained value.

Thanks to gDOT’s support for mutual information hiding, one can also expose class invariants

locally, and hide them by using subsumption. This is used for TypeRef, whose class invariant

guarantees that symb.tpe has type Some containing method get, but this is hidden outside types.
The more precise definition of TypeRef makes typeFromTypeRef syntactically well-typed (hence

the change of name), but makes newTypeRef syntactically ill-typed, so we prove it well-typed

semantically. In this proof, we take the result 𝑣 of (coerce 𝑠).tpe, show it has type None ∨ Some,
and reason by cases on this union type. If 𝑣 has typeNone, newTypeRef diverges and is thus safe. If 𝑣
has type Some, the return value of newTypeRef will have the correct type TypeRef. This concludes
our informal proof sketch, which we have mechanized in Coq. Parts of the typing derivation are

constructed syntactically; in those parts, we needed various distributivity rules, including rule

(Distr-∧-∨) to distribute intersections over union and turn intersection (None ∨ Some) ∧ {A ::

⊥ .. pcore.types.Type} into a union type (see Sec. 4.4).

7 COQMECHANIZATION
We mechanized gDOT and its semantic soundness proof in Coq, using the Iris framework and the

MoSeL tactic language [Krebbers et al. 2018, 2017b]. We mechanized binding through de Bruijn

indexes and parallel substitution, using the Autosubst 1 library [Schäfer et al. 2015]. While DOT

binding does not fit perfectly with Autosubst 1 (unlike Autosubst 2 [Stark et al. 2019]), we were

able to use Autosubst 1 by defining substitution by hand, while reusing Autosubst 1’s tactics for

deciding binding lemmas. Due to Autosubst 1’s limitations, path substitution is defined separately.

The only axioms we use are functional extensionality (needed by Autosubst), and uniqueness of

identity proofs (to simplify dealing with dependent pattern matching).

Overall, our gDOT mechanization consists of 17.566 lines of Coq code. It includes some language-

generic components (3.079 lines). The mechanization of the gDOT semantic model (4.742 lines)

consists of the definition of the gDOT language and operational semantics (2.095 lines), and the

logical relation, semantic typing lemmas and adequacy theorem (2.647 lines). The mechanization of

the gDOT syntactic type system consists of definitions and proofs about the syntactic type system,
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derived typing rules, stamping (including Theorem 5.3), and the fundamental theorem (5.552 lines).

Finally, we mechanized all examples (4.193 lines).

8 RELATEDWORK
pDOT. The variant of the DOT calculus that is closest to gDOT is pDOT, introduced by Rapoport

and Lhoták [2019]. The rule (D-Val-New) of gDOT is an “alternative design” they considered for

pDOT [Rapoport and Lhoták 2019, Sec. 4.2.2]. Unlike Scala, pDOT considers paths as normal forms.

Instead, gDOT lets paths reduce, but ensures they have a normal form.

Normalization for 𝐷<:. We were inspired by Wang and Rompf [2017], who use logical relations

to prove normalization of a DOT subset including 𝐷<:. They prove normalization (in a way that

implies type safety), which they argue is important for paths. However, for proving type safety of

Scala (which in itself is not normalizing), it is sufficient to prove normalization of paths only. Indeed,

our path typing judgment implies normalization through the use of total weakest preconditions

in Iris (see Sec. 5.2.2). Moreover, their model imposes guardedness restrictions on 𝜇-types instead

of abstract types. Those guardedness restrictions are more severe than gDOT’s— they only allow

for a weak elimination rule for 𝜇-types, reminiscent of System F-style weak existentials. While

their results also imply type safety for the language they study, it is unclear how to adapt their

technique to prove type safety of a Turing-complete (i.e., non-normalizing) variant of the language.

Coinductive Type Systems. Brandt and Henglein [1998] define subtyping for recursive types using

a coinductive formulation of subtyping, which resembles our typing rule for object creation, and

our use of Löb induction. That is, to prove a judgment 𝐽 (such as type equality or subtyping),

they allow using 𝐽 as an assumption, but forbid using 𝐽 immediately. One might suspect that a

coinductive formulation of DOT, and of rule (T-{}-I) in particular, might allow making (D-Typ-Abs)

sound without using later. However, DOT’s 𝜇-types (and Amin et al.’s refinements [2012]) differ

from standard recursive types, and resemble more closely recursively defined signatures [Crary

et al. 1999], Cedille’s 𝜄-types [Fu and Stump 2014], and dependent intersections [Kopylov 2003].

Logical relations for Predicative Type Members. Logical relation models are available for other type

systems with features similar to Scala type members, such as ML modules [Crary 2017] and type

theory. However, such type systems avoid the challenges we face because they feature a universe

hierarchy and predicative/stratified type members/Σ-types: if a value 𝑣 contain a type in a certain

universe, the type of 𝑣 lives in a larger universe [Harper and Mitchell 1993], eschewing the need

for stratification via step-indexing.

Virtual Classes and Impredicative Type Members. Type members in DOT and Scala eschew the

sort of universe hierarchy described in the previous paragraph: we say they feature impredicative
type members. Impredicative type members also feature in other type systems with path-dependent

types or virtual classes [Clarke et al. 2007; Ernst et al. 2006].

9 FUTUREWORK
Annotation inference and type checking. DOT calculi are not meant to be programmed in directly;

type checking of DOT is conjectured to be undecidable, like 𝐷<: [Hu and Lhoták 2020], and gDOT

additionally requires inserting later (⊲) and coercion (coerce) annotations. Future work could

investigate inference of these annotations, either directly [Severi 2019], or by translating from a

Scala subset with decidable typechecking [Cremet et al. 2006] into gDOT or a suitable variant.

Expressivity. The programs we prove safe are decorated by no-op coercions (coerce). We conjec-

ture that removing these coercions preserves safety, but we leave a proof for future work.
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Amin et al. [2016] prove that all 𝐹<: programs can be translated into DOT, but their proof does

not easily extend to gDOT. However, we have been able to translate many given examples by hand

by adding a sufficient number of ⊲ and coerce annotations, so we conjecture that there exists a

whole-program encoding of 𝐹<: programs into gDOT.

Additional features. We are investigating support for higher-kinded types, by modeling type

arguments as values. The latest work in this direction [Stucki 2016] ran into strong challenges and a

counterexample to soundness (luckily, not affecting Scala). We conjecture that our techniques scale

directly to this form of higher kinds, and that gDOT’s existing guardedness restrictions already

rule out this counterexample.
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